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Simulated synapse loss induces 
depression-like behaviors in deep 
reinforcement learning
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Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial 
neural networks to model reward-based learning as it occurs in biological agents. 
Here we modify a Deep Reinforcement Learning approach by imposing a suppressive 
effect on the connections between neurons in the artificial network—simulating 
the effect of dendritic spine loss as observed in major depressive disorder (MDD). 
Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-
like behaviors in the artificially intelligent agent, including anhedonia, increased 
temporal discounting, avoidance, and an altered exploration/exploitation balance. 
Furthermore, simulating alternative and longstanding reward-processing-centric 
conceptions of MDD (dysfunction of the dopamine system, altered reward discounting, 
context-dependent learning rates, increased exploration) does not produce the 
same range of MDD-like behaviors. These results support a conceptual model 
of MDD as a reduction of brain connectivity (and thus information-processing 
capacity) rather than an imbalance in monoamines—though the computational 
model suggests a possible explanation for the dysfunction of dopamine systems 
in MDD. Reversing the spine-loss effect in our computational MDD model can 
lead to rescue of rewarding behavior under some conditions. This supports the 
search for treatments that increase plasticity and synaptogenesis, and the model 
suggests some implications for their effective administration.
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Introduction

Reinforcement learning: reward-based learning and 
behavior

Reinforcement Learning (RL) is a field of science that provides mathematical models of 
reward-based learning and decision-making. With its origins in the disparate psychological 
and computational fields of trial-and-error learning and optimal control (Sutton and Barto, 
2018), it is now a field where artificial intelligence (AI) and brain sciences overlap: recent 
RL-based learning algorithms can play Go and Starcraft at superhuman levels (Schrittwieser 
et al., 2020; Vinyals et al., 2019), while psychologists and neuroscientists use RL models to 
understand animal behavior (Daw, 2012; Neftci and Averbeck, 2019; Sutton and Barto, 2018).

Temporal difference learning is an important branch of RL which models trial-and-error 
learning. Temporal difference learning measures the difference between expected and actual 
rewards (the “temporal difference” or “reward prediction error”; RPE) each time the agent 
executes an action. The estimated value of that action is then adjusted in proportion to the 
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RPE, according to a learning rate parameter. In the 1990s it was 
hypothesized that this model actually corresponds to learning 
mechanisms in the dopaminergic and striatal systems (Montague 
et al., 1996; Schultz et al., 1997). This hypothesis has grown steadily, 
and today it is generally thought that the phasic activity of dopamine 
neurons in the midbrain signals reward prediction error (RPE) 
(Montague et  al., 1996). It is believed that these phasic activity 
fluctuations influence plasticity in the striatum (Schultz et al., 1997) 
(and possibly hippocampus (Mehrotra and Dubé, 2023) and prefrontal 
cortex (Daw et  al., 2005)) in a way that optimizes the organism’s 
expected or perceived value of particular actions, allowing it to learn 
rewarding behavior.

Deep Reinforcement Learning is a recent branch of RL which 
incorporates artificial neural networks: the networks are embedded 
within and control the actions of an artificial agent. In one possible 
implementation, the network accepts sensory input describing the 
environmental state, and the resulting activations of its output neurons 
represent the estimated values of various actions, given that state. 
Reward prediction errors experienced as the agent interacts with its 
environment are used to adjust the network’s internal connections in 
a learning process that improves the quality of the value estimates 
(thus maximizing the agent’s ability to make rewarding decisions), and 
generalizes knowledge between similar states (a critical ingredient in 
the ability to solve large problems and learn complex behaviors).

Because of the close analogy between Deep RL and biological 
reward-based learning, Deep RL is starting to be used in significant 
neuroscientific modeling and hypothesis creation, though much 
potential remains untapped (Botvinick et al., 2020). In particular, 
there is a tremendous but little-explored opportunity to use Deep RL 
to model dysfunctions of learning and behavior, including those 
associated with Major Depressive Disorder (MDD) (Mukherjee et al., 
2023). Artificial intelligence technologies have been used in diagnosis 
and treatment of depression (Lee et al., 2021), but a computational 
model of the disorder itself would be immensely valuable for MDD 
research: such models are cheaper and more ethical than animal 
models, can provide new ways of conceptualizing the disorder, and 
can produce new hypotheses for experimental researchers to 
investigate. This paper presents just such a model.

Major depressive disorder—through a 
reinforcement learning lens

Major Depressive Disorder (MDD) is a complex psychological 
disorder. It is both highly disabling and highly prevalent: according to 
the National Institute of Mental Health, over 21 million Americans 
over the age of 18 have experienced a Major Depressive Episode over 
the last year (National Institute of Mental Health, n.d.). According to 
the DSM-5, symptoms of MDD include anhedonia, withdrawal from 
social activities, loss of interest, and increased indecisiveness 
(American Psychiatric Association, 2022). The ICD-10 categorizes 
recurrent depressive disorder as repeated episodes of depressive 
symptoms, including a decrease in overall mood and a reduction in 
the capacity for enjoyment of personal interests (World Health 
Organization, 1993). Overall, MDD involves a general decrease in 
goal-directed behavior and productivity.

MDD is complex, heterogeneous, and not completely understood, 
but has been conceptualized in various ways. As it happens, some 

prominent conceptions involve or overlap with Reinforcement 
Learning and could be  modeled using RL or straightforward 
extensions of RL. These conceptions of MDD include:

Monoamine deficiency
The “monoamine hypothesis”—the idea that MDD is primarily a 

dysregulation of monoaminergic systems (dopamine, serotonin, etc.)—
has been used for many years and inspired a variety of antidepressant 
drugs. Early generations of tricyclic antidepressants (TCAs) and 
monoamine oxidase inhibitors (MAOIs) eventually gave way to selective 
serotonin reuptake inhibitors (SSRIs), which can take several weeks to 
work but have fewer side effects (Edinoff et al., 2021). Amphetamines 
have sometimes been used (Tremblay et al., 2002) or paired with other 
drugs (Pary et al., 2015) because they increase dopamine levels. The 
downregulation of dopaminergic systems in MDD has been well 
documented (Belujon and Grace, 2017) and is of particular interest 
from a Reinforcement Learning perspective: if dopamine signals reward 
prediction error, then disruption of that signal may also disrupt learning.

Increased temporal discounting
Temporal or delay discounting refers to the decrease in the 

perceived value of a future reward as the time it takes to reach the 
reward increases. Higher discounting rates mean a stronger preference 
for immediate reward over a delayed reward. It has been hypothesized 
that tonic activity of dopamine neurons affects discounting (Pattij and 
Vanderschuren, 2008; Smith et al., 2005), and an increase in delay 
discounting has been associated with various psychiatric disorders, 
including bipolar disorder, bulimia nervosa, borderline personality 
disorder, and ADHD (Amlung et al., 2019; Maia and Frank, 2011), 
and larger discounting rates are observed in depressed individuals 
relative to controls (Imhoff et al., 2014; Pulcu et al., 2014). This altered 
discounting may be a reflection of particular symptoms of MDD, such 
as feelings of hopelessness (Pulcu et  al., 2014), or related to the 
impaired episodic future thinking that is observed in depressed 
individuals (Hallford et al., 2020). While MDD is generally associated 
with increased discounting, it should be noted that the discounting 
phenomenon is complex and may vary with age and environmental 
factors (Lempert and Pizzagalli, 2010; Li et al., 2012; Read and Read, 
2004; Whelan and McHugh, 2009).

Faster learning from negative experiences
Depressed individuals appear to have a heightened response to 

punishment or negative experiences and a blunted response to reward 
or positive experiences, both neurally and behaviorally (Eshel and 
Roiser, 2010; Maddox et al., 2012; Rygula et al., 2018). Such imbalances 
in feedback processing have been linked to altered dopamine signaling 
(Sojitra et al., 2018) and are also affected by SSRIs (Herzallah et al., 
2013). Anhedonic severity seems to correlate with attenuated 
processing of positive information in the striatum and enhanced 
performance in avoiding losses (Reinen et  al., 2021). However, 
reinforcement learning models with dual learning rates (separate 
learning rates for rewards and punishments) have not always detected 
faster learning from punishments when fit to behavioral data (Brolsma 
et al., 2022; Pike and Robinson, 2022; Vandendriessche et al., 2023).

Altered exploration/exploitation balance
MDD is associated with altered exploration-exploitation tradeoff: 

the problem of deciding whether to exploit a trusted, rewarding 
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option or explore other options that may potentially yield better 
outcomes. Depressed individuals exhibit an increase in stochastic 
choices and exploratory behavior (Blanco et al., 2013; Kunisato et al., 
2012; Rupprechter et al., 2018), and this has been interpreted as the 
result of a decreased sensitivity to the value of different options 
(Chung et  al., 2017; Huys et  al., 2013; Mukherjee et  al., 2023). 
However, as with the impaired processing of negative versus positive 
feedback, some studies that apply computational RL models have 
found that exploration levels do not account for the differences 
between MDD patients and controls (Bakic et al., 2017; Rothkirch 
et al., 2017).

A new model: depression as reduced brain 
connectivity

Depression has been shown to affect dendritic spine density. 
Depression is generally associated with decreased spine density in 
the hippocampus and prefrontal cortex and increased density in the 
amygdala and nucleus accumbens (Helm et al., 2018; Qiao et al., 
2016; Runge et al., 2020). Changes in spine density may depend on 
brain region, sex, and other experimental conditions (Qiao et al., 
2016). Overall, lower synaptic density correlates with depression 
severity (Holmes et al., 2019) and the apparent loss of spines in the 
prefrontal cortex and hippocampus is a particular focus of 
this paper.

Dendritic spines are small protrusions from neuronal dendrites 
that can contact and form a synapse with a neighboring neuron. Fewer 
spines therefore suggests reduced overall brain connectivity. Some 
recent work suggests that ketamine relieves depression by promoting 
plasticity and spinogenesis (Krystal et al., 2019, 2023) and that spines 
formed after ketamine treatment are necessary for sustained 
antidepressant effects (Moda-Sava et al., 2019). Furthermore, it has 
been suggested that conventional antidepressants (that are based 

largely on the monoamine hypothesis) may work not by modulating 
monoamine concentrations per se, but because they promote slow 
synaptogenesis (Johansen et al., 2023; Speranza et al., 2017; Wong 
et al., 2017), or because they promote cognitive reconsolidation in a 
more positive way (Harmer et al., 2009a, 2009b). Observations like 
these have affected a recent shift in thinking, away from MDD as a 
monoamine system dysfunction, toward seeing MDD as a dysfunction 
of neuroplasticity (Liu et al., 2017).

Towards a computational model of 
depression

In this paper we set up a deep reinforcement learning algorithm 
to simulate dendritic spine loss. Specifically, we apply a “weight decay” 
effect to all connections between artificial neurons, causing each to 
degenerate over time at a rate proportional to their strength (i.e., the 
strongest communication channels are affected most—see Methods). 
This simulates the effect of spine loss by impairing the connections 
between neurons (illustrated in Figure 1).

We show, perhaps surprisingly, that this simulated spine loss is 
sufficient to induce a range of depression-like behaviors in the 
artificial agent, including anhedonia, temporal discounting, 
avoidance, and increased exploration. We further demonstrate that 
simulating alternate RL-centric conceptions of depression (reduced 
dopamine signaling, an artificially-increased discount rate, faster 
learning from negative experience, and altered exploration/
exploitation balance) do not produce the same range of behaviors, 
showing that the simulated spine-loss model has face validity as a 
model of depression. We conclude by drawing several interesting 
hypotheses and implications from the model, including a new way 
to conceptualize depression, a speculative explanation for 
dopamine system dysregulation in MDD, and implications 
for treatments.

FIGURE 1

Illustration of the kind of deep reinforcement learning models used in this work. A weight decay factor applied to connections between artificial 
neurons is used to simulate the effect of dendritic spine loss seen in depression.
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FIGURE 2

Comparing behaviors of simulated healthy and simulated spine loss agents. (a) The simulated “world.” The agent (red triangle) must learn to navigate 
the room in search of the green goal. Blue boxes are optional bonus rewards that can be collected en route to the goal, and red boxes are hazards that 
bring a negative reward (punishment). (b) The simulated spine loss agent still reaches the goal in each episode but collects fewer bonus rewards. (c) 
The simulated spine loss agent learns a less-rewarding strategy than the healthy agent but learns it quicker, as seen by the time to arrive at asymptotic 
slope. (d) Contrived situation in which the agent may bypass the optional reward or take an extra step to collect it en route to the goal (reward 
optimal). (e) Agents’ perceived values for the contrived situation in (d)—the healthy agent’s perceived value of detouring through the optional reward is 
very high. The spine loss agent has much weaker preferences and a slight preference for bypassing the optional reward (an anhedonia-like effect). 
Errorbars and shaded regions show the 95% confidence interval of the mean over 20 repetitions.

Results

A simulated “world”

Experiments in this paper use a simulated goal-seeking task 
illustrated in Figure 2a. The simulation places an agent in a small room 
which it must learn to navigate. Three types of objects are present in 
the room: several “optional” goals, one “required” goal, and a “hazard.” 
Optional goals appear randomly throughout the room in each episode, 
and deliver a small reward to the agent when collected. The required 
goal always appears in the same location. When it is reached, the agent 
receives a large reward, the current episode ends, and the next begins. 
The hazard delivers a punishment (negative reward) to the agent when 
touched. At each step the agent chooses one of three actions: turn left, 
turn right, or move forward. The agent’s visual field only covers part 
of the room, so it must learn how to select appropriate actions to 
maximize reward, given the incomplete visual information. Both 
“healthy” and “depressed” agents (with simulated spine loss) were 
placed in this environment and allowed to learn behavioral strategies 
over a sufficient period of time.

While this simulation presents a goal-seeking problem involving 
spatial navigation, it should also be seen as a simple metaphor for the 
sequential decision-making of daily life. The optional goals represent 
opportunities like play, exploring interests, or socialization, while the 
required goal represents basic survival strategies like finding food or 
employment, which must be attended to every day.

Simulated spine loss induces 
depression-like behaviors

Anhedonia
Anhedonia (loss of interest or pleasure) is recognized as a 

hallmark symptom of MDD by both the DSM-5 and the ICD-10 
(American Psychiatric Association, 2022; World Health Organization, 
1993). Behavior of both healthy and spine-loss agents is illustrated in 
Figure 2. Comparing the times required to reach asymptotic slope in 
the cumulative reward curves and comparing the asymptotic slopes 
themselves, we see that the “depressed” agents learn a simple strategy 
more quickly than the “healthy” agents, but the strategy learned by the 
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“healthy” agents is more rewarding (see Figure 2c). This is illustrated 
further by comparing the number of optional goals obtained per 
episode. “Healthy” agents collect almost two optional goals per 
episode, while “depressed” agents tend to collect only 1. If optional 
goals represent opportunities like play, exploring interests, or 
socialization, then these results mirror the loss of interest in these 
opportunities that accompanies depression.

Studies of MDD in animals often detect anhedonic (reduced 
pleasure-seeking) behavior using a sucrose preference test (Bessa 
et al., 2013; Zhuang et al., 2019). Here, we instead place agents in the 
contrived scenario illustrated in Figure 2d and observe their internal, 
perceived values. Assuming reasonably low reward discounting, the 
reward-optimal strategy would turn right to collect the optional goal 
en route to the required goal—requiring 1 additional action but 

obtaining both goals. The depressed agent chooses to bypass the 
optional goal—assigning a higher value to moving forward than to 
turning right. This is consistent with the results in Figure 2b and 
suggests a simulated anhedonia. But the depressed agent also shows 
perceived values that are reduced categorically, revealing a general loss 
of interest underlying the anhedonic behavior.

Increased discounting
Altered discounting has been observed in MDD, both monetarily 

(Pulcu et  al., 2014) and in response to basic rewards through 
simulations (Rupprechter et al., 2018). Computational models provide 
the opportunity to directly expose the agent’s internal preferences and 
perceived values. We  can infer an agent’s effective temporal 
discounting rate from these values. Figure 3b shows the simulated 

FIGURE 3

(a,b) Agents’ effective discounting rates can be inferred by placing them progressively closer to the goal and measuring their perceived values. The 
spine loss agent operates with a lower effective discount factor (more discounting). (c,d) Contrived situation in which the agent is moved toward a 
hazard. The healthy agent’s perceived value of moving forward increases through positions 1–3 (moving forward from these positions brings the goal 
closer). Only in position 4 does the healthy agent’s perceived value of moving forward drop. For the spine loss agent this drop is generalized 
inappropriately to positions 2 and 3. Errorbars and shaded regions show the 95% confidence interval of the mean over 20 repetitions.
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FIGURE 4

Applying simulated spine loss to a healthy agent causes it to revert to the simpler, low-reward depression-like behavior. Relieving the spine loss 
(restoring the spines) allows a return to the original behavior—after a short readjustment period. This may support the idea that spine density modulates 
depressed cognition and behavior. Shaded regions show the 95% confidence interval of the mean over 20 repetitions.

spine loss agent operating with a lower effective discount factor (more 
reward discounting). Surprisingly, this occurs even though all RL 
algorithms in these experiments used the same explicit discount factor 
setting. That is, the spine loss seems to induce an additional 
discounting effect.

Avoidance
MDD involves maladaptive and increased avoidance behavior 

(Ironside et  al., 2020; Ottenbreit et  al., 2014). We  placed our 
computational agents in the contrived situation shown in Figure 3c: 
the agent is slowly moved toward a hazard lying in front of the 
required goal. The healthy agent’s perceived value for forward motion 
increased through positions 1–3 (since this brings the agent closer to 
the goal). Only in position 4 does the value of moving forward drop—
at that point the agent would prefer to go around the hazard. 
Conversely, in the depressed agent, the aversion to moving forward is 
(inappropriately) generalized to positions 2 and 3. Broekens et al. have 
suggested that such a decrease in perceived value within an RL model 
can be interpreted as analogous to fear (Broekens et al., 2015).

Simulated spine density modulates 
depression

By applying and then removing the dropout effect in the agent’s 
neural network, we can simulate the loss of dendritic spines and their 
subsequent restoration. Results in Figure  4 show that depressive 
behaviors can be alternately induced and removed by applying or 
removing the connection weight decay factor. This seems to suggest 
that spine density, rather than being simply correlated with depression, 
modulates it. Interestingly, removing the simulated spine loss allows a 
return to the agent’s original behavior, but only after a brief drop in 
performance and a period of re-learning (this period is discussed 
further in the Discussion section).

Simulated spine loss affects network 
learning and information content

Observing changes in the artificial neural networks over time, 
we see that a given reward prediction error generally induces less 
change in the network with simulated spine loss. Figure 5 shows a 
dramatic change in spine-loss-network weights early in learning 
(Figure 2c suggests this represents the network quickly learning a 
basic survival strategy) but thereafter the spine-loss network shows 
less plasticity than the “healthy” network. Additionally, when the 
agents move toward the required goal, most neurons in the spine-loss 
network show activity which is highly correlated with this movement, 
suggesting that most of the network is dedicated to information about 
the required goal. In the healthy network, some neurons strongly 
correlate with the goal-directed movement, but others are not—
suggesting those neurons are more concerned with other things 
(presumably information related to the optional goals and the hazard).

Simpler learning tasks are not impaired

The results above may give the impression that the spine-loss 
agent is generally impaired relative to the “healthy” agent. But 
Figures 2b,c show the “depressed” agent converging on a strategy 
faster than the “healthy” agent—a strategy that does allow it to reach 
the goal every episode. To investigate this further, we  create a 
simplified version of the environment by removing the optional 
rewards and hazards, leaving only the required goal. In this simpler 
task the spine-loss agent actually performs slightly better than the 
control agent (see Figure 6). This seems to suggest that spine loss has 
a greater effect on more complex behaviors that require higher-order 
processing. One interpretation is that spine loss reduces overall 
network capacity, but leaves enough capacity for the network to learn 
simpler behaviors (see the Discussion section for further commentary).
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A small amount of simulated spine loss is 
beneficial

The relationship between spine density and cognition / behavior 
is not well understood. And while depression is associated with 
decreased spine density, spines and synapses can be lost for many 
other reasons. During developmental pruning, for example, many 
synapses are eliminated from a young developing brain. Here 
we model adult brains in which the synaptic pruning process has 

already completed, but even in adulthood there is normal, ongoing 
turnover of a small number of spines and synapses (Runge et al., 2020).

Some turnover of connections is probably good, preventing 
stagnation and overfitting. This is well understood by machine learning 
practitioners, who often apply a small amount of weight decay to their 
artificial neural networks to improve learning and generalization 
(Andriushchenko et al., 2023). To illustrate this, we sweep through a 
range of weight decay settings from mild (representing normal, ongoing 
turnover of synapses) to extreme (representing pathological spine loss). 

FIGURE 5

(a) Weight changes induced in the networks per unit loss. This measures simulated response to the reward prediction error signal (i.e., delivered by 
dopamine). The spine loss network experiences dramatic alterations early in learning, allowing it to converge on a basic strategy quickly. The healthy 
network exhibits greater and sustained plasticity throughout learning. This effect may hint at an explanation for dopamine system dysfunction in 
depression. (b) Most neurons in the network with simulated spine loss have activations highly correlated with proximity to the goal, indicating that 
almost the entire network has been used to store information related to the basic goal-seeking strategy. Neurons in the healthy agent’s network may 
store a greater variety of information. Shaded regions and boxplots show the 95% confidence interval of the mean over 20 repetitions.

FIGURE 6

The “depressed” (simulated spine loss) agent is impaired relative to the “healthy” agent in the full-complexity task used throughout this paper. But in a 
simplified version of the task the impairment vanishes. Thus it seems that spine loss has a greater effect on complex behaviors that require higher 
orders of processing. Errorbars show the 95% confidence interval of the mean over 20 repetitions.
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As shown in Figure 7, weight decay improves the agent’s performance 
up to a point: large amounts of decay cause depression-like impairments.

Other conceptual models do not produce 
the same depression-like behaviors when 
simulated

We simulate the four other conceptions of MDD listed in the 
introduction: dopamine deficiency, increased temporal 
discounting, faster learning from negative experiences, and altered 
exploration/exploitation balance. Surprisingly, none produce all 
the same depression-like behaviors as simulated spine loss 
(Table 1).

Discussion

Implications for our conception of MDD

Computational models can help us fine-tune our conceptualization 
of a disorder. This computational model simulates spine density loss 
in a neural network, and surprisingly we find that this is sufficient to 
produce a variety of depression-like phenomena. These results 
encourage us to supplement our current understanding of MDD with 
the new (and complementary) view of MDD as a reversible loss of 
brain capacity.

If neural networks store information in connection weights or 
synapses (Kozachkov et al., 2022), then, all other things being equal, 
a brain with more connections can store more information. Spine 
density loss reduces the number of connections available to the neural 
network’s learning process and thus reduces the capacity for storing 
information that supports choice strategies and behaviors. Thus, the 

reversion or reduction to the simpler, basic survival strategy when 
spine loss is applied in Figure 4: there is no longer enough room to 
store the richer, more rewarding, but more complex strategy. Similarly, 
if a depressed human brain only has enough room to hold the 
necessary behavior of going to work, then hobbies, socialization and 
other interests could be squeezed out of the neural network to some 
degree. This interpretation adds to (and seems roughly consistent 
with) the recent shift in thought away from MDD as a monoamine 
system dysfunction toward the idea of MDD as a dysfunction of 
neuroplasticity (Liu et al., 2017).

Future experimental studies could explore this idea by correlating 
neural activity with task performance in behaving animals. If the task 
is complex, such experiments should expect to see reduced task 
performance but clearer neural encoding of the main features of the 
task in depressed animals—a few results along these lines have been 
observed in other work (Gruber et al., 2010), and would be consistent 
with our Figure 5.

The idea of MDD as loss of brain capacity may also begin to 
reconcile some conflicting observations from computational 
literature. Implementing dual learning rates in reinforcement learning 
models has had mixed success in explaining depressed behaviors 
(Brolsma et al., 2022; Pike and Robinson, 2022; Vandendriessche et al., 
2023). Similarly, fitting exploration/exploitation parameters in 
computational models has had mixed success in accounting for 
depressed behavior (Bakic et al., 2017; Pike and Robinson, 2022). Our 
results may provide a clue for interpreting these findings. Our agents 
all used the same explicit temporal discount factor settings, yet the 
agent with simulated spine loss demonstrated additional discounting. 
That is, the reduced neural-network connectivity creates a discounting 
effect completely independent of the discount parameters used in 
conventional RL models—probably because the network must focus 
its limited capacity on learning how to seize nearby rewards. Similarly, 
faster learning from negative experiences and increased exploration 

FIGURE 7

The relationship between weight decay and performance in our simulations. A small amount of weight decay (representing the normal, ongoing 
turnover of spines and synapses) is beneficial. More extreme weight decay causes impairment. Shaded region shows the 95% confidence interval of the 
mean over 20 repetitions.
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may arise from reduced brain connectivity—that is, they may 
be  secondary effects in the same way that increased temporal 
discounting was a side-effect of reduced connectivity in our model. In 
that case they would not be accurately accounted for by the explicit 
parameters used in conventional RL models. Future experimental 
studies could verify this conclusion by fitting our new deep-RL model 
to behavioral data, to test whether the depressed behaviors can 
be accounted for by our model without explicit dual-learning rates or 
exploration parameters.

Interestingly, while spine density has been observed to decrease in 
the prefrontal cortex during MDD, Smoski et al. observed an increase 
in responsivity in the orbitofrontal cortex connected to risk and 
reward processing (Smoski et al., 2009). Our model – which models 
spine loss in the prefrontal cortex, also provides an account of this 
increased responsivity. In addition to the weights that represent 
communication channels with neighboring neurons, each neuron in 
an artificial neural network has a bias parameter that represents the 
sensitivity of its firing threshold, and so is related to its responsiveness 
in general. These biases are allowed to change during the training 
process just as the network’s weights do (see Methods). When we apply 
large weight decay to the weights to simulate spine loss, we observe 
that the network attempts to compensate by increasing neuron 
biases—making them more sensitive. This increase is likely the 
neurons’ attempt to compensate for the net reduction in input signal 
caused by the simulated spine loss. See Supplementary materials for 
more details.

Dopamine system dysregulation as a cause 
of MDD? or an effect?

Surprisingly, simulating spine loss in an artificial neural network 
is sufficient to produce a range of depression-like behaviors, but 
simulating reduced reward-prediction-error signaling by dopamine 
apparently is not. Still, dopamine system dysregulation is a well-
documented feature of depression (Belujon and Grace, 2017). How do 
we reconcile these facts?

The computational model suggests a speculative explanation 
for dopamine system dysfunction. Spine loss and reduced brain 
connectivity would limit the information-storage capacity of a 
neural network (Kozachkov et al., 2022; Mayford et al., 2012). Even 
basic survival strategies must fight for representation in a network 
with limited capacity, so there is less freedom for the network to 
adapt to the environment in arbitrary ways. Under these conditions, 
a dopamine spike unrelated to survival-critical events may go 
“unanswered” in terms of network changes. This explains the 

results in Figure  5, which show that the spine-loss-network’s 
response to reward prediction error [i.e., the dopamine signal 
(Montague et al., 1996; Schultz et al., 1997)] is muted relative to the 
healthy network. With fewer opportunities to act, the dopamine 
system may be  thrown into dysregulation. Under this view, 
dopamine system dysregulation is not a cause of MDD; rather, 
spine loss and reduced brain connectivity cause both MDD and 
dopamine system dysregulation. It has been proposed that early 
damage to the hippocampus may lead to the altered forebrain 
dopamine operation seen in Schizophrenia (Hanlon and 
Sutherland, 2000)—perhaps the altered dopamine operation in 
MDD is, similarly, secondary.

There is a chance that thinking about MDD as a reversible loss 
of brain capacity could allow a wider (and very ambitious) 
reconciliation between the monoamine hypothesis and the newer 
neuroplasticity theory of MDD, by seeing neural network capacity 
as the link between the two. If the activation of 5-HT7 receptors 
promotes the formation of dendritic spines (Speranza et al., 2017), 
and if those spines prevent depression-like symptoms by 
increasing network capacity (Johansen et  al., 2023), this may 
partially account for serotonin and tryptophan depletion causing 
depression-like symptoms in patients (Jauhar et al., 2023)—the 
type of observation that originally led to the widespread use of 
SSRIs under the monoamine hypothesis (Liu et al., 2017). Clearly 
this is an inadequate summary of a complex [and contentious 
(Jauhar et al., 2023; Moncrieff et al., 2023)] topic. Still, limiting 
network capacity seems to account for a surprising range of 
depression-like behaviors—suggesting that various systems and 
interventions may exert their influence on depressive states 
through network capacity.

Implications for MDD treatments

The model makes the hypothesis that spine density directly 
modulates depression. Many studies have associated spine density loss 
with depression, and some evidence for a causal link has been 
provided in the context of ketamine treatment (Moda-Sava et  al., 
2019). But in a recent review of psychedelic effects on neuroplasticity, 
Calder & Hasler conclude, “though changes in neuroplasticity and 
changes in cognition or behavior may occur simultaneously, whether 
neuroplasticity mediated those changes remains an open question for 
future studies to address” (Calder and Hasler, 2023). In light of this, 
the results in Figure 4 are especially significant since they show the 
simulated spine-loss effect directly modulating depression-like 
behaviors. Though speculative, these results strengthen the argument 

TABLE 1 The spine-loss model produces a wider range of depression-like behaviors than alternative conceptions of depression.

Expected behavior

Anhedonia Generalized 
avoidance/fear

Increased 
discounting

More exploration

Model 

of MDD

Spine loss ✔ ✔ ✔ ✔

Reduced reward-prediction-error signal

Faster learning from negative experiences

Higher discount factor ✔ ✔

Increased exploration ✔
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for increased neuroplasticity and spine density as the sources of 
improved cognition and behavior, and support the search for 
treatments that promote spine growth.

This hypothesis that spine density modulates depression is 
consistent with the new thinking about MDD as a dysfunction of 
neuroplasticity, which has prompted research into treatments that 
upregulate plasticity. For example, the N-methyl-d-aspartate 
(NMDA) receptor antagonist, Ketamine, is theorized to promote 
synaptogenesis through one of several possible pathways that increase 
brain-derived neurotrophic factor (BDNF) levels and, ultimately, 
synaptic plasticity (Castrén and Monteggia, 2021; Duman et al., 2016; 
Krystal et al., 2019; Qiao et al., 2016; Zhou et al., 2014). Ketamine has 
indeed been observed to increase BDNF levels (Yang et al., 2013), 
increase spinogenesis and reverse dendritic atrophy (Li et al., 2010, 
2011, p. 20; Moda-Sava et al., 2019), and produce fast and persistent 
antidepressant effects in patients and animal models (Berman et al., 
2000; Browne and Lucki, 2013; Krystal et al., 2019; Murrough et al., 
2013; Zarate et  al., 2006). Psychedelics such as D-lysergic acid 
diethylamide (LSD), psilocybin, and dimethyltryptamine (DMT) 
have also been shown to promote neuroplasticity—possibly through 
a pathway that starts with serotonin 5-HT2A receptor agonism and 
involves stimulating BDNF production (Aleksandrova and Phillips, 
2021; Calder and Hasler, 2023; Ly et al., 2018). They too can induce 
rapid antidepressant effects (dos Santos et al., 2016; Romeo et al., 
2020; Rucker et al., 2016).

Furthermore, our model suggests some implications for the 
administration of such treatments. In Figure 4, the period immediately 
after the simulated spine restoration is interesting because the agent 
does not immediately reacquire the high-reward behavior. Instead, the 
rate of reward actually drops, then slowly climbs back to 
pre-depression levels as the agent undergoes general re-learning of 
rewarding behavior for the environment. During this period the 
network is not simply augmenting the basic survival strategy stored 
during depression with new information about optional goals. Rather, 
the entire network is being reconfigured to make use of the 
new connections.

If a biological agent’s brain undergoes a similar (if much less 
dramatic) experience, then this period of time immediately after 
restoring lost spines is critical: experiences during this phase will 
influence what is re-learned. It is already known in the context of 
psychedelic treatments, for example, that the supportiveness of the 
environment during and after administration affects the treatment 
outcome (Calder and Hasler, 2023). More research may be necessary 
to determine how to best use the “window of neuroplasticity” that 
remains open for a short time after treatment (Calder and Hasler, 
2023). We note that our artificial agent would not have reacquired the 
high-reward behavior if placed in an empty room after spine 
restoration: it requires the right environmental exposure to re-learn 
an appropriate strategy. This is similar to the conclusion drawn by 
Harmer et al. regarding conventional antidepressants: that they take 
effect slowly because they increase positive emotional processing, after 
which the patient must gradually re-learn their relationship to the 
world through accumulation of positively-processed experience 
(Harmer et al., 2009a,b).

More research is needed into the “window of neuroplasticity” 
effect generally, and based on these results, future experimental studies 
might examine the effects of environment and experience shortly after 
a plasticity-inducing treatment is administered.

Limitations of the computational model, 
and opportunities for future work

As scientists, we often understand complex biological systems 
through models (e.g., animal models, mathematical / computational 
models, block diagrams, pictorial representations, etc.). Every model 
is a sort of metaphor: it is not the complex target system, but it has 
something in common with—and therefore tells us something 
about—that system. Like all good models, our computational model 
abstracts away complexity in order to highlight some general 
principles. A real brain involves modularity, sparse and small-world 
connectivity, interactions between distinct structures, cortical 
columns, polysynaptic pathways, etc. Conventional artificial neural 
networks abstract away much of this complexity, and highlight the 
basic principle that rewarding behavior is learned through alteration 
of neuron-to-neuron connections. In reality, each of those neuron-to-
neuron connections consists of a set of (sometimes redundant) 
synapses (Hiratani and Fukai, 2018) that develop from among a large 
number of filopodia (Runge et al., 2020) across various functional 
zones of a dendrite (Hawkins and Ahmad, 2016). An artificial network 
abstracts away much of this complexity too, using a single weight to 
represent the net communication channel between two neurons. Such 
abstractions are allowing researchers to build tractable models of 
neural reinforcement learning; useful for testing high-level ideas and 
generating hypotheses (Botvinick et al., 2020).

Spine loss suggests fewer synapses and overall reduced 
connectivity between neurons. In an artificial neural network (where 
the usual approach is to represent the net connection between two 
neurons using a single weight) applying weight decay to each 
connection is a reasonable, abstract model of this reduced 
connectedness. The mechanisms underlying biological spine loss are 
a subject of debate (Dorostkar et al., 2015; Fiala et al., 2002), making 
it difficult to comment on the biological relevance of weight decay. It 
does seem that any mechanism which results in random pruning of 
spines or decreased probability of spine formation would, statistically, 
affect the likelihood of strong connections (involving many synapses) 
more than weak connections—an effect similar to that of weight 
decay, which degrades the strongest connections fastest. Similarly, 
mitochondrial dysfunction or otherwise altered energy dynamics 
within a neuron would seem to affect the strongest synapses with the 
highest metabolic cost. But until more is known, weight decay remains 
attractive mostly because it is reasonable and convenient. Moreover, 
simulating spine loss by deleting random connections from the 
network—which is also reasonable and has been used to model other 
disorders that involve spine loss (Lanillos et al., 2020; Tuladhar et al., 
2021)—does not seem to produce the same range of depression-like 
behaviors in our experiments (see Supplementary material). This may 
be because the loss of spines is part of a bigger picture of impaired 
neural health and communication, and weight decay better models 
this net degradation of communication channels.

We have shown the weight decay model already produces some 
interesting results. But even more insight may be available if future 
work can devise a more nuanced and biologically accurate way to 
simulate spine loss. For example, we  have applied weight decay 
throughout the entire network, but in reality it seems spine density 
changes depend on brain region (Qiao et al., 2016; Runge et al., 2020) 
and types of play experience (Bell et al., 2010; Stark et al., 2023). Thus 
our computational framework is primarily a model of the reduced 
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spine density observed in the prefrontal cortex and hippocampus 
during MDD. That is, our model highlights this particular aspect of 
the complex disorder—and produces a surprising range of depression-
like results by doing so. Making the simulations more biologically 
accurate in ways that account for varied effects in different brain 
regions would require significant innovation in the artificial neural 
network approach, but may create a new range of hypotheses.

The involvement of microglia on MDD pathology is another 
important aspect of MDD falling outside the scope of our model. 
Microglia are cells that serve an immune function in the central 
nervous system. MDD seems to involve microglia function that is 
altered in a variety of ways, and microglia likely have a significant role 
in MDD pathology (Snijders et al., 2021; Wang et al., 2022). Our 
model focuses on the view of MDD as a dysfunction of neuroplasticity, 
while partially accounting for the dopamine system dysfunction that 
was part of the older monoamine hypothesis. But seeing MDD as a 
microglial disease is another important view (Yirmiya et al., 2015)—
though it falls outside the scope of our present model. The two views 
are certainly not orthogonal: microglia regulate synaptic plasticity, 
synaptic refinement and pruning, and formation of neural networks 
(Wang et  al., 2022)—all of which are taken for granted in our 
computational model. That is, our model simulates spine loss but 
abstracts away the specific role that microglia may play in this process. 
Future computational work should strive for a more detailed and 
comprehensive account.

The spine loss modeled here is one of many changes that occur 
across various brain regions in MDD. Some of these changes seem 
conceptually or effectively related to spine loss [for example, along 
with loss of spines in the hippocampus, reduced neurogenesis in the 
hippocampus has also been observed (Berger et  al., 2020)] while 
others are not. Here we hypothesized that among all the changes, spine 
loss is particularly important, and our modeling shows that it can 
account for an interesting range of phenotypes found in MDD.

All models exist on a scale from high abstraction to high detail: 
abstracting away complexity illustrates general “big picture” principles, 
which is appropriate for a first-of-its-kind study such as this one. 
We hope future work (our own and others’) will build more detailed 
models that complement (or indeed replace) this one.

Questions of multifinality

Spine or synapse loss is a feature of depression, but also of 
disorders such as Parkinson’s disease (Gcwensa et  al., 2021), 
Alzheimer’s disease (where spine loss occurs in clusters and is paired 
with neuronal cell death (Goel et al., 2022; Mijalkov et al., 2021)), and 
schizophrenia [where abnormal pruning leaves an excitation-
inhibition imbalance (Liu et al., 2021)]. Each of these disorders seems 
to involve a unique pattern of loss, which should be expected to create 
unique symptoms.

Interestingly, while we have used weight decay to simulate spine 
loss, and observed depression-like effects, other researchers have used 
related approaches to simulate Alzheimer’s disease (Tuladhar et al., 
2021), and schizophrenia and autism spectrum disorder (Lanillos 
et al., 2020). Why do subtle variations on simulated spine loss seem to 
account for so many aspects of these varied disorders? Hayato Idei has 
begun to explore this question of “multifinality” through neurorobotics 
(Idei and Yamashita, 2024), but this is a question the emerging field of 

RL in-silico models must address. Certainly altered synapse density is 
a feature of many different disorders—are our various observations 
from in-silico models suggesting that altered spine density is a key 
feature across multiple pathologies? Or do in silico models simply lack 
the power to tease out subtle differences between related disorders?

Model validation

All disease models, whether mathematical, schematic, 
computational, or animal, must be validated to identify how and 
how effectively they represent the disease. Since models are 
metaphors or abstractions, the validation process never shows them 
to be exact matches of the disease, but rather identifies the particular 
features of the disease that the model represents. Models range from 
high-level abstractions like our RL model, to detailed biological 
analogs like an animal model. Animal models could be validated by 
three main criteria: (1) similarity of symptoms, (2) similarity of 
etiology or causative factors, and (3) similar outcomes of 
pharmacological interventions. In-silico models such as ours exist at 
a higher level of abstraction and serve a more illustrative purpose. 
They are typically evaluated by how well they reflect known 
biological mechanisms and produce expected symptoms, and 
through comparison to other existing in-silico models. Our model 
reflects the known biological mechanism of spine loss (which is not 
to say that other known mechanisms are not important, only that 
this is the focus of our particular model) and produces a range of 
expected depression-like symptoms. It compares favorably with 
other models, in the sense that it better produces the expected 
symptoms. While this is sufficient to make the model an interesting 
contribution, future work could perform a deeper level of validation 
by fitting similar models to behavioral data, or testing the various 
hypotheses and falsifiable predictions made by the model, as 
described above.

Methods

Computational model

Our deep reinforcement learning agent is based on temporal 
difference (TD) learning, which supposes that an agent inhabits some 
state s, and can select an action to perform from some set of actions 
A. If executing that action leads the agent to a new state s’, and triggers 
some reward r, then the value of that particular experience can 
be formulated as in Equation 1:
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where ℽ is a discount factor (between 0 and 1) that discounts the 
value of future rewards relative to immediate ones. Note that r can 
be zero (no reward) or negative (a punishment). The value in general 
of executing action a from state s is then the average or expected value 
of all these individual experiences, as expressed in Equation 2:
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The learning process consists of updating the value estimates 
V after each experience in the world. A difference 𝛿 is computed 
between the experienced value and the current value estimate, 
and then used to adjust the estimate according to a learning  
rate 𝛼:

 
( ) ( )max , ,
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3
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The difference 𝛿 is the reward-prediction-error that is thought to 
be signaled by dopamine neurons (Montague et al., 1996; Schultz 
et al., 1997). For more information on TD learning see Sutton and 
Barto (2018). Here we take a Deep Reinforcement Learning approach 
similar to that of Mnih et al. (2015), in which an artificial neural 
network creates the value estimates V(s,a). This network accepts an 
input of 100 binary values (corresponding to the agent’s 5 × 5 visual 
field, times 4 object types that can exist at each location within the 
field). The network has a hidden layer of 10 neurons with tanh 
activation functions, and an output layer of 3 linear neurons whose 
outputs represent the values of turning left and right and 
moving forward.

The learning process now consists of tuning network connection 
weights such that the value estimates become increasingly accurate. 
For each experience, 𝛿 is computed per Equation 3, the gradient of 
𝛿2 is calculated with respect to each network weight wi, and the 
weight is adjusted in the direction that will minimize 𝛿:
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Note the analogy between Equations 4 and 5. The weight decay 
effect is created by adding a sum of square weights, ½𝜆w2, to 𝛿2 before 
computing the gradient. Equation 6 then becomes:
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where 𝜆 controls how quickly each weight decays toward zero. A 
small amount of weight decay is often used with artificial neural 
networks to improve their performance and generalization 
(Andriushchenko et al., 2023), but here we use a more extreme weight 
decay setting to simulate significant spine loss.

See Supplementary material for all parameter settings.

Alternative model implementations

Our “healthy” agent was identical to the agent with simulated 
spine loss, except that the healthy agent used a weight decay setting of 
𝜆=0 (no weight decay). The variety of alternative computational MDD 
models shown in Table 1 were implemented as follows:

Reduced reward-prediction-error signal: For this model, the 
reward prediction error signal 𝛿 was multiplied by a scale factor of 
0.1 to simulate reduced dopamine signaling. Note that this scaling in 
the TD learning model is mathematically identical to using a smaller 
learning rate 𝛼.

Faster learning from negative experiences: This model multiplied 
all negative rewards by 2 and divided all positive rewards by 2 before 
doing network weight updates. Thus, negative rewards had a greater 
effect on those updates.

Higher discount factor: This model used a discount factor of 𝛾 = 
0.5, rather than the 𝛾 = 0.9 used by other models. Per Equation 1, this 
increases the discounting of future rewards.

Increased exploration: Studies that use reinforcement learning to 
model animal behavior have often assumed a softmax action selection 
policy (Cinotti et al., 2019; Dongelmans et al., 2021; Ohta et al., 2021). 
Under this policy, the agent is assumed to select actions stochastically; 
actions with higher perceived value have a higher probability of selection:
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Here 𝜏 is a “temperature” parameter that sets the strength of the 
agent’s preference for exploiting the action with highest value, over 
exploring the other actions (for example, for high “temperature” 
values, the agent’s choice of action will be closer to random). Our 
“increased exploration” model uses this softmax action selection with 
𝜏 = 1. This produces many more exploratory actions than the other 
models, which use an “ε-greedy” strategy of selecting the highest-
value action with probability 1-ε, and a random (exploratory) 
action otherwise.

Comparison with alternative depression 
models

Comparisons between the spine loss model and the other 
depression models are illustrated in Figure  8, and were used to 
construct Table  1. Models were considered to demonstrate 
anhedonia if there was no significant difference between the 
perceived values for turning right and moving forward in the 
experiment from Figure  2d. Models were considered to exhibit 
generalized avoidance/fear if the perceived value of moving toward 
the hazard decreased prematurely, as in Figure 3d. The spine loss 
model was the only model to exhibit anhedonia and generalized 
avoidance by these criteria, although the model with high 
discounting does exhibit lower perceived values in general (due to 
the extra discounting during evaluation of Equation 3). Inferred 
discount factors were measured as in Figures  3a,b. To evaluate 
relative differences in exploration rates, probability distributions 
were generated over actions (using Equation 7). The distribution for 
the healthy agent was compared to those for other models using 
Kullback–Leibler divergence, for a number of randomly-generated 
world states. This approach uses the healthy agent’s probability 
distribution as a baseline, and measures deviation from that 
distribution in the other agents.
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Significance statement

Simulating dendritic spine loss in a deep reinforcement learning 
agent causes the agent to exhibit a surprising range of depression-like 
behaviors. Simulating spine restoration allows rewarding behavior to 
be  re-learned. This computational model sees Major Depressive 
Disorder as a reversible loss of brain capacity, providing some insights 
on pathology and treatment.
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FIGURE 8

Comparing behaviors across alternative models of depression. (b) The simulated spine loss agent is the only one that exhibits the strong anhedonia-
like loss of preference in the contrived situation in (a), although faster learning from negative experiences and increased discounting both cause a 
reduction in overall perceived values. (c) The spine loss agent shows the most dramatic reduction in optional-reward-seeking behavior. The high-
exploration agent shows a smaller drop in optional rewards due to the increased randomness in its actions. (d) The agent with a high discounting 
parameter setting obviously exhibits higher discounting than other models. But the spine loss agent also shows increased effective discounting—
despite having the same discount factor parameter setting as the healthy agent. (f) The simulated spine loss agent is the only one exhibiting 
generalized-fear-like effects in the contrived situation in (e). (g) Kullback–Leibler divergence between probability distributions over actions, assuming a 
softmax action selection policy. All bars show the divergence from the probability distribution of healthy agents (“healthy” shows divergence between 
different healthy agents). Errorbars and shaded regions show the 95% confidence interval of the mean over 20 repetitions.
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