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Multi-sensory integration is a perceptual process through which the brain

synthesizes a unified perception by integrating inputs from multiple sensory

modalities. A key issue is understanding how the brain performs multi-sensory

integrations using a common neural basis in the cortex. A cortical model based

on reservoir computing has been proposed to elucidate the role of recurrent

connectivity among cortical neurons in this process. Reservoir computing is

well-suited for time series processing, such as speech recognition. This inquiry

focuses on extending a reservoir computing-based cortical model to encompass

multi-sensory integrationwithin the cortex. This research introduces a dynamical

model of multi-sensory speech recognition, leveraging predictive coding

combinedwith reservoir computing. Predictive coding o�ers a framework for the

hierarchical structure of the cortex. The model integrates reliability weighting,

derived from the computational theory of multi-sensory integration, to adapt

to multi-sensory time series processing. The model addresses a multi-sensory

speech recognition task, necessitating the management of complex time series.

We observed that the reservoir e�ectively recognizes speech by extracting

time-contextual information and weighting sensory inputs according to sensory

noise. These findings indicate that the dynamic properties of recurrent networks

are applicable to multi-sensory time series processing, positioning reservoir

computing as a suitable model for multi-sensory integration.

KEYWORDS

multi-sensory integration, predictive coding, reservoir computing, speech recognition,

nonlinear dynamics

1 Introduction

Multi-sensory integration is a fundamental process through which the brain combines

information from different sensory modalities, such as sight, sound, touch, smell, and

taste, to form a comprehensive understanding of the environment (Stein and Stanford,

2008). This integration allows for more accurate and reliable perception than would

be possible through any single sensory modality alone. The primary purpose of multi-

sensory integration is to enhance the detection, localization, and identification of stimuli

in the environment. For example, seeing a speaker’s lips move in sync with the sounds

they produce helps in understanding speech, especially in noisy environments (McGurk

and MacDonald, 1976; Radeau and Bertelson, 1977). Similarly, combining the tactile

and visual aspects of an object can provide a more detailed perception of its properties,

like texture and shape (Botvinick and Cohen, 1998). Understanding multi-sensory

integration has significant implications across various fields. In education, understanding
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multi-sensory integration helps develop teaching methods that use

multiple senses to make learning more effective. In technology,

specifically in autonomous vehicles and robotics, this multi-sensory

integration is essential for processing complex environmental data

through multiple sensors, ensuring safer navigation. Furthermore,

in healthcare, multi-sensory therapeutic approaches aid in

rehabilitation, such as in stroke recovery, and the development

of sensory-feedback prosthetics, significantly improving patient

outcomes. Multi-sensory integration research is being conducted

from multiple perspectives using psychological, neurological, and

computational approaches.

In a psychological experiment on perception, it was

demonstrated that the integration of auditory and visual cues

significantly enhances speech recognition. This improvement

is particularly notable in noisy environments (Stevenson and

James, 2009). The principle of “inverse effectiveness” asserts

that combining sensory cues from different modalities is more

advantageous when the effectiveness of those individual cues

is reduced. In essence, when single sensory signals are weak or

obscured by factors such as environmental noise or poor visibility,

their combined integration leads to significantly enhanced

perceptual accuracy and response efficiency. This is especially

critical in situations where a single sensory modality is insufficient

for accurate perception. For instance, in noisy situations where

auditory information alone might fail to convey a message

clearly, the addition of visual cues, such as lip movements, can

significantly improve speech comprehension. Inverse effectiveness

highlights the adaptive advantage of multi-sensory integration,

enabling organisms to maintain high perceptual and behavioral

performance in challenging conditions. Despite the clear benefits

of multi-sensory integration as outlined by the principle of inverse

effectiveness, the detailed mechanisms underlying this process

remain largely unexplored.

In neurological studies, multi-sensory integration is believed

to occur in several brain regions, with the superior colliculus in

the midbrain being a well-documented site for visual-auditory

integration (Stein and Stanford, 2008). Other areas, such as the

cortex, have regions specialized for integrating specific types of

sensory information (Ghazanfar and Schroeder, 2006). Neural

processes involved in multi-sensory integration can enhance the

brain’s representation of objects, leading to faster reaction times

and improved accuracy in response to stimuli (Calvert and Thesen,

2004).

The process of multi-sensory integration is thought to involve

the summation of multiple sensory modalities weighted by

their reliability. A key piece of neurological evidence is the

functional connectivity among cortical regions related to visuo-

tactile integration (Beauchamp et al., 2010). This study illustrated

that functional connectivity between higher integration areas

and lower sensory areas diminishes when the respective sensory

information is considered unreliable. Such variability in functional

connectivity among brain areas has also been confirmed through

experiments on speech recognition tasks (Nath and Beauchamp,

2011). Additionally, physiological experiments have implied a

common mechanism, evidenced by the activation in diverse brain

regions when participants perform different tasks involving the

same combination of modalities (Stevenson and James, 2009).

The computational theory of multi-sensory integration,

significantly enhanced by Bayesian causal inference, provides a

probabilistic framework that elucidates how the brain synthesizes

information from various senses. This theory posits that the

brain employs a Bayesian approach to assess the likelihood

that different sensory inputs originate from a common source,

thereby optimizing perceptual accuracy (Knill and Pouget, 2004).

Incorporating Bayesian principles has deepened our understanding

of the inferential processes underlying unified sensory experience

from disparate inputs, treating sensory integration as a dynamic

cognitive process rather than a straightforward mechanical merger

(Ernst and Banks, 2002; Alais and Burr, 2004). This advancement

not only bridges computational neuroscience and cognitive

psychology but also paves the way for AI systems with enhanced

sensory processing capabilities (Doya, 2007). Furthermore, based

on the Bayesian causal inference model, brain regions involved

in estimating stimulus positions from audio-visual information

were explored using fMRI (Rohe and Noppeney, 2015). This

measurement revealed that non-integrated sensory information

activity occurred in lower sensory areas, while integrated sensory

information activity was observed in higher areas, suggesting

hierarchical multi-sensory integration. These discoveries suggest

the presence of a reliability-weighting mechanism rooted in the

Bayesian causal inference model within the brain. Although

physiological evidence supports the computational mechanism

for reliability-weighted integration, the precise neural substrates

responsible remain to be fully elucidated.

Another promising computational approach for the perception

mechanism is the predictive coding theory, positing that the brain

continuously generates and updates predictions about sensory

inputs (Rao and Ballard, 1999). This perspective deepens our

understanding of the neural processes behind sensory information

processing and highlights the dynamic nature of perception, where

predictive models are constantly refined through interaction with

the external world. Predictive coding attributes specific functions

to bidirectional streams: the higher area predicts the states of the

lower area with top-down signaling, while the lower area sends

prediction errors to the higher area with bottom-up signaling. The

internal state of each area is updated to minimize the prediction

error by the bidirectional information exchange. In a hierarchical

network model of predictive coding, the internal network, which

is referred to as the generative model, predicts the sensory signal

and the prediction error is utilized to refine the state of the internal

network. The predictive coding theory has been widely studied not

only in the primary sensory area but also in the higher brain areas

such as the prefrontal cortex (Kilner et al., 2007; Alexander and

Brown, 2018).

Attempts to elucidate multi-sensory integration within the

predictive coding framework suggest that signal reliability,

meaning the confidence in the accuracy of sensory information,

significantly shape perception (Talsma, 2015). In multi-sensory

integration, the reliability of a signal refers to the confidence in

the accuracy of sensory information. More reliable signals have

less variance and are more likely to influence perception. Error

feedback is crucial in updating internal models based on the

mismatch between expected and actual sensory inputs. Attention

modulates this process by prioritizing certain stimuli, enhancing
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the integration of relevant information, and suppressing irrelevant

data. This interplay ensures that our perception is both accurate

and adaptable to changes in our environment. The neural network

model of the multi-sensory integration based on the predictive

coding has also been proposed (Spratling, 2016). This model

illustrates the process of integrating multiple sensory information

in the spatial localization task. This model describes the dynamics

involved in multi-modal information processing of perception, but

it is not yet sufficient to handle complex time-varying sensory

signals, such as speech or fluctuating visual signals.

In our previous study, we constructed a multi-sensory

integration model based on predictive coding with reservoir

computing that can reconstruct visual information from auditory

information by associating different sensory modalities (Yonemura

and Katori, 2021). This model can process complex time series,

such as vocal patterns, by utilizing a large recurrent network as

the generative model of predictive coding. Here, we employed the

idea of reservoir computing, which is one of the recurrent neural

network models that has the advantage of processing dynamically

changing time sequences (Jaeger, 2002). In this paper, we propose

the multi-sensory integration model based on predictive coding

with reservoir computing.We extend the multi-sensory integration

model by incorporating a reliability-weighting mechanism. In

the following sections, we describe a reservoir-based predictive

coding model that models the hierarchical structure of the cortical

network. The model is then evaluated using a multi-modal speech

recognition task and show that reliability weighting plays an

important role in the task.

2 Material and methods

In the process of multi-sensory integration, multiple sensory

areas and the cortical areas that integrate these sensory inputs work

together. The cortex has common neural structures: local recurrent

connectivity and sparse connectivity among different areas. To

develop the model of the multi-sensory integration, we modeled

the local connectivity based on reservoir computing and modeled

the connectivity among different areas by the hierarchical network

structure based on predictive coding.

Each area consists of the reservoir-based predictive coding

model, which is depicted in Figure 1A. This module includes a layer

of sensory inputs, a prediction layer, a recurrent network acting

as a reservoir, and a prediction error layer. The learning process

involves adjusting the weights from the reservoir to the prediction

layer to enable accurate reconstruction of the provided sensory

signal. The predictions of sensory signals are fed back into the

reservoir, alongside the prediction error, the discrepancy between

the actual sensory signal and its prediction. If this learning process

is successful, a well-trained reservoir minimizes prediction errors,

thereby enabling the reservoir and the predictive layer to function

as an autonomous dynamical system capable of ongoing sensory

input generation. When discrepancies arise between predictions

and actual sensory data, the reservoir’s internal states are adjusted

accordingly. This process of error-based correction plays a crucial

role in the continuous generation of sensory input predictions

within the predictive layer. This model is used as the basis for an

integrated network model that integrates multiple sensory signals

as depicted in Figure 1B.

To process multi-sensory information, the integrated network

model is composed of lower areas, each dedicated to a specific

sensory modality, and a higher area that integrates these lower

areas. The state of each sensory reservoir in the lower areas is

dimensionally reduced and temporally smoothed, creating a refined

representation of sensory signals. The integration reservoir in

the higher area processes these refined representations from the

sensory reservoirs. The prediction generated by the integration

reservoir is divided by sensory modality and sent as a top-down

signal to the lower areas, where it is compared to the refined

representation to compute the prediction error. This prediction

error is then sent back to the integration reservoir as a bottom-

up signal, prompting the integration reservoir to update its state in

order tominimize the prediction error. Additionally, the prediction

error is used to update the sensory reservoirs in the lower areas. The

integration reservoir is trained to minimize the prediction error

for the states of the lower areas, ultimately obtaining a unique

representation that predicts multiple sensory inputs.

In the present study, we use leaky integrator (LI) neurons

in the reservoir. LI neurons accumulate neural inputs in their

internal state as membrane potential over time, and this membrane

potential decays according to a specific time constant. The neurons’

firing rate is determined by their membrane potential and is

represented by a continuous value as the firing rate in rate-coding.

In the reservoir-based predictive coding model of each area, the

internal statem(t) changes according to the following equation:

m(i)(t + 1t) =

(

1−
1t

τ (i)

)

m(i)(t)+
1t

τ (i)
I(i)(t), (1)

where 1t denotes the time step, and τ (i) denotes the time constant

of leaky-integration of the reservoir neurons. The superscript i ∈

{V ,A, I} is used to represent the index of each area. The r(i)(t) ∈

R
Nm denotes the firing rate of reservoir neurons. The firing rate

of each neuron r
(i)
j (t) is calculated with a non-linear activation

function as r
(i)
j (t) = tanh(m

(i)
j (t)), where the subscript j denotes

the index of the neuron. The I(i)(t) denotes the neural input. The

neural input to the local network that is modeled by the reservoir

consisted of the input from the recurrent connection, feedback

from the prediction, feedback from the prediction error, and the

top-down signal from the higher area as described by the following

equation:

I(i)(t) = W(i)
recr

(i)(t)+W
(i)
back

y(i)(t)+W(i)
erre

(i)(t)− b(i)(t). (2)

The W
(i)
rec ∈ R

N
(i)
m ×N

(i)
m , W

(i)
back

∈ R
N
(i)
m ×N

(i)
y , and

W
(i)
err ∈ R

N
(i)
m ×N

(i)
y denote the recurrent connection, the

feedback connection of prediction y(i) ∈ R
Ny , and the feedback

connection of prediction error e(i) ∈ R
Ny , respectively. These

matrices are initially configured randomly with connection

strengths α
(i)
rec, α

(i)
back

, and α
(i)
err, and the connectivity β

(i)
rec, β

(i)
back

,

and β
(i)
err, respectively; the matrices have β

(i)
rec × N

(i)
m × N

(i)
m ,

β
(i)
back

× N
(i)
m × N

(i)
y , and β

(i)
err × N

(i)
m × N

(i)
y non-zero elements,

respectively. The non-zero elements are randomly chosen

from sets {−α
(i)
rec,α

(i)
rec}, {−α

(i)
back

,α
(i)
back

}, and {−α
(i)
err,α

(i)
err} with

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1464603
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yonemura and Katori 10.3389/fncom.2024.1464603

A

B

FIGURE 1

Proposed model in this research. (A) Shows the predictive coding with reservoir computing model (PCRC) which composes the multi-sensory

integration model. (B) Shows the whole architecture of the multi-sensory integration model.

equal probability, respectively. These matrices are fixed during

experiments.

Each local network generates the prediction of the sensory

signal or bottom-up signals from lower areas, based on the activity

of the neurons. In the PCRCmodel, the prediction is represented as

the linear combination of the firing rate by the following equation:

y(i)(t) = W
(i)
outr

(i)(t), (3)

whereWout denotes the readout connection to generate prediction.

The prediction error e(i)(t) is defined as the difference between

the prediction y(i)(t) and the sensory input d(i)(t), expressed by

e(i)(t) = d(i)(t)− y(i)(t).

The readout connection matrixW
(i)
out is trained to minimize the

prediction error. In this research, the readout connection matrix is

updated based on the FORCE algorithm proposed by Sussillo and

Abbott (2009), by using the local prediction error e(i)(t).

P(i)(0) =
E

α
(i)
f

, (4)

P(i)(t)=P(i)(t − 1t)−
P(i)(t − 1t)r(i)(t)r(i)

T
(t)P(i)

T
(t − 1t)

1+ r(i)
T
(t)P(i)(t − 1t)r(i)(t)

, (5)

W
(i)
out(t + 1t) = W

(i)
out(t)+ e(i)(t){P(i)(t)r(i)(t)}T , (6)

where the P(i) denotes the inverse of the auto-correlation matrix of

the firing rate r(i)(t), and α
(i)
f

denotes the regularization parameter.

The E denotes the identity matrix. The FORCE algorithm is

applied to the model only during the training phase. Otherwise,

themodel obtains external information only through the prediction

error signal.

The model introduces the modulation of the prediction error

feedback to reproduce the multi-sensory integration by reliability-

weighting. Since the integration reservoir receives bottom-up

signals as the prediction error feedback, the weights for the bottom-

up signal, representing the spoken word in each modality, can be

formalized as follows:

e(I)(t) =
[

α(IA)
e e(IA)(t),α(IV)

e e(IV)(t)
]

, (7)

where α
(IA)
e and α

(IV)
e denote the strength of the prediction error

feedback of auditory and visual bottom-up signals, respectively.

The precision has been proposed to represent the reliability of

the prediction as one of the components of predictive coding in

a Bayesian fashion (Shipp, 2016). The precision modulates the

gain of prediction error neurons, modulating the signals between

hierarchies. In the proposed model, the modulation of the bottom-

up signal of each lower layer is represented by modulating the

strength of prediction error feedback α
(IA)
e ,α

(IV)
e of the integration
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reservoir. The terms e(IA)(t) ∈ R
N
(IA)
y and e(IV)(t) ∈ R

N
(IV)
y denote

the prediction errors of the integration reservoir for auditory and

visual modalities, calculated as follows:

ẽ
(I)
j = d

(I)
j − y

(I)
j

(

j ∈ {1, 2, · · · ,N(I)
y }

)

, (8)

e(IA) =
(

ẽ
(I)
1 , ẽ

(I)
2 , · · · , ẽ

N
(IA)
y

)T
,

e(IV) =

(

ẽ
(I)

N
(IA)
y +1

, ẽ
(I)

N
(IA)
y +2

, · · · , ẽ
(I)

N
(IA)
y +N

(IV)
y

)T

, (9)

where d
(I)
j denotes the element of the bottom-up signal d(I). The

bottom-up signal d(I)(t) is calculated as follows:

d̃
(I)
(t) =

[

U−1
A r(A)(t),U−1

V r(V)(t)
]

, (10)

d(I)(t + 1t) = d(I)(t)+
1t

τd

(

d̃
(I)
(t)− d(I)(t)

)

, (11)

where τd denotes the time constant of smoothing, and the U−1
A

and U−1
V denote the dimension reduction matrices of the firing

rate of the visual reservoir and auditory reservoir, respectively. The

top-down signals for auditory and visual modalities, b(A) and b(V)

are derived from the prediction error of the integration reservoir

as follows:

b(A)(t) = UAe
(IA)(t), b(V)(t) = UVe

(IV)(t), (12)

with UA and UV representing the decomposition matrices for

auditory and visual reservoir firing rates, respectively.

The proposed model is trained through the following steps.

Initially, each lower area is individually trained to accurately predict

the sensory signal from the training dataset. Subsequently, the state-

collecting matrices are constructed from the time series of the

state of the lower area reservoirs, which are driven by the training

data. Next, the decomposition matrices, UA and UV , are derived

from these state-collecting matrices through principal component

analysis. Concurrently, the dimension reduction matrices, UA
−1

and UV
−1, are determined as the pseudo-inverse of UA and UV ,

respectively. Finally, the entire model is trained using the training

data by integrating the outputs from each area.

The dataset used for training the model is CUAVE, an

audiovisual speech perception dataset (Patterson et al., 2002).

This dataset offers speech sequences as auditory signals and

the corresponding faces of speakers as video footage. For our

experiments, data from five speakers were selected and split into

training and validation datasets at a ratio of 3:2. The auditory

signals were processed using Lyon’s cochlear filter (Lyon, 1982),

producing a cochleagram for each spoken word. The visual data,

specifically images of the speaker’s face, were preprocessed using

the method proposed by Ngiam et al. (2011). This process involved

extracting the 32 principal components of the images around

the speakers’ mouth and their time derivatives for each spoken

word. To standardize the data, each preprocessed spoken word was

adjusted to have the same time step (8 ms) and duration (1.6 s).

The proposed model’s performance in speech recognition

is evaluated to verify whether the reservoir neurons correctly

represent the spoken words. For speech recognition, the model

extracts a vector representing the predicted label from the reservoir

(Verstraeten et al., 2005). Figure 2 shows the process of label

prediction using the reservoir. For each time step, the label vector

l(i)(t) ∈ R
|W | is derived from the firing rate of reservoir neurons

as follows:

l(i)(t) = W
(i)
label

r(i)(t), (13)

where W
(i)
label

∈ R
|W |×N

(i)
m is the readout matrix obtained by ridge

regression for the training dataset. W represents a set of spoken

words, including 10 different digits: W = {0, 1, · · · , 9} and the

number of spoken words |W| = 10. The correct label vector

l̂
(i)

uses one-hot encoding, where one element, corresponding to

the index of the spoken word, is set to 1.0, and the rest are set

to 0, as depicted in the third row of Figure 2B. The predicted

label L(i)(t) is determined from the label vector using L(i)(t) =

argmax
w∈W

l
(i)
w (t). As Figure 2 shows, the reservoir responds to the

given sensory signal, translating the activity into the predicted label

vector, as shown in Figure 2C. The most frequently predicted label

L = MODE

(

{L(i)(n · 1t)}
T
1t−1

n=0

)

is assigned as the predicted

word. Figure 2D shows the frequency of each label predicted for the

given word over T seconds. Accuracy is defined as the proportion

of words correctly predicted for the validation dataset.

To evaluate the contribution of reservoir computing to

speech recognition, the temporal recognition accuracy is analyzed.

Temporal recognition accuracy is defined by S(i)(T) = n(T)
|D|

, where

n(T) denotes the frequency that the label is predicted correctly

while T seconds time series is used for recognition. D represents

the validation dataset. The temporal recognition accuracy S(i)(T)

is assumed to be larger when the time width of label prediction

is increased because the model uses the sensory information over

multiple time steps. If the temporal recognition accuracy decreases

beyond a certain time width of label prediction, it is assumed that

essential information has been lost in the past.

In the experiments, the following parameters are used: N
(A)
m =

500, N
(V)
m = 500, N

(I)
m = 500, N

(A)
y = 86, N

(V)
y = 64, N

(IA)
y = 20,

N
(IV)
y = 20, τ (A) = 270(ms), τ (V) = 380(ms), τ (I) = 300(ms),

α
(A)
rec = 0.99, α

(V)
rec = 0.99, α

(I)
rec = 0.99, α

(A)
err = 0.1, α

(V)
err = 0.1,

α
(I)
err = 0.1, α

(A)
back

= 0.1, α
(V)
back

= 0.1, α
(I)
back

= 0.1, β
(A)
rec = 0.1,

β
(V)
rec = 0.1, β

(I)
rec = 0.1, β

(A)
back

= 0.1, β
(V)
back

= 0.1, β
(I)
back

= 0.1,

β
(A)
err = 0.1, β

(V)
err = 0.1, β

(I)
err = 0.1, τd = 80(ms), α

(A)
f

= 1.0,

α
(V)
f

= 1.0, α
(I)
f

= 1.0.

3 Results

In the proposed model, the reservoir in each area is driven by

the prediction error associated with sensory signals, whereas the

reservoir in the higher integration area is driven by the prediction

error related to the activity from lower sensory areas. A typical

response of the proposed model for 10 samples of the spoken

word “1” is shown in Figure 3. Within this figure, the firing rate

is defined as r̄(i)(t) =
∑N

(i)
m

j=1 |r
(i)
j (t)|/N

(i)
m , and the prediction error is

quantified as ē(i)(t) =
∑N

(i)
y

j=1 |e
(i)
j (t)|/N

(i)
y . Note that the prediction
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A B

C D

FIGURE 2

Schematic of speech recognition in reservoir computing. (A) Shows a readout connection to generate a predicted label vector from the reservoir. (B)

Shows the time series of the reservoir while outputting the predicted label vector. The first row shows the firing rate of the auditory reservoir. The

second row shows the time series of the predicted label vector. The third row shows the time series of the correct label vector. (C) Shows the time

series of predicted label vector for a spoken word. (D) Shows the frequency for each label that is predicted from the time series shown in (C).

error of the integration reservoir is displayed for each sensory

modality, separately. This separation facilitates a direct comparison

between the different modalities. Typically, within each reservoir,

an initial increase in the prediction error for the presented sensory

signal is observed, followed by a subsequent rise in the firing

rate and then a decrease in the prediction error. This sequence

of events underscores the model’s dynamical response to varying

inputs and indicates its capacity to adapt and process sensory

information effectively.

The recognition accuracy of the integration reservoir depends

on the strength of the feedback, i.e., howmuch sensory information

is incorporated into the reservoir (Figures 1A, B). Figure 4 displays

the recognition accuracy for each reservoir for the levels of auditory

noise and the auditory prediction error feedback α
(IA)
e . Note that

the total strength of prediction error feedback is maintained at a

constant sum, with α
(IA)
e +α

(IV)
e = 1 in order to confirm the effect of

the balance of sensory information. The optimal feedback strength

for the best recognition accuracy (blue stars shown in Figure 4)

depends on the noise intensity and the strength of auditory

prediction error feedback (Figure 4A). We confirmed the relational

equation between the optimal strength of auditory prediction error

and the noise intensity. Figure 4B shows the optimal strength of

the auditory prediction error feedback for each auditory noise

level. The blue dots represent the optimal strength of the auditory

prediction feedback obtained by the above optimization process.

The relationship between the optimal feedback strength and the

noise can be fitted with a sigmoidal shape inference model, which

is based on conventional multi-sensory integration theory:

α(IA)
e =

αmax

1+ exp (−a(x− x0))
, (14)

where x denotes the level of auditory noise, and αmax, a, and x0 are

model parameters. The red dashed line illustrates the model’s fit to

the experimental data. According to Figure 4B, the inference model

fits well to the experimental result.

Figure 5A displays the recognition accuracy for each reservoir

across varying levels of auditory noise. The blue curve shows

the accuracy of the visual reservoir, and the orange curve

shows the accuracy of the auditory reservoir. While the visual

reservoir’s recognition accuracy exhibits minimal changes, the

auditory reservoir’s accuracy diminishes significantly in the

presence of high auditory noise levels. The green dots and

line show the accuracy of the integration reservoir with the

optimal strength of auditory prediction error feedback for each

noise level. The integration reservoir’s recognition accuracy

remains robust and less affected, even with increased auditory

noise strength.

We also confirmed the contribution of the integration

reservoir to perform robust recognition. The red curve shows

the accuracy of concatenated sensory reservoir state
[

r(A), r(V)
]

.
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FIGURE 3

Typical time series of the proposed model. It consists of three sections, each corresponding to a di�erent reservoir. In each section, the first row

shows the firing rate and the second row shows the prediction error. The first section shows the time series of the visual reservoir. The second

section shows the time series of the auditory reservoir. The third section shows the time series of the integration reservoir. In the third section, the

prediction error of visual (blue lines) and auditory signals (red lines) is represented separately.

The performance of the concatenated reservoir keeps higher

accuracy than the integration reservoir under relatively lower

auditory noise levels. Conversely, for relatively higher auditory

noise levels, the performance of the concatenated reservoir

diminishes significantly.

We investigated the effect of modulating the strength of

auditory prediction error feedback. The superiority of utilizing

multi-sensory information over uni-modal sensory information,

namely, an increase in recognition accuracy in noisy environments

(van de Rijt et al., 2019). Figure 5B shows the difference of

accuracy between the integration reservoir with the modulation

of the strength of auditory prediction error feedback and the

auditory reservoir. The superiority increases for the levels of

auditory noise.

Reservoirs achieve pattern recognition by temporarily storing

time-series information from sensor signals. Their contribution

is assessed by temporal recognition accuracy, i.e., the estimated

value of the labels obtained from a series of state vectors in a

certain time window. Here, the recognition accuracy obtained from

the state vector of the reservoir is compared with the recognition

accuracy obtained from the state vector of the preceding sensor

signal. Figure 6 shows the temporal recognition accuracy for

the time width of label prediction under 40dB auditory noise.

Figure 6A shows the temporal recognition accuracy of the label
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predicted from the reservoirs. The color band represents the

standard deviation of temporal recognition accuracy, with its

width set to 2σ for the standard deviation σ . Figure 6B represents

the temporal recognition accuracy of the label directly predicted

from the sensory information using ridge regression. According

to Figure 6A, the temporal recognition accuracy saturate with the

time width 0.6(s) when the label is predicted from the reservoir.

According to Figure 6B, the temporal recognition accuracy gets the

peak with time width 0.6(s) and decreases above the time width.

These results show that the recognition accuracy obtained from the

reservoir is higher than that of the preceding sensor stage.

The proposed model maintains optimal recognition in

situations where auditory noise fluctuates over time by estimating

the noise intensity and dynamically adapting the feedback strength.

The noise intensity is estimated as the moving average of auditory

prediction error ē
(A)
avg(t) as follows:

ē(A)avg(t) =

(

1−
1t

τavg

)

ē(A)avg(t)+
1t

τavg

N
(A)
y

∑

i=1

ei
2(t)

N
(A)
y

. (15)

The optimal feedback strength α
(IA)
e (t) is computed as

Equation 14 with the estimated level of auditory noise x′ as follows:

x′(t) = c

√

ē
(A)
avg(t)+ b, (16)

α(IA)
e (t) =

αmax

1+ exp (−a(x′(t)− x0))
. (17)

The parameters are set as follows: c = −441, b = 9.44,

τavg = 3.2(s), αmax = 0.92, x0 = 14, and a = 0.37. The coefficient c

and the bias b are estimated experimentally in advance.

Dynamic adjustment of the intensity of the prediction error

feedback realizes proper perception even when the noise intensity

fluctuates. Figure 7 shows the typical time series of dynamic

modulation of the prediction error feedback in the integration

reservoir. The auditory noise strength of the sensory input

changes over time. The moving average of the prediction error

in the auditory reservoir increases as the auditory noise strength

increases. The strength of auditory prediction error feedback in

the integration reservoir adjusts based on the moving average of

the prediction error in the auditory reservoir. Specifically, the

auditory prediction error feedback strength is suppressed when

the auditory noise level is relatively high (0 dB to –10 dB). In

contrast, the feedback strength is enhanced when the auditory noise

level is relatively low (20 dB to 10 dB). We also confirmed that

the integration reservoir achieves a mean recognition accuracy of

49.9(%) with the dynamic modulation of α
(IA)
e (t).

4 Discussion

In this research, we proposed amulti-sensory integrationmodel

based on the idea of predictive coding, reservoir computing, and

reliability weighting. This model demonstrates robust recognition

capabilities in the presence of sensory noise on the multi-modal

speech recognition task.

In this model, the dynamics within a network with recurrent

connections are crucial for multi-sensory information processing.

Auditory and visual reservoirs are trained to reconstruct the

sensory signals of each modality, acting as short-term temporal

storage for the sensory signals. Furthermore, the states of these

recurrent networks are transmitted to a higher-level integration

network in the integration area. The network within the integration

area is responsible for reconstructing the unified representation of

the two modalities and maintaining the integrated information.

Based on this integrated information, pattern recognition is

performed through a linear regression of the reservoir’s state

in the integration area, which outputs the appropriate label.

This process facilitates the transfer of information from the two

sensory areas to the integration area via feedback on prediction

errors. The reliability weighting mechanism adjusts the strength

of this feedback based on the reliability of the signals, achieving

a robust system capable of operating in environments with noisy

sensory signals.

While this mechanism works to perform robust recognition,

in low SNR situations, the recognition accuracy of the integration

reservoir is lower than that of the visual reservoir. Although the

integration reservoir receives both auditory and visual signals

during training, it does not receive the auditory signal under noisy

conditions, which prevents it from adapting to the unknown signal.

This tendency can be interpreted as being caused by overfitting in

the integration reservoir. Ideally, the integration reservoir should

adapt to the signal when sensory noise is strong and achieve the

highest accuracy.

A cognitive study by van de Rijt et al. (2019) reported a similar

phenomenon, where recognition performance with audiovisual

information was lower than in the visual-only condition, which is

consistent with our model. van de Rijt et al. (2019) attributed this

to an attention mechanism that divides different streams of sensory

information. The results of our model suggest that overfitting in the

integration area to bottom-up signals contributes to the degraded

recognition, as the degradation occurs when α
(IA)
e = 0 (Figure 5A).

Analysis of the temporal recognition accuracy between the

estimated labels and the correct labels, based on a time frame for

the activity pattern of the reservoir, indicates that the reservoir

enhances recognition accuracy by providing short-term memory

of the temporal structure of speech. The temporal recognition

accuracy reflects how the reservoir correctly represents a given

spoken word correctly for the time width used to determine the

predicted label. As shown in Figure 6, the temporal recognition

accuracy of the model increases from the moment the sensory

signal is given. In contrast, the temporal recognition accuracy

decreases after peaking when the label vector is readout from

sensory signals directly, suggesting that the sequence after the peak

lacks useful information for speech recognition. These properties

indicate that the dynamics occurring within the recurrent network

contribute to speech recognition.

The principle of inverse effectiveness is a key feature of multi-

sensory integration, indicating that the enhancement of combining

multiple sensory inputs increases as the sensory signal decreases.

In tasks involving multi-sensory speech perception, it is observed

that the enhancement in recognition accuracy from multi-sensory

stimuli becomes more significant with higher levels of auditory

noise (Stevenson and James, 2009). Consistently, our model

demonstrates that the improvement in recognition accuracy within

the integration reservoir is more pronounced under conditions of
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A B

FIGURE 4

(A) Shows the accuracy of the integration reservoir for various levels of auditory noise and the strength of auditory prediction error feedback. The

blue stars represent the optimal strength of auditory prediction error feedback (α(IA)
e ) that yields the highest accuracy for each noise level. (B) Shows

the optimal α(IA)
e for each noise strength. The red dashed line represents the fitting curve.

A B

FIGURE 5

The recognition accuracy of each reservoir for the strength of auditory noise. Here, we set N(I)
m = 500. (A) Shows the accuracy of each reservoir for

the noise strength. (B) Shows the di�erence in accuracy between the integration reservoir and the auditory reservoir. See Supplementary Figure S1

for the N(I)
m = 1, 000 case.

increased auditory noise, as illustrated in Figure 5B. This result is

consistent with experimental findings (van de Rijt et al., 2019). For

a comparison of the relationship between perception accuracy and

auditory noise, see Figures 4, 5 in this article and Figures 6, 7 in the

study by van de Rijt et al. (2019).

A neural implementation of predictive coding theory is

organized by Shipp (2016). For a comparison of the relationship

between the proposed model and the conventional predictive

coding architecture, see Figure 1B in this article and Figures 1, 3 in

the study by Shipp (2016). In ourmodel, the internal connections in

each layer of predictive coding theory are represented by randomly

connected neurons, or reservoirs. The prediction error between

the state of the lower area and the prediction from the higher

area is represented in the lower area and sent to the higher area

as a bottom-up signal. The prediction of the state of the lower

area is represented in the higher area, and the prediction signal

is sent to the lower area. This arrangement is consistent with

the neural implementation of predictive coding as organized by

Shipp (2016). The reliability weighting mechanism in our model

can be interpreted as the precision mechanism that modulates

neuronal signals in predictive coding theory. This mechanism is

implemented by weighting the projection of prediction errors to

the integration reservoir using the parameters α
(IA)
e and α

(IV)
e .

The specific brain structures involved in multi-sensory

speech recognition have been investigated in previous studies

(Sekiyama et al., 2003, Nath and Beauchamp, 2011). The

mechanism of weighting sensory information is supported by

the functional connectivity among cortical regions. For example,
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A B

FIGURE 6

Temporal accuracy of the reservoir and the direct readout from the sensory information. (A) Shows the accuracy of the reservoir. (B) Shows the

accuracy of direct readout from the sensory information.

FIGURE 7

Typical time series while dynamic modulation of prediction error feedback of the integration reservoir based on the experimental obtained

relationship between the noise strength and the optimal strength of prediction error feedback. The first row represents the auditory noise strength.

The second row shows the moving average of the auditory prediction error ē(A)avg of auditory reservoir. The third row shows the strength of auditory

prediction error feedback α(IA)
e of the integration reservoir.

Nath and Beauchamp (2011) reported variability in the functional

connectivity between the visual cortex, auditory cortex, and

superior temporal sulcus (STS). In our model, the visual cortex and

auditory cortex correspond to the visual and auditory reservoirs,

respectively, while the multi-sensory area (STS) corresponds to

the integration area. The strength of the neural signals among

areas in our model is represented by the strength of prediction

error feedback. The experimental results of our model suggest that

the modulation of prediction error signal strength may underlie

the modulation of functional connectivity during multi-sensory

speech recognition.

The computational model for multi-sensory speech

recognition, as proposed by Ma et al. (2009), extends beyond

the traditional multi-sensory integration models based on

Bayesian inference, particularly for multi-class tasks. Yet,

the specific neural mechanisms that facilitate the integration

of visual and auditory signals-each with its own unique set

of dimensions and temporal variations-remain to be fully
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understood. Our model seeks to overcome this limitation

by implementing a hierarchical structure that includes a

randomly configured recurrent network, thereby showcasing

the capability of recurrent structures for managing the multi-

sensory integration process. As mentioned by Enel et al. (2016),

the recurrent structure of the local network of the cortex has

the rich properties to represent time contextual information

of the sensory signals. Our results indicate that the local

connectivity traits of the cortex significantly contribute to

enhancing multi-sensory integration.

We demonstrated the specific methods for adjusting the

intensity of reliability weighting. The method involves optimizing

recognition accuracy by adjusting the weights based on the

noise intensity for each sensory modality. As illustrated in

Figure 4B, the relationship between the optimal feedback

intensity for accurate recognition and the magnitude of noise

in the sensory signals follows a sigmoid curve. This feedback

mechanism can be established based on the noise intensity

estimated in each sensory modality’s region as shown in

Figure 7. Moreover, the reliability weighting across different

sensory modalities is linked to attentional mechanisms.

Certain tasks may be efficiently accomplished by directing

attention, either consciously or unconsciously, toward a specific

sensory modality.

Other future work includes the analysis of more physiologically

sophisticated neural models. In the present model, we used a

firing rate model, but it will be necessary to develop a network

model based on spiking neurons. Additionally, the plasticity

of local connections within the recurrent network structure

can be explored. A possible extension is the incorporation of

a learning rule that leverages internal dynamics, rather than

relying on a randomly connected network. It is also important

to investigate how typical neural structures, such as receptive

fields, are realized within the recurrent network structure under

the framework of predictive coding theory. Various formulations

of hierarchical structures could be explored as well. Deepening

the network is a potential reformulation that could provide

insights into the benefits of hierarchical structures in sensory

processing streams, such as the primary and secondary visual

cortices. As shown in Figure 4A, the integration area primarily

relies on visual information under noisy conditions, suggesting

that adding structures specific to each modality could improve

model performance. In the context of reservoir computing,

deepening the network is a common approach. For example,

in our previous research (Yonemura and Katori, 2021), we

demonstrated a hierarchical predictive coding model using

reservoir computing. Moving forward, it will be necessary to

analyze in detail how network topology and the properties

and parameters of associated synapses contribute to multi-

modal integration.

In summary, the proposed model not only replicates

the characteristics of multi-sensory integration in a speech

perception task but also provides insights into the neural basis

underlying this integration. It highlights how the random

recurrent structure plays a crucial role in representing the

features of multi-sensory time series, aligning with conventional

computational theories. This suggests that multi-sensory

integration leverages a common neural framework in the

cortex, facilitated by random recurrent connections. Finally, the

findings from this research contribute to a deeper understanding

of the cortical structure’s role in the multi-sensory speech

perception process.
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