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Background: The success and failure of extubation of patients with acute

respiratory failure is a very important issue for clinicians, and the failure of

the ventilator often leads to possible complications, which in turn leads to a

lot of doubts about the medical treatment in the minds of the people, so in

order to increase the success of extubation success of the doctors to prevent

the possible complications, the present study compared different time series

algorithms and different activation functions for the training and prediction of

extubation success or failure models.

Methods: This study compared different time series algorithms and different

activation functions for training and predicting the success or failure of the

extubation model.

Results: The results of this study using four validation methods show that the

GRU model and Tanh’s model have a better predictive model for predicting the

success or failure of the extubation and better predictive result of 94.44% can be

obtained using Holdout cross-validation validation method.

Conclusion: This study proposes a prediction method using GRU on the topic

of extubation, and it can provide the doctors with the clinical application of

extubation to give advice for reference.

KEYWORDS
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1 Introduction

With the aging of the population and the continuous improvement of medical
technology, the number of patients requiring mechanical ventilation is gradually increasing
(Criner, 2012). In the United States, there is an analysis of ICU occupancy and
utilization and it was found that there is sufficient capacity to care for the patients
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(Wunsch et al., 2013), and the daily cost of patients requiring
mechanical ventilation is as high as US$2,278 (Cooper and Linde-
Zwirble, 2004).

In Taiwan, the number of patients requiring mechanical
ventilation is increasing which will also lead to an increase in
healthcare costs (Cheng et al., 2008). Therefore, the National Health
Insurance Board (NHIB) has established a requirement for patients
in respiratory care to be transferred to a respiratory care center after
21 days in the ICU and to a respiratory care unit after 42 days in
the respiratory care center. Only a minority of patients admitted
to a respiratory care unit can be extubated and discharged from
the hospital (Hui et al., 2010), and only half of the patients in
respiratory care centers can be extubated (Cheng et al., 2007),
while one-third of patients in ICUs are mechanically ventilated
(Cohen et al., 2019), and 10–20% of extubated patients may need
to be reintubated, which is associated with a six-fold mortality rate
(Tobin, 2001).

Rapid Shallow Breathing Index (RSBI) is an important
indicator of extubation, and RSBI is usually measured at the
beginning of the Spontaneous Breathing Trial (SBT), and RSBI
at the completion of the SBT can be an effective predictor
of extubation (Kuo et al., 2006), and the Convolutional Nerve
Network (CNN) can be utilized in the off-respirator with clinical
significance and appropriate features to achieve good results (Jia
et al., 2021).

In this study, we used every second data available on the
ventilator (including: Vte, RR, Ppeak, Pmean, PEEP, FiO2) to advise
the doctor when the patient is ready to be extubated, and the LSTM
can be used to effectively determine the patient’s advice on the
success or failure of extubation.

The remainder of this article is as follows: Section 2 reviews
the literature on deep learning about RNN, LSTM and GRU
and. Section 3 introduces the proposed research framework and
methods. Section 4 discusses research results and performance
evaluation. Section 5 is discussion. Section 6 is conclusion.

2 Related work

2.1 Deep learning

2.1.1 Recurrent neural networks
Recurrent neural networks (RNN) is a way of cycling the state

of the self through its own network, and the method allows the
transmitted message to survive and be input in the structure of the
time series, while RNNs are elusive in terms of long term memory
effects, often due to gradient disappearance leading to the long term
meaning to be affected by the short term memory. RNN models are
often used in many medical fields such as snoring and non-snoring
prediction (Arsenali et al., 2018), hemoglobin values in end-stage
renal patients (Lobo et al., 2020), and septic symptoms prediction
(Scherpf et al., 2019). All of them can be predicted using RNN
modeling with good results. The main formulas of the model of
RNN are shown in (1, 2), and the architecture is shown in Figure 1.

hp = tanh (Whhp−1 +WxXt) (1)

yp = g(wy ∗ hp) (2)

FIGURE 1

RNN architecture.

FIGURE 2

LSTM architecture.

2.1.2 Long short-term memory
Long short-term memory (LSTM) is a model derived from

recurrent neural networks (RNN) mainly to improve the RNN
memory problem, so LSTM is composed of three control valves:
input valve, forgetting valve, and output valve (Hochreiter and
Schmidhuber, 1997), and the LSTM model together with the
dropout and l2 regularization techniques and Adam’s optimizer can
achieve good diagnosis and grading in the diagnosis and severity
of Parkinson’s disease (Balaji et al., 2021). The LSTM model with
dropout and l2 normalization techniques and Adam’s optimizer
can achieve good diagnosis and severity rating of Parkinson’s
disease (Balaji et al., 2021). The number of cases and deaths
in the current COVID epidemic can be predicted using LSTM
model with migration learning and single or multi-step approach
with good results in several countries (Gautam, 2021). Malaria is
usually prevalent in subtropical countries and LSTM models can
be applied to geographic location, satellite data and clinical data to
achieve good prediction results (Santosh et al., 2020). Mechanical
ventilation is one of the life-saving tools to help support the organs
of patients with respiratory failure and improper delivery of tidal
volume will lead to an increase in mortality, LSTM can achieve
a level of accuracy in the prediction of tidal volume in the body
(Hagan et al., 2020). The main formulas of the model of LSTM are
shown in (3–8), and the architecture is shown in Figure 2.

fp = σ(wf · [hp−1, xp] + bf ) (3)
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FIGURE 3

GRU architecture.

ip = σ(wi · [hp−1, xp] + bi) (4)

c̃p = tanh(wc · [hp−1, , xp] + bc) (5)

Cp = fp ∗ cp−1 + ip ∗ C̃p (6)

Op = σ(wO[hp−1, xp] + b0) (7)

hp = Op ∗ tanh(Cp) (8)

fp is the forget valve, ip is the input valve, Op is the output valve, c̃p
is the memory cell candidate. hp−1 is the current output value, xp
is the input value. wi,wc,wo,wf and bi, bc, bo, bf are the weight
matrix and bias vector, respectively. Cp is the storage unit. σ is
Sigmoid activation function.

2.1.3 Gated recurrent unit
Gated recurrent unit (GRU) is a method proposed by Cho

(2014), which can outperform the LSTM model in terms of CPU
convergence time as well as parameter updating (Chung et al.,
2014), and has been utilized by scholars in many fields such as
heart failure (Gao et al., 2020), simulation of accidents at signalized
intersections (Zhang et al., 2020), heartbeat detection of heartbeat
signals (Hai et al., 2020). heartbeat detection with graphical signals
(Hai et al., 2020) have been studied by scholars utilizing the GRU
approach. GRU is an update gate used to replace the forget gate
and input gate in LSTM, and then cell state and ht are merged, and
the computation of GRU is also different than LSTM. The main
formulas of GRU model are shown in (9–12), and the architecture
is shown in Figure 3.

zp = σ(Wz ∗
[
hp−1, xp

]
) (9)

rp = σ(Wr ∗
[
hp−1, xp

]
) (10)

FIGURE 4

Tanh activation functions and derivatives.

h̃p = tanh(W ∗
[
rp ∗ hp−1, xp

]
) (11)

hp =
(
1− zp

)
∗ ht−1 + zp ∗ h̃p (12)

2.2 Activation functions

2.2.1 Hyperbolic tangent function
Hyperbolic tangent function is a smooth and zero-centered

function with the range between −1 and 1 (Nwankpa et al., 2018),
and its convergence is faster and the application is similar to the
Sigmoid function, so it is easier to learn slower, Figure 4 shows the
Tanh activation function and derivatives, the equation is shown in
(13).

f (x) =
(
ex − e−x

ex + e−x

)
(13)

2.2.2 Softsign function
Softsign Function is an alternative to the hyperbolic tangent

function for the reason that this model can achieve flatter curves
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FIGURE 5

Softsign activation function and derivatives.

and the derivative decreases slower and achieves a better learning
method, whereas Softsign Function is decentered, differentiable
and anti-symmetric and returns values between−1 and 1. Figure 5
shows the Softsign activation function and the derivative and the
equation is shown in (14).

f (x) =
(

x
|x| + 1

)
(14)

3 Materials and methods

The hardware operating system for this study is Win10 64-bit,
CPU: i7, RAM: 2 4G, GPU: RTX 2070, and the software is written
in Python, including Pandas, Numpy, Tensorflow, and Keras.

The research process is divided into four steps: Dataset, Data
Preprocessing and Model Training and Evaluate.

3.1 Dataset

This study was conducted in a hospital in Taiwan from 1 August
2015 to 30 November 2020. The dataset containing the following
data: extubation success or failure, Vte, RR, Ppeak, Pmean, PEEP,
FiO2, and some of the collected respiratory data contained missing
values. To ensure the completeness of the data, patients with
missing values were excluded from this study. There were 289 sets
of data for three and a half hours. In this study, there were 28 data
for failed extubation and 205 data for successful extubation. There
were 147 males and 86 females. The mean age was 73 years (61.8–
81.3).

3.2 Data preprocessing

In this study, the data are first pre-processed by averaging the
data every second, every 30 s, every 60 s, every 120 s, every 180 s,
and every 300 s, and it can be seen in Figure 6 that using different
averaging methods can reduce the interval between the data and
also reduce the range of outliers. This study will add the original
data input data with a total of 6 feature attributes, and this study
will compress the input data in the range of −1 to 1 by performing
the absolute maximum standardization of the input data. Since the
activation functions tanh and Softsign used in this study are in the

range of −1 to 1, the data compression method chosen is absolute
maximum standardization instead of min-max scaling. the absolute
maximum standardization formula is shown in (15).

xnew =
x
|x|max

(15)

3.3 Model training and evaluation

Since it is difficult to collect patient data on respiratory
parameters per second, this study compared three different
time series deep learning models: RNN, LSTM, GRU, and four
different validation methods such as: Resubstitution validation,
8:Holdout validation, 10-fold cross-validation and Leave-one-out
cross-validation. Resubstitution validation, 8:2Holdout validation,
10-fold cross-validation and Leave-one-out cross-validation.
Resubstitution take the first three hours of data from 250 sets of
data as training samples, and the first three hours of data from 250
sets of data as validation samples, Holdout, and Cross-validation
is to split the data from the first three hours of 250 sets of data
into 8:2 using the Holdout method. Cross-validation is to split the
data from the first 3 h of the 250 sets of data into 8:2 by using the
Holdout method, the first 2 h and 24 min of the data will be used
as the training sample, and the remaining 36 min will be used as
the validation sample. 10-fold cross-validation is to split the data
from the first 3 h of the 250 sets of data into 10-fold by using the
10-fold method, and to split the data into 10-fold by using the
10-fold method. 10-fold cross-validation is to divide the data from
the first 3 h of the 250 sets of data into 10 sets of data by using the
10-fold method, one set of data is used as the validation sample
and the remaining set of data is used as the training sample, and
finally the 250 sets of data are divided into the first 3 h of each
set of data by using the Leave-one-out method as the validation
sample, and the remaining set of data is used as the first 3 h of data
as the training sample. For the external validation dataset in this
study, the data of each patient half an hour before extubation was
used as a separate dataset. The part of the model that connects the
hidden layer to the output layer uses a dropout method to prevent
data over-simulation. Utilizing Accuracy in Model Evaluation
for Model Evaluation. In this study, a sliding window is used to
segment the time series data, and the size of the sliding window is
based on every five time periods and the data are obtained in Step
1 each time, and Table 1 shows the parameter settings of the model.

4 Results

The results of this study are firstly shown in Table 2, where the
Resubstitution method is utilized and then the data are averaged
and pre-processed on a per-second, per-30-s, per-60-s, per-120-s,
per-180-s. The results of this study are compared to the results of
the model training with every 2 steps, every 3 steps, every 4 steps,
and every 5 steps for training in the RNN model. Comparing the
results of every 5 steps, every 3 steps, every 4 steps, and every 5
steps in the RNN model for training, the results of the study show
that the training of the model with every 5 steps can get better
prediction results in each average method with 76.57, 94.57, 96.59,
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FIGURE 6

Difference in data between different averaging methods.

TABLE 1 Model reference settings.

Parameter name Parameter value

Parameter settings Loss function: categorical_crossentropy

Optimizer: Adam

Learning rate: 0.006

Epoch: 100

Model setting Layer: 1

Unit: 200

Dropout: 0.2

TABLE 2 Time step verification results.

Time
step 1

Time
step 3

Time
step 4

Time
step 5

Per-1-s 80.09% 91.22% 90.21% 76.57%

Per-30-s 71.64% 95.10% 89.56% 94.57%

Per-60-s 71.57% 93.68% 95.57% 96.59%

Per-120-s 71.55% 89.90% 93.64% 95.28%

Per-180-s 71.80% 79.94% 88.73% 91.20%

Per-300-s 71.96% 72.53% 72.01% 77.67%

95.28, 91.20, and 77.67%, respectively. In per-1-s, the result of every
5 steps is slightly worse than the result of every 3 steps.

Table 3 shows the validation of the model using the activation
function of tanh and different models and different validation
methods for each average method, and the results show that
LSTM has good prediction results in different validation methods
for Per-1-s: 93.09, 91.41, 83.21, and 79.04%, and the prediction
results for Per-30-s: 98.82, 94.44, 84.75, and 84.83%, for per-120-
s: 10-fold. Per-30-s shows the best prediction results for GRU:
98.82, 94.44, 84.75, and 84.83%, where the 10-fold validation

method is slightly inferior to LSTM, and per-60-s shows the
better prediction results for LSTM: 97.75, 94.08, 84.91, and
82.30%, where the Resubstitution validation method has good
prediction results, 93.09, 91.41, 83.21, and 79.04%. For per-120-
s, the predictions of LSTM are 97.21, 93.16, 84.79, and 82.36%,
respectively. Per-180-s has better prediction results for LSTM:
95.65, 87.35, 80.43, and 79.75%. Among them, Holdout’s validation
method GRU model has better prediction results. Per-300-s comes
to LSTM with better prediction results: 94.85, 88.58, 80.04, and
75.54%, respectively. Among them, Leave-one-out of the validation
approach GRU model has better prediction result 79.36%, in total,
the results of this study concluded that Tanh activation function
performs better in the model of LSTM, while the part of average
method considered that Holdout of per-30-s has better prediction
result.

Table 4 shows the validation of the model using the activation
function as softsign and different models and different validation
methods for each average method. The results show that the
LSTM and GRU for per-1-s have different prediction results in
different validation methods, among which Resubstitution and 10-
fold have better prediction results for the LSTM model: 93.73
and 83.21%, respectively, and GRU for Holdout and Leave-one-
out have better prediction results: 91.58 and 79.51% respectively.
Resubstitution and 10-fold have better prediction results for LSTM
model, which are 93.73 and 83.21%, respectively, and GRU has
better prediction results for Holdout and Leave-one-out, which are
91.58 and 79.51%, respectively. per-30-s shows that GRU has the
best prediction results for LSTM model, which are 96.71, 94.25,
86.43, and 83.46%, respectively. Resubstitution’s validation method
is slightly inferior to LSTM, while per-60-s shows better prediction
results for GRU: 97.97, 94.27, 84.80, and 82.16%, respectively.
Per-120-s has different prediction results for different validation
methods, among which Resubstitution and 10-fold validation
methods have better prediction results for LSTM: 96.67 and
84.79%, respectively, and Holdout has better prediction results for
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TABLE 3 Results of Tanh validation model.

Resubstitution Holdout
cross-validation

10-fold
cross-validation

Leave-one-out
cross-validation

Per-1-s

RNN 76.57% 72.68% 73.42% 56.73%

LSTM 93.09% 91.41% 83.21% 79.04%

GRU 92.62% 90.78% 82.96% 77.03%

Per-30-s

RNN 94.57% 92.42% 83.33% 81.53%

LSTM 96.87% 94.22% 85.92% 84.68%

GRU 98.82% 94.44% 84.75% 84.83%

Per-60-s

RNN 96.59% 89.97% 82.14% 80.92%

LSTM 97.75% 94.08% 84.91% 82.30%

GRU 98.49% 93.08% 84.12% 82.29%

Per-120-s

RNN 95.28% 88.69% 80.44% 78.93%

LSTM 97.21% 93.16% 84.79% 82.36%

GRU 98.18% 93.05% 82.86% 81.66%

Per-180-s

RNN 91.20% 89.47% 74.26% 77.45%

LSTM 95.65% 87.35% 80.43% 79.75%

GRU 95.06% 92.04% 79.91% 79.00%

Per-300-s

RNN 77.67% 73.01% 76.89% 66.59%

LSTM 94.85% 88.58% 80.04% 75.54%

GRU 93.31% 84.95% 79.70% 79.36%

*The values in bold represent the best results at this stage.

RNN: 93.37%. Holdout for RNN has a better prediction result
of 93.37%, Leave-one-out for GRU has a better prediction result
of 81.65%, Per-180-s has different prediction results for different
validation methods, among which Resubstitution and Leave-one-
out for LSTM have a better prediction result of 96.82 and 80.83%,
respectively. Holdout and 10-fold validation methods have better
prediction results for GRU model: 92.24 and 80.96%, respectively,
while Per-300-s has better prediction results for GRU: 94.59,
86.51, 81.11, and 77.85%, respectively. Among them, Holdout’s
validation method LSTM model has better prediction results,
and in sum, the results of this study concluded that Softsign
activation function performs better in GRU’s model, and Plant’s
part considered that Holdout of Plant B has better prediction
results.

5 Discussion

In this study, different averaging methods and different models
were applied to compare with different activation functions, and
the results of averaging every 30 s were better, and the GRU model
was considered to have better predictive results in the overall
assessment, and finally, Tanh’s activation function was considered

to have better predictive results in terms of activation functions.
In this study, Tanh’s GRU model can be effective in achieving
good results regardless of success or failure and can give good
advice to doctors.

In this study, different activation functions are applied for the
comparison of Tanh and Softsign, in the results of this study, it can
be seen that there is not much difference in the accuracy of the two
activation functions and the Tanh activation function has a better
predictive effect in each model.

AI extubation decision system can be used to help the medical
team to analyze whether or not to perform an extubation action
before extubation. As shown in Figure 7. In this study, a trend
is generated every three minutes in the clinical decision support
system. If there are missing values in the data, the study will utilize
the previous data to ensure that the data is complete. Therefore,
the model can increase the confidence of the healthcare team in
extubation. It can also reduce the burden of the patient and the
family’s confidence in the medical treatment. At this stage, different
countries have different laws and regulations on clinical decision-
making by AI. Therefore, AIs need to strictly comply with the
relevant laws in order to avoid legal disputes. The trends generated
in this study can be viewed by clinicians at this time, but the right
decision still needs to be made by the healthcare team.
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TABLE 4 Softsign validation model results.

Resubstitution Holdout
cross-validation

10-fold
cross-validation

Leave-one-out
cross-validation

Per-1-s

RNN 89.28% 89.32% 81.10% 74.41%

LSTM 93.73% 91.41% 83.21% 79.09%

GRU 93.22% 91.58% 82.53% 79.51%

Per-30-s

RNN 95.21% 92.58% 82.77% 81.54%

LSTM 96.75% 94.22% 85.92% 82.73%

GRU 96.71% 94.25% 86.43% 83.46%

Per-60-s

RNN 96.09% 90.52% 83.10% 80.79%

LSTM 97.67% 94.09% 84.91% 82.32%

GRU 97.97% 94.27% 84.80% 82.61%

Per-120-s

RNN 95.69% 93.37% 81.15% 79.87%

LSTM 96.67% 93.16% 84.79% 80.80%

GRU 96.13% 93.32% 82.87% 81.65%

Per-180-s

RNN 95.31% 92.14% 78.20% 78.82%

LSTM 96.82% 87.35% 80.43% 80.83%

GRU 96.20% 92.24% 80.96% 79.40%

Per-300-s

RNN 93.67% 89.79% 81.08% 77.22%

LSTM 93.38% 88.58% 80.04% 76.71%

GRU 94.59% 86.51% 81.11% 77.85%

*The values in bold represent the best results at this stage.

FIGURE 7

Clinical decision aids.
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6 Conclusion

The success or failure of extubation is a very important issue
in medicine, and the research topic of AI is getting more and more
attention. Therefore, this study compares whether the time series
model can effectively predict the success or failure of extubation,
and the results show that the GRU model with Tanh activation
function has a better prediction result of 94.44% at the average of
every 30 s, so this study proposes a prediction method using GRU
on the topic of extubation, and it can provide the doctors with
the clinical application of extubation to give advice for reference.
In the future, this study will be possible to validate this model
with several different hospitals to collect mergers from different
ethnic groups to increase the credibility of the model. This model
will be validated with many different hospitals to collect different
groups to increase the confidence of the model. The model will
also be applied to many different clinical settings for use. The data
will provide by the respirator was used, and in the future, we can
add more variables such as patient’s data or different expansion
dimensions, and this study will use more deep learning models to
verify whether they can help to achieve the prediction effect, so as
to reduce the failure rate of extubation. This study will add more
algorithm such as: XGBoost, LightGBM, and Transformer models
for model training and comparison.
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