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Editorial on the Research Topic

Understanding and bridging the gap between neuromorphic computing

and machine learning, volume II

Introduction

Pursuing intelligence is a long-term goal of the human, toward which two routes

have been paved on the road: neuromorphic computing driven by neuroscience and

machine learning driven by computer science (Pei et al., 2019). Spiking neural networks

(SNNs) and neuromorphic chips (Basu et al., 2022; Christensen et al., 2022) dominate

the neuromorphic computing domain, while artificial neural networks (ANNs) and

machine learning accelerators (Deng et al., 2020) dominate the machine learning domain.

Neuromorphic computing with efficient models and hardware has shown energy efficiency

superiority (Renner et al., 2021), however, still lies in its infant stage and presents a gap in

terms of accuracy and applications compared to the mature machine learning ecosystem.

To this end, we proposed a Research Topic, named “Understanding and bridging the

gap between neuromorphic computing and machine learning,” in Frontiers in Neuroscience

and Frontiers in Computational Neuroscience in 2019, and have successfully published 14

articles on neuromorphic computing andmachine learning (Deng et al., 2021). Encouraged

by such positive impetus for the neuromorphic computing community, we relaunched the

Research Topic in 2022. This time, we have accepted 11 submissions in the end. The scope

of these works covers neuromorphic models and algorithms, hardware implementation,

and programming frameworks.

Neuromorphic models and algorithms

SNNs encode information in spike events and process information using neural

dynamics, which differ from ANNs. Due to the complicated spatiotemporal dynamics
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and non-differentiable spike activities, the SNN domain uses

plasticity-based unsupervised learning algorithms (Diehl and

Cook, 2015) for a long time but suffers from low accuracy.

To break the bottleneck of lacking effective learning algorithms,

the sophisticated backpropagation method in machine learning

has been introduced into SNNs (Lee et al., 2016; Wu et al.,

2018), which greatly improves the performance of SNNs and thus

extending the scope of neuromorphic models and applications

(Yao et al., 2023). A comprehensive survey of the direct

learning-based deep SNNs can be found in the review article

from Guo et al., mainly categorized into accuracy improvement

methods, efficiency improvementmethods, and temporal dynamics

utilization methods. Besides this review article, we accepted six

articles on neuromorphic models and algorithms in this Research

Topic, which are briefly summarized below.

With the extensive researches on SNN learning algorithms,

how to combine the complementary advantages of bio-plausible

unsupervised learning and powerful supervised learning is

becoming an emerging and interesting Research Topic (Wu et al.,

2022). Some learning rules for SNNs adopt a three-factor Hebbian

update: a global error signal modulates local synaptic updates

within each layer. Unfortunately, the global signal for a given

layer requires processing multiple samples concurrently, but the

brain only sees a single sample at a time. Daruwalla and Lipasti

propose a new three-factor update rule where the global signal

correctly captures information across samples via an auxiliary

memory network. The auxiliary memory network can be trained

a priori independently of the dataset being used with the primary

network. This work presents an explicit connection between

working memory and synaptic updates.

Most learning methods only consider the plasticity of synaptic

weights. To improve the learning performance and biological

plausibility, Wang proposes a new supervised learning algorithm

for SNNs based on the typical SpikeProp method, in which both

the synaptic weights and delays are adjustable parameters. Sun et al.

further combine learnable delays, local skip-connections and an

auxiliary loss term to enhance the accuracy and stability of SNNs,

which is validated on spoken word recognition benchmarks.

Current SNNs can only focus on information within a short

time period, which makes it difficult for them to make effective

decisions based on global information. Chen et al. propose

SNNs with working memory (SNNWM) to handle spike trains

segment by segment, inspired by recent neuroscience advances.

This model can help SNNs obtain global information and reduce

the information redundancy between adjacent time steps. To better

leverage the temporal potential of SNNs, Wu X. et al. propose a

self-attention-based temporal-channel joint attention SNN (STCA-

SNN) with end-to-end training by inferring attention weights

along both temporal and channel dimensions concurrently. This

method can model global temporal and channel information

correlations, enabling the network to learn “what” and “when” to

attend simultaneously.

High energy efficiency is a well-known advantage of SNNs,

which is tightly associated with the sparse spike activities. To

reduce the redundant spike counts, Fois and Girau propose weight-

temporally coded representation learning (W-TCRL), which

utilizes temporally coded inputs and leads to lower spike counts

and improved energy efficiency. Furthermore, they introduce a

novel spike-timing-dependent plasticity (STDP) learning rule for

stable learning of relative latencies within the synaptic weight

distribution. This work improves the image reconstruction error

while achieving significantly higher sparsity in spike activities.

Hardware implementation

Neuromorphic models enjoy low computational costs owing to

the binary spike representation and sparse operations. However,

directly executing SNNs on GPUs without tailored optimization

is inefficient. Neuromorphic hardware is designed for the efficient

execution of SNNs via event-driven computing (Merolla et al.,

2014). In this Research Topic, we accepted three articles on

hardware implementation of SNNs in this Research Topic.

Probabilistic sampling is an effective approach for making

SNNs achieve Bayesian inference, but also a time-consuming

operation on conventional computing architectures. To address

this problem, Li et al. design a specific accelerator on FPGA to

improve the execution of SNN sampling models by parallelization.

The streaming pipelining and array partitioning operations are

used to achieve acceleration with the lowest resource consumption.

The Python productivity for Zynq (PYNQ) framework is

combined to efficiently migrate models onto FPGA. This work

promises implementing complex probabilistic model inference in

embedded systems.

Huang et al. propose the MAC array for the acceleration

of SNN inference, which is a parallel architecture on each

processing element of SpiNNaker 2 (Liu et al., 2018). The

authors further investigate the parallel acceleration algorithms

for collaborating with multi-core MAC arrays. The proposed

Echelon Reorder model information densification algorithm can

achieve efficient spatiotemporal load balancing and optimization

performance with the help of the adapted multi-core two-stage

splitting and authorization deployment strategies. This work

expands the application scope of the general sparse matrix-matrix

multiplication (SpGEMM) issue to SNNs.

The decentralized manycore architecture with high

computing parallelism and memory locality is widely adopted

by neuromorphic chips. However, its fragmented memories

and decentralized execution lowers the resource utilization and

processing efficiency. Wang et al. propose the mapping limit

concept which points out the resource saving upper limit during

logical and physical mapping when deploying neural networks

onto neuromorphic chips. A closed-loop mapping strategy with

an asynchronous 4D model partition for logical mapping and

a Hamilton loop algorithm (HLA) for physical mapping are

elaborated. Their methods and performance gains are validated

on the TianjicX neuromorphic chip (Ma et al., 2022), which is

helpful for building a general and efficient mapping framework for

neuromorphic hardware.

Programming frameworks

Software is one of the key components in the ecosystem of

neuromorphic computing (Fang et al., 2023), which is sometimes
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more important than the hardware itself because it determines

how much practical efficiency we can gain from the peak efficiency

of hardware. In this Research Topic, we accepted one article on

the programming framework for neuromorphic models in this

Research Topic.

Wu Z. et al. introduce a user-friendly brain-inspired deep

learning (BIDL) framework for generalized and lightweight

spatiotemporal processing (STP). Researchers can use the

framework to construct deep neural networks which leverage

neural dynamics for processing spatiotemporal information

and ensure high accuracy. The framework is compatible for

various types of spatiotemporal data such as videos, dynamic

vision sensor (DVS) signals, 3D medical images, and natural

languages. Moreover, BIDL incorporates several optimizations

such as iteration representation, state-aware computational graph,

and built-in neural functions for easy deployment on GPUs and

neuromorphic chips. By facilitating the exploration of different

neural models and enabling global-local co-learning, BIDL shows

potential to drive future advancements in bio-inspired research.

Conclusion

Neuromorphic computing is a neuroscience-driven domain

in pursuing brain-like intelligence, which is an important route

distinct from machine learning. Although neuromorphic systems

have not yet demonstrated superior performance over machine

learning systems in main stream intelligent tasks, we believe it

can be significantly improved when the neuromorphic ecosystem

is constructed and becomes iterative between algorithms, models,

hardware, software, and benchmarks. This Research Topic is a quite

minor step.We hope future works can really bridge the gap between

neuromorphic computing and machine learning, along the way to

reach the long-term goal of mimicking brain intelligence.
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