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Introduction: The automatic and precise classification of epilepsy types

using electroencephalogram (EEG) data promises significant advancements

in diagnosing patients with epilepsy. However, the intricate interplay among

multiple electrode signals in EEG data poses challenges. Recently, Graph

Convolutional Neural Networks (GCN) have shown strength in analyzing EEG

data due to their capability to describe complex relationships among di�erent

EEG regions. Nevertheless, several challenges remain: (1) GCN typically rely

on predefined or prior graph topologies, which may not accurately reflect the

complex correlations between brain regions. (2) GCN struggle to capture the

long-temporal dependencies inherent in EEG signals, limiting their ability to

e�ectively extract temporal features.

Methods: To address these challenges, we propose an innovative epileptic

seizure classification model based on an Iterative Gated Graph Convolutional

Network (IGGCN). For the epileptic seizure classification task, the original EEG

graph structure is iteratively optimized using a multi-head attention mechanism

during training, rather than relying on a static, predefined prior graph. We

introduce Gated Graph Neural Networks (GGNN) to enhance the model’s

capacity to capture long-term dependencies in EEG series between brain

regions. Additionally, Focal Loss is employed to alleviate the imbalance caused

by the scarcity of epileptic EEG data.

Results: Ourmodel was evaluated on the Temple University Hospital EEG Seizure

Corpus (TUSZ) for classifying four types of epileptic seizures. The results are

outstanding, achieving an average F1 score of 91.5% and an average Recall of

91.8%, showing a substantial improvement over current state-of-the-art models.

Discussion: Ablation experiments verified the e�cacy of iterative graph

optimization and gated graph convolution. The optimized graph structure

significantly di�ers from the predefined EEG topology. Gated graph convolutions

demonstrate superior performance in capturing the long-term dependencies

in EEG series. Additionally, Focal Loss outperforms other commonly used loss

functions in the TUSZ classification task.

KEYWORDS

seizure classification,GCN, iterative graphoptimization, long-termdependencies in EEG

series, imbalanced distribution
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1 Introduction

Epilepsy, a chronic non-communicable neurological disorder,

significantly impacts individuals of all ages. Global statistics

show that ∼50 million people live with epilepsy, making it

one of the most common neurological disorders worldwide. It

is estimated that appropriate treatment could prevent seizures

in up to 70% of these patients (World Health Organization,

2024). Electroencephalogram (EEG) signals, are acquired using an

electrode placement scheme on the scalp (i.e., International 10-20

system; Homan et al., 1987) which records activity in different brain

regions. EEG signals are generated by unconscious activation of

the central nervous system, are objective and reliable, and is not

easily controlled by subjective consciousness (Adeli and Ghosh-

Dastidar, 2010). EEG signals can reveal the presence of abnormal

brain activity and can be used to understand neuronal activity

patterns associated with brain disorders (Nunez and Srinivasan,

2006).

However, the brain is a complex, densely connected system

that operates across multiple spatial and temporal scales. Therefore,

EEG signals are often highly correlated in space and time,

which poses a huge challenge to EEG-based epilepsy detection

and classification. Recent developments in deep learning (DL)

techniques, particularly Convolutional Neural Networks (CNN)

and Recurrent Neural Networks (RNN), have proven to be superior

for such tasks (Li et al., 2020). DL can automatically learn

discriminative features from raw EEG data rather than relying

on manually engineered features, which can be time-consuming,

domain-specific, and may not capture all relevant information

in the data (Craik et al., 2019). A deep 13-layer CNN network

was developed for the first time to classify normal, preictal, and

epileptic seizure categories (Acharya et al., 2018). The advantage

of the model was that it did not require feature extraction or

feature selection. A fully convolutional network (a special type

of CNN) was proposed to detect epilepsy, eliminating the need

for manual feature extraction during data preprocessing (O’Shea

et al., 2020). Incorporating prior knowledge into DL models can

significantly enhance their performance. For example, a CNN that

uses frequency domain EEG features as input was found to be

more effective for seizure detection (Zhou et al., 2018). A shallow

CNN architecture combined with wavelet packet decomposition

was developed to extract EEG data features from both time and

frequency domains, improving the accuracy of epilepsy seizure

prediction (Zhang Y. et al., 2019).

Epileptic activity often exhibits distinctive temporal patterns in

EEG recordings. To better explore the temporal characteristics of

EEG signals, Long Short-Term Memory (LSTM) networks (i.e., a

specialized form of RNN) have been adopted for seizure detection

and classification. A two-layer LSTM network was proposed to

predict epileptic seizures, and compared to CNN, the seizure

prediction performance was significantly improved (Tsiouris et al.,

2018). A seizure detection model based on bidirectional LSTM

was designed, which helps to collaboratively infer the output using

preceding and succeeding information relative to a given time

(Hu et al., 2020). Leveraging the strengths of both CNN and

LSTM, a CNN-LSTMnetwork was developed to capture the spatial-

temporal features of EEG signals (Shahbazi and Aghajan, 2018).

CNN excel at capturing local spatial patterns, while RNN are

effective at modeling temporal dependencies in sequential data.

However, they lackmechanisms to directly handle graph structures.

Brain connectivity involves various interacting regions and exhibits

complex behaviors. EEG networks provide a natural representation

of brain connectivity, where EEG channels represent nodes and the

connections between nodes represent correlations (Bullmore and

Sporns, 2009; Rubinov and Sporns, 2010). CNN and RNN struggle

to capture the intricate structures inherent in graph-structured

EEG network data (Ahmedt-Aristizabal et al., 2021).

To address this challenge, Graph Convolutional Networks

(GCN) (Scarselli et al., 2008) have been used in brain disease

detection and classification. A GCN-based model was proposed

for automatic neonatal epilepsy detection, where the temporal

information contained in the EEG signals was treated as graph

signals, and the spatial interdependence between brain regions was

represented as functional connections among the EEG channels

(Raeisi et al., 2022). Large-scale EEG datasets (the TUH EEG

Corpus and MPI LEMON database) was used to validate the

effectiveness of GCN for seizure detection (Wagh andVaratharajah,

2020). In Tang et al. (2021), EEG electrodes were represented

as nodes, and two types of edges were generated based on the

physical distance and cross-correlation. Based on these two graph

structures, GCN were applied for seizure detection and multi-

seizure type classification. In other EEG-based tasks, such as

emotion recognition, GCN have demonstrated good performance.

For example, a regularized graph neural network with node-

wise domain adversarial training and emotion-aware distribution

learning was proposed to address the cross-subject EEG variations

(Zhong et al., 2020). Graph convolution and regular convolution

were used together to extract features from graph input (Zhang T.

et al., 2019).

Although GCN is very effective in processing graph-structured

data, several challenges remain. First, the graph topology used in

GCN is often based on expert knowledge, which may not accurately

represent the connections between EEG channels. EEG signals vary

significantly across different patients, making it difficult, if not

impossible, to construct a predefined graph that is effective across

a large number of patients (Lian et al., 2020). The methods for

generating the prior graph structure can be summarized as follows:

• Euclidean distance is used to establish the graph structure

among different EEG channels (Song et al., 2018; Zhong et al.,

2020; Tang et al., 2021). Specifically, the value aij of this graph is

obtained as:

aij = exp

(
−
dist(vi, vj)

2

τ 2

)

where dist(·, ·) represents the geodesic distance between the

electrodes vi and vj on the brain region with coordinates (i.e.,

International 10-20 system), and τ is a scaling constant.

• Functional correlation is another frequently used method to

generate a prior graph, which is determined by the time series

correlation of the signals from two electrodes. The generalized form

can be expressed as:

aij =
xcorr(xi, xj)

‖ xi ‖‖ xj ‖
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where xi and xj represent the signals series of two electrodes vi and

vj, and xcorr(·, ·) is the cross-correlation function, such as spectral

coherence (Wagh and Varatharajah, 2020), phase locking value and

magnitude squared coherence (Raeisi et al., 2022), and directed

transfer function (Ho and Armanfard, 2023), and among others.

The two types of prior graphs mentioned above are often

used together for model input (Jin et al., 2021; Tang et al.,

2021), or to generate more complex graph data through

weighted summarization (Wagh and Varatharajah, 2020; Yu, 2022).

However, prior graphs derived from basic feature spaces, can

be noisy or incomplete, potentially failing to capture the actual

topology of EEG signals at a higher level. Therefore, using a prior

graph as input for different subjects may impair the performance of

GCN. Researchers have explored various solutions to this problem.

A dynamic graph convolutional neural network was proposed to

learn the intrinsic relationship between EEG channels (Song et al.,

2018; Jin et al., 2021). This approach used backpropagation (BP) to

iteratively update the adjacency matrix representing the connection

between EEG channels. However, this method introduced a large

number of parameters that need to be learned, and also involved

the setting of the learning rate. In Lian et al. (2020), for learning

optimal graph structure, subgraph clustering were first used to

obtain a coarse graph and then several convolutional operations

were used to refine the graph structure. This approach was not

end-to-end, and details of the subgraph clustering process were not

provided. In this work, we introduce Iterative DeepGraph Learning

(IDGL) architecture (Chen et al., 2020) to optimize the input graph.

This approach jointly optimizes both the graph structure and the

classification task. Our experiments show that the optimal graph

has a completely different structure than the input prior graph,

highlighting the limitations of using prior graphs as input.

Second, while GCN excel at identifying complex relationships

among EEG channel signals, they encounter difficulties in

capturing long-term sequence information. This limitation hinders

their ability to recognize and utilize the long-term dependencies

inherent in EEG signals, which are crucial for extracting temporal

characteristics. A Gated Graph Neural Networks (GGNN) (Li

et al., 2015) is an extension of a graph neural network, by

updating temporal features of node signal sequences through

the graph structure. GGNN was introduced to model temporal

dependency in EEG signals for diagnosis of Alzheimer’s disease

(Klepl et al., 2023). Furthermore, to better leverage the influence

of long-range neighbors, matrix multiplications in GGNN were

replaced with graph diffusion convolutions (Li et al., 2017). This

diffusion-based graph convolutional network, known as Diffusion

Convolutional Recurrent Neural Network (DCRNN), was used

to model EEG data for seizure detection and classification, and

experiments showed that the approach performed well (Tang et al.,

2021). However, the computation burden of DCRNN is expensive,

especially when the graph is dense. In this work, we demonstrate

that GGNN can achieve better performance when used with

iterative graph learning.

Third, since epileptic seizure events are usually of short

duration, typically have a much shorter duration compared

to non-epileptic periods, epileptic EEG signal recognition is a

typical imbalanced classification task. This skewed distribution can

inadvertently lead models to prioritize majority classes, thereby

neglecting the nuances of minority classes, which can impair

the effectiveness of epilepsy detection and classification efforts.

Traditional oversampling or undersampling techniques may not

work well with EEG data, which has high inter-subject variability

and is non-stationary over time. Recently, self-supervised learning

has emerged as a promising solution to the issue of category

imbalance in epilepsy datasets. This approach leverages the data

itself without depending on extensive labeled datasets. For example,

in Ho and Armanfard (2023), positive and negative pairs for each

EEG clip were constructed and then used to train the model

through contrastive strategies, i.e., minimizing intra-class distance

and maximizing interclass distance. The authors reported that this

self-supervised method can identify abnormal brain regions and

EEG channels without requiring access to the abnormal class data

during the training. A self-supervised pre-training technique using

GCN was proposed to improve model performance by predicting

upcoming signals (Tang et al., 2021). This approach assumed that

by learning to predict the EEG signals for the next period, the

model would learn task-independent representations and improve

downstream seizure detection and classification. Although the

above self-supervised methods are effective, they require high-

quality data or rely on the model’s ability to learn from its

predictions, leading to increased computation and training time.

To overcome this issue, we adopt Focal Loss (Lin et al., 2017) to

reduce the loss contribution of easily classified samples through

an adjustment factor. Our experiments show that this method is

simple and effective, which outperforms the approach proposed in

Tang et al. (2021).

The main contributions of this paper are as follows:

(1) Proposed Iterative Gated Graph Convolutional Network

(IGGCN) Model. To classify multiple seizure types from EEG

data, this model introduces IDGL to optimize the input graph

structure, addressing the limitations of predefined prior graphs in

traditional methods. By integrating a multi-head graph attention

mechanism to replace the cosine similarity learning used in IDGL,

the model significantly enhances its ability to capture complex

spatiotemporal correlations.

(2) The GGNN has been introduced.Within the IDGL model,

GGNN replaces the traditional GCN, enhances the model’s ability

to extract and understand long-term dependencies in functional

connectivity of EEG signals. This integration of IDGL with GGNN,

significantly improves the performance of classifying multiple

seizure types.

(3) Application of the focal loss function. This effectively

addresses the class imbalance problem in EEG classification tasks.

The method is straightforward and easy to implement.

(4) Performance validation on the Temple University

Hospital EEG Seizure Corpus (TUSZ). The model was evaluated

on the largest and most comprehensive EEG seizure dataset.

Experimental results demonstrate that the model outperforms

existing methods in classifying four types of seizures.

2 Methodology

2.1 Iterative deep graph learning and its
improvements

The principle of IDGL (Chen et al., 2020) is to learn better graph

structures based on better node embeddings while learning better

node embeddings based on better graph structures. It first learns
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the graph structures using weighted cosine similarity as a metric

function, as shown in Equation 1:

s
p
ij = cos(wp ⊙ vi,wp ⊙ vj) (1)

where ⊙ denotes the Hadamard product, w is a learnable weight

vector, vi and vj are the input feature vectors of EEG channels i

and j. In order to stabilize the learning process and improve the

expressive power, it is extended to a multi head version, as shown

in Equation 2:

sij =
1

Q

Q∑

p=1

s
p
ij (2)

IDGL iteratively updates the graph structure, and the iteration

stops when the learned structure closely approximates the

optimized graph. Each iteration updates the graph structure as

shown in Equation 3:

Ã(m) = λL(0) + (1− λ){ηf (A(m))+ (1− η)f (A(1))} (3)

where L(0) = D(0)−1/2A(0)D(0)−1/2 is the normalized adjacency

matrix of the initial graph A(0),A(1) and A(m) are the adjacency

matrices at the 1-st and m-th iterations, respectively, f (·) denotes

the normalization function, and η and λ are hyperparameters.

EEG signals often exhibit complex spatial-temporal

correlations, that simple similarity measures, such as cosine

similarity, may not effectively capture. In this work, we use a multi-

head graph attention mechanism instead of the cosine similarity

used in IDGL. By leveraging this multi-head graph attention

mechanism (Veličković et al., 2017), the model can learn to capture

intricate relationships between different regions of the brain over

time, allowing for a more nuanced understanding of the data. The

feature vectors hi and hj of adjacent EEG channels are initially

augmented by a learnable weight vector w. Subsequently, these

augmented features are concatenated, followed by the utilization of

a parameterized function α(·) to map the resulting concatenation

to a scalar value. This process yields the attention score eij of node i

for j.

ekij = α(wk

⊙
hi,wk

⊙
hj) (4)

This process computes attention scores for each pair of adjacent

nodes, which are then normalized using softmax to ensure that

the sum of attention scores for a node’s neighbors equals 1. These

normalized scores measure the similarity between nodes.

akij = softmax(ekij) =
exp(LReLU(ekij))∑
j∈Ni

exp(LReLU(ekij))
(5)

where Ni is the set of neighboring channels for channel i. Execute

k independent attention mechanisms concurrently, each equipped

with distinct weight parameters. Subsequently, the similarity

matrices generated by each head are aggregated to produce the

ultimate attention score matrix A.

Aij =
1

K

K∑

k=1

akij (6)

2.2 Gated graph neural networks

GGNN, introduced by Li et al. (2015) in 2015, incorporate

Gated Recurrent Units (GRU) (Cho et al., 2014) into the

message-passing phase of GCNs (Scarselli et al., 2008). This

innovation enables GGNN to effectively capture the long-term

dependencies among nodes within a graph structure through the

gating mechanism. Additionally, the dynamic update of node

states becomes feasible. By allowing nodes to share parameters,

GGNN not only streamline the model by reducing its parameter

count but also aid in mitigating overfitting. This parameter-

sharing feature is crucial for enhancing the model’s generalizability

and efficiency. The process through which GGNNs propagate

information is meticulously designed to ensure optimal learning

and representation of graph-structured data.

H(0) = X,H(t) = Propagator(H(t−1),A) (7)

where A ∈ R
n×n denotes the adjacency matrix, n is the number of

nodes in the graph, X is the feature matrix and Propagator module

consists of the following parts (Equations 8–12):

a(t) = ATH(t−1) + b (8)

z(t) = σ (Wza(t) + UzH(t−1)) (9)

r(t) = σ (Wra(t) + UrH(t−1)) (10)

h̃(t) = tanh(Wha(t) + Uh(r(t) ⊙ H(t−1))) (11)

H(t) = (1− z(t))⊙H(t−1) + z(t) ⊙ h̃(t) (12)

where b denotes the bias coefficient, σ denotes sigmoid activation

function, tanh denotes hyperbolic tangent activation function, and

⊙ denotes Hadamard product. z and r are called the update

gate and reset gate, respectively. z controls the forgetting of

unwanted information and r controls the incorporation of newly

generated information. Wz , Uz , Wr , Ur , Wh, Uh are learnable

weight matrices.

2.3 Joint losses

The loss function L of our IGGCN model is the sum of the

predicting loss Lpred and the graph regularizing loss LG.

To address the class imbalance issue mentioned above, the

Focal Loss function (Lin et al., 2017) was introduced as shown

Equation 13. Focal Loss effectively reduces the loss of easily

classified samples through an adjustment factor, enabling the

model to focus more on challenging samples that are difficult

to classify. Additionally, Focal Loss can enhance the model’s

robustness to outliers and noisy data. By decreasing the loss

weight of easily classified samples, the model can better concentrate

on critical, hard-to-classify samples, thereby improving overall

classification performance.

Lpred(px) = −αx(1− px)
γ log(px) (13)
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where px represents the predicted probability of a sample belonging

to class x. The class weight coefficient α is defined as the

reciprocal of the number of samples in each class, serves to adjust

the weighting between easily and difficult-to-classify samples.

The modulation coefficient γ is used to adjust the degree of

penalty that the loss function applies to samples that are easily

classified correctly.

For graph regularization loss LG, we take into account the

smoothness loss (Belkin and Niyogi, 2001), degree regularization

loss, and sparsity loss (Kalofolias, 2016). The smoothness loss

ensures that adjacent nodes have similar representations in the

embedding space, thereby maintaining the local smoothness of

the graph structure. By minimizing the differences in embedding

representations between adjacent nodes, connected nodes become

closer in the embedding space. This approach enhances the

continuity of the learned embeddings while preserving the graph’s

topological structure.

Lsmoorh(A,X) =
1

2n2

∑

i,j

Aij‖xi − xj‖
2 =

1

n2
trace(XTLX) (14)

where the function trace(·) refers to the trace operation onmatrices,

A represents the adjacency matrix, X denotes the feature matrix, L

is the Laplacian matrix, and n is the number of nodes.

Degree regularization loss focuses on balancing the distribution

of node degrees, preventing excessive attention to nodes with either

high or low degrees. By incorporating degree regularization, which

considers the impact of node degrees, the learned representations

gain greater universality and are less influenced by the degree of

specific nodes.

Ldegree(A) = −
β

n
1T log(A1) (15)

where β is a non-negative hyperparameter, and 1 represents a

vector filled with 1.

Sparsity loss aims for sparsity in the embedding

representations, resulting in many elements of the learned

embeddings being zero. This reduces redundant information,

making the embeddings more compact and efficient. By

introducing sparsity loss, the efficiency of the expression of learned

embeddings can be improved while retaining key information.

Lsparsity(A) =
θ

n2
‖A‖2F (16)

where θ is a non-negative hyperparameter, and ‖ · ‖2F represents the

Frobenius norm.

Considering both the prediction loss (Equation 13) and the

graph regularization loss (Equation 17), the final joint loss

(Equation 18) for IGGCN is obtained:

LG = ωLsmooth + Ldegree + Lsparsity (17)

L = Lpred + LG (18)

where ω is a weight parameter.

FIGURE 1

Overall framework of IGGCN model.
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1: Input: X, y,A(0)

2: Parameters: ω,β , θ , λ, η, δ,M,α, γ

3: Output: 2, ypred , Ã
(m)

4: m← 1, H(0) ← X

5: StopCond← False

6: while ((m == 1 or StopCond) and m ≤ M) do

7: A(t) ← GraphLearn
(
H(m−1)

)

# Using Equations 4-6 to refine the graph

structure

8: Ã(m) ← {A(0),A(m),A(1)}

# Using Equation 3 to combine refined and raw

graph structure

9: ypred ,H
(m) ← GGNN(H(m−1) , Ã(m))

# Calculate GGNN using Equation 7

10: L
(m)
pred
← Loss(ypred , y)

# Calculate the predicted loss of GGNN using

Equation 13

11: L
(m)
G ← ωLsmooth(A

(m),X)+ Ldegree(A
(m))+ Lsparsity(A

(m))

# Calculate the regular loss using

Equations 14-16

12: L(m) ← L
(m)
pred
+ L

(m)
G and m← m+ 1 and StopCond←

∣∣∣A(m) − A(m−1)
∣∣∣
2

F
> δ

∣∣∣A(1)
∣∣∣
2

F
13: end while

14: L←
∑m

i=1 L
(i)/m

15: Back-propagate L to update model weights 2

{In training phase only}

Algorithm 1. General Framework for IGGCN. ∗
2 : A set of parameters

(W, U, b, etc.) during training.

2.4 Iterative gated graph convolution
network

The IGGCN model is composed of three fundamental

components: a multi-head attention module, a gated graph neural

network module, and a graph regularization module, as illustrated

in Figure 1.

Initially, the model constructs an initial graph structure A(0)

based on raw EEG data and calculates the feature representation

for each EEG channel H(0). The nodes in the graph represent EEG

channels, while the node colors indicate their feature vectors. Then,

A(0) and H(0) are input into the multi-head attention module to

refine the graph structure. The updated graph structure A(m) is

subsequently passed through both the graph regularization module

and the gated graph neural networkmodule to update node features

and obtain an updated node embedding H(m).

During this process, the graph regularization module focuses

on optimizing the graph structure, while the gated graph neural

network module concentrates on classification tasks, leading to

the generation of two distinct types of losses: the graph learning

loss LG and the prediction loss Lpred. The total loss L is computed

by integrating these two losses, which facilitates a comprehensive

approach to model optimization.

The model undergoes several iterations of this process during

training, refining both the graph structure and the feature

representations with each cycle. This iterative approach ensures

that the model progressively improves its ability to classify epilepsy

EEG signals, leveraging the dynamic and complex relationships

inherent in EEG data.

The complete algorithm for the IGGCN model, including all

steps and processes involved, is detailed in Algorithm 1.

3 Dataset and preprocessing

3.1 Dataset

The dataset utilized in this study is derived from the TUSZ,

version 1.5.2 (Obeid and Picone, 2016; Shah et al., 2018), which

ranks among the most extensive epileptic EEG datasets globally

available for research. This comprehensive database encompasses

over 504 h of data, featuring 5,612 EEG recordings and 3,050

annotated clinical seizure records. It categorizes seizures into

eight types: Focal Non-Specific Seizure (FNSZ), Generalized

Non-Specific Seizure (GNSZ), Simple Partial Seizure (SPSZ),

Complex Partial Seizure (CPSZ), Absence Seizure (ABSZ), Tonic

Seizure (TNSZ), Tonic-Clonic Seizure (TCSZ), and Myoclonic

Seizure (MYSZ).

Previous works (Fisher et al., 2017; Tang et al., 2021) reclassified

the eight categories in the dataset into four categories. In this paper,

we follow this approach as follows: firstly, since it is challenging to

differentiate between FNSZ, SPSZ, and CPSZ based on EEG signals,

these three seizure categories were combined into a single category

named Combined Focal Non-Specific Seizure (CFSZ). Secondly,

due to the small number of TNSZ, TCSZ, and MYSZ in the dataset,

and given that TCSZ typically initiates with a tonic phase, these

categories were merged into Combined Tonic Seizures (CTSZ).

Thirdly, Myoclonic seizures are excluded because there are only

two myoclonic seizures in the dataset. Consequently, four seizure

types are finally generated: CFSZ, GNSZ, ABSZ and CTSZ.

In this paper, 19 EEG channels data in TUSZ were selected

based on the international 10-20 lead system. These channels

include “FP1”, “FP2”, “F3”, “F4”, “C3”, “C4”, “P3”, “P4”, “O1”,

“O2”, “F7”, “F8”, “T3”, “T4”, “T5”, “T6”, “FZ”, “CZ” and “Z”.

This selection is strategic to ensure comprehensive capture of

brain activity across various regions, thereby facilitating a detailed

analysis and classification of seizure types.

The original TUSZ dataset was carefully divided into training

and test sets. To reduce the risk of inaccurate experimental results

due to overfitting, we strategically excluded five patients from the

test set (these five patients are present in both the training and test

sets).

In addition, we randomly selected 24 patients from the training

set to form a validation set. This set is used to evaluate the

classification capability of the model after each training iteration.

Table 1 shows the data distribution of train, validation and test sets.

3.2 Data preprocessing

Previous work (Tang et al., 2021) extracted one 12-s slices of

EEG signals from each seizure event, while discarding the rest of the

data. While this approach helped to streamline the data processing
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TABLE 1 Data distribution of train set and test set.

CF seizures
(% total)

GN seizures (% total) AB seizures (% total) CT seizures (% total) Patients (% total)

Train set 10,291 (55.44%) 3,779 (20.36%) 76 (0.41%) 327 (1.76%) 178 (79.11%)

Validation set 1,081 (5.82%) 461 (2.48%) 11 (0.06%) 32 (0.17%) 24 (10.67%)

Test set 1,415 (7.62%) 814 (4.39%) 79 (0.43%) 195 (1.05%) 23 (10.22%)

FIGURE 2

Log-amplitude characteristics of the four seizure classes.

process and focused on the signal characteristics of the critical time

period, it may have ignored important information that other time

periods during the seizure process contained. To make better use

of the data and improve the comprehensiveness of the analysis, we

split the complete EEG signal from each seizure event into multiple

12-s slices, rather than selecting a single 12-s slice.

Considering the significant correlation between seizures and

frequency domain information (Tzallas et al., 2009), we first

perform a fast Fourier transform (Brigham, 1988) on the original

EEG signal to convert the signal from the time domain to

the frequency domain. After extracting the positive frequency

portion from the FFT result and applying a logarithmic

operation, we perform Min-Max Scaling on these values.

Figure 2 shows the distribution of features of the four distinct

seizure classes of 19 EEG channels. We conduct an analysis

of variance (ANOVA) (St and Wood, 1989) statistical test on

the four classes. The P-value is close to zero, indicating that

the characteristics of the four seizure classes are significantly

different.

4 Experiments and results

4.1 Experiments settings

4.1.1 Experimental environment
The experimental platform was Windows10, and the

experimental environment was built with pytorch. The python

version is 3.8.8 and the pytorch version is 2.0.1+cu117.

4.1.2 Baseline models
We select several baseline models to compare against the

IGGCN approach: Dense-CNN (Saab et al., 2020), LSTM

(Hochreiter and Schmidhuber, 1997), CNN-LSTM (Ahmedt-

Aristizabal et al., 2020), and DCRNN (Tang et al., 2021). Each

of these baseline models undergoes the same preprocessing steps

and is evaluated within the same experimental environment as

the IGGCN. This consistency in preprocessing and experimental

conditions ensures a fair comparison, allowing us to accurately

assess the performance of IGGCN relative to state-of-the-art

models in the field of epilepsy EEG classification.

4.1.3 Hyperparameters
Each model trains using the Adam optimizer (Kingma and Ba,

2014). hidden_size represents the number of hidden neurons in

the GGNN, with a value range of 64, 128, 256. M indicates the

maximum number of iterations for iterative graph learning, with

a value range of 5, 8, 12. epoch denotes the maximum number of

training rounds, and 150 epochs are typically trained at an initial

learning rate of 1e-3. batch_size indicates the number of batch

samples (the value is 64). The parameters ω, β and θ are adjusted in

the regularization of the graph, respectively. K is a positive integer

representing the number of attention heads, taking values from the

set 4, 8. γ is the balance parameter in Focal Loss. num_node is the

number of nodes, corresponding to the number of EEG channels.

Validation sets are used to search the best hyperparameters. All

experiments were performed 5 times using different random seeds,

and the results are presented as the mean plus the 95% confidence

interval (Altan, 2022).

λ and η are weighted parameters for optimizing the graph

structure, with values range of 0.2, 0.3, 0.4, 0.5. To achieve optimal

performance with IGGCN, we conducted several experiments to

identify the best parameter values. The experimental results are

illustrated in Figure 5. IGGCN performs best when the values of

parameters λ and η are 0.3 and 0.4, respectively. The optimal values

of hyperparameters are shown in Table 2.

4.2 Results

4.2.1 Performance comparison
Dense-CNN, LSTM, CNN-LSTM, as well as two DCRNN

variants: correlation graphs (Corr-DCRNN) and distance graphs

(Dist-DCRNN), alongside the IGGCN, are individually trained.

We use Accuracy, Precision, Recall, and Weighted F1-Score for

model evaluation. This approach ensures a detailed insight into

each model’s performance across various dimensions. The results
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TABLE 2 Hyperparameter settings.

Hyperparameter Definition Value

hidden_size Hidden cell size 256

M Maximum iterations 10

epoch Model training rounds 150

batch_size Number of training batches 64

ω Smoothing loss of balance

parameter

0.5

β Degree loss of balance parameter 0.01

θ Sparse loss of balance parameter 0.3

K Heads of attention 8

γ Focal Loss modulation

parameters

2

num_node Number of electrical brain

channels

19

λ The weighted parameters of the

initial and optimized graphs

0.3

η The weighted parameters of the

initial and optimized graphs

0.4

of the test dataset are shown in Table 3. The results demonstrate

the superior performance of IGGCN on all evaluated metrics,

highlighting its superior accuracy and significant improvements

in Recall and Weighted F1-Score, evidencing its robustness in

multi-type epilepsy classification in EEG data.

The experiment evaluates the classification effect of IGGCN by

presenting the Area Under the Receiver Operating Characteristic

(AUROC) values for each seizure category across all models,

as shown in Table 4. The results demonstrate that IGGCN

exhibits outstanding classification performance for all four seizure

categories, showcasing its robust capability in distinguishing

between different types of seizures.

Figure 3A shows the Receiver Operating Characteristic (ROC)

curve for the IGGCNmodel, providing insight into its classification

performance across four types of epilepsy seizure. The curve clearly

indicates that the model achieves commendable classification

results for all seizure types. Figure 3B shows the normalized

confusion matrix of the IGGCN model, highlighting CFSZ (the

seizure type with the largest number of training samples) as the

easiest to distinguish. However, the other three categories are not as

effectively classified, especially GNSZ, which is mostly misclassified

as CFSZ. This visualization aids in understanding the model’s

performance nuances, particularly in areas where improvement is

needed due to limited sample availability. It is worth noting that

IGGCN has a relatively high prediction accuracy for GNSZ, and

there is no situation where (Tang et al., 2021) misclassified a large

number of GNSZ as CFSZ.

4.2.2 Optimized graph
In this study, we randomly selected an EEG slice from a

patient, as shown in Figure 4. Figure 4A shows the original scalp

topology based on the spectral correlation between channels (Wagh

and Varatharajah, 2020), while Figure 4B shows the optimized

topology of IGGCN, and Figure 4C displays the original EEG

traces corresponding to the selected slice. IGGCN relies on

the characteristics of each channel to optimize the topology.

For channels exhibiting more significant epileptic seizures, the

optimized topology enhances their attention; conversely, for

channels with less pronounced seizures, the attention remains

unchanged or decreases. From the original EEG traces (Figure 4C),

it can be seen that the seizures are mainly concentrated in the left

hemisphere of the brain (the related channels are marked with

red boxes), including channels such as “C3”, “P3”, “O1”, “F7”,

“T3” and “T5” which show strong seizure activity. Meanwhile,

the “FZ” channel shows significant activity in the prefrontal area.

However, in Figure 4A, “P3”, “PZ” and “P4” show the highest

significance, which is inconsistent with the EEG traces in Figure 4C.

This shows that the predefined graph cannot accurately reflect

connections between EEG channels. The IGGCN model can

optimize the input graph. After IGGCN optimization, as shown

in Figure 4B, the significance of channels “C3”, “P3”, “O1”, “F7”,

“T3”, “T5” and “FZ” is increased, while the significance of other

channels is decreased. The optimized topology matches the original

EEG traces, fully demonstrating the effectiveness of IGGCN in

optimizing EEG topologies.

In order to intuitively demonstrate the optimization effect of

the IGGCN model on each type of epileptic seizure topology,

epilepsy patients with seizure category CFSZ (ID “6904”), GNSZ

(ID “2380”), ABSZ (ID “1413”), and CTSZ (ID “8444”) were

selected to compare the topological structure of the original graph

with the topological structure of the graph optimized by the

model. The nodes represent EEG channels, and the weight is the

mean of the edge weights. We use scalp topology maps to show

the results in Figure 5, in which warmer colors indicate larger

weight values. Figures 5A–D represent the spectral correlation

topology, while Figures 5E–H display the optimized topology of

IGGCN. It is evident that there are substantial differences between

the predefined topologies before and after optimization; notably,

the model focuses more on relevant channels corresponding to

seizure types and less on irrelevant channels, thereby enhancing

classification performance. For example, for patient “6904”, the

significance of channels “FP2” and “T3” in the topology diagram

before optimization is relatively high, because these two channels

contribute little to the classification of this category, the model pays

less attention to these two channels after optimization. Similarly,

for patient “2380”, the IGGCN model has added attention to

channels “FP2”, “F7,” and “P4”. The significance of “T4” and “O2”

in “1413” patients is significantly increased, while the significance

of “P3” is weakened. The topological structure of “8444” patients

is the most obvious change, and the significance of most channels

was reduced. However, the significance of the “O2" channel is

significantly improved.

4.2.3 Hyperparameter tuning
In the iterative optimization diagram of IGGCN, parameters

λ and η are crucial as they significantly impact the model’s

classification performance. To select the optimal values for these

parameters, we set one parameter to 0.2 and vary the other within
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TABLE 3 Classification results of four seizures categories under di�erent models.

Model Accuracy (CI) Precision (CI) Recall (CI) Weighted F1-score (CI)

Dense-CNN 71.3% (69.6–73.1%) 68.2% (66.3–70.0%) 71.3% (69.6–73.1%) 63.8% (62.0–65.7%)

LSTM 69.5% (67.8–71.3%) 71.4% (69.6–73.1%) 69.5% (67.8–71.3%) 57.9% (56.1–59.7%)

CNN-LSTM 70.1% (68.4–71.9%) 69.3% (67.5–71.1%) 70.1% (68.4–71.9%) 59.9% (58.2–61.7%)

Corr-DCRNN 74.7% (73.1– 76.4%) 76.1% (74.5– 77.8%) 74.7% (73.1– 76.4%) 69.4% (67.7– 71.1%)

Dist-DCRNN 75.6% (73.9–77.2%) 74.1% (72.4–75.8%) 75.6% (73.9–77.2%) 72.0% (70.3–73.7%)

IGGCN 91.8% (90.7–92.8%) 91.9% (90.8–93.0%) 91.8% (90.7–92.8%) 91.5% (90.5–92.6%)

CI, 95% confidence intervals (lower-upper bound). The bold part is the optimal result of this evaluation indicator.

TABLE 4 AUROC value of epileptic seizure classification under di�erent models.

Model CFSZ (CI) GNSZ (CI) ABSZ (CI) CTSZ (CI)

Dense-CNN 69.9% (68.1–71.7%) 69.1% (67.3–70.9%) 79.4% (77.8–80.9%) 73.4% (71.7–75.1%)

LSTM 60.5% (58.5–62.3%) 53.9% (51.9–55.8%) 76.5% (74.9–78.2%) 72.9% (71.2–74.7%)

CNN-LSTM 64.3% (62.5–66.2%) 63.3% (61.4–65.2%) 70.9% (69.1–72.7%) 73.6% (71.9–75.4%)

Corr-DCRNN 78.6% (77.0–80.2%) 80.5% (78.9–82.0%) 85.6% (84.3–87.0%) 79.7% (78.2–81.3%)

Dist-DCRNN 81.4% (79.8–82.9%) 80.6% (79.0–82.1%) 93.2% (92.2–94.1%) 89.4% (88.2–90.6%)

IGGCN 96.9% (96.2–97.6%) 97.0% (96.3–97.7%) 99.8% (99.6–99.9%) 98.8% (98.4–99.3%)

CI, 95% confidence intervals (lower-upper bound). The bold part is the optimal result of this evaluation indicator.

FIGURE 3

ROC curve and normalized confusion matrix of IGGCN model. (A) ROC curve for epilepsy classification. (B) Normalized confusion matrix.

the range of 0.2, 0.3, 0.4, 0.5. The experimental results are shown in

Figure 6. It can be seen that when parameter λ is 0.3 and parameter

η is 0.4, the model achieves the best performance.

4.2.4 Ablation experiment
To evaluate the impact of each component in IGGCN

model, ablation studies are performed, and the results are

detailed in Table 5. This investigation encompasses evaluating

the baseline IDGL model, the IGGCN without the GGNN

module, the IGGCN without the graph attention module, and

the full IGGCN model. All models employ the Focal Loss

function. The results show IGGCN’ superior performance in

the task of classifying four types of seizures, marking a notable

enhancement across various metrics when juxtaposed with the

baseline IDGL model. IGGCN, by integrating the strengths

of both IDGL and GGNN models, emerges as better suited

for seizure classification. The experimental results not only

underline IGGCN’s adeptness in seizure classification but also

confirm the significant contributions of the GGNN module

and graph attention mechanism in amplifying the model’s

overall effectiveness.

To highlight the effectiveness of Focal Loss in enhancing model

performance, a comparative study is conducted on the IGGCN
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FIGURE 4

Spectral correlation graph, IGGCN model optimization graph and the EEG traces. (A) Spectral correlation graph. (B) Optimization graph. (C) The EEG

traces.

model utilizing various loss functions, including Categorical Cross-

Entropy Loss (Zhang and Sabuncu, 2018),Weighted Cross-Entropy

Loss (Phan and Yamamoto, 2020), Generalized Dice Loss (Sudre

et al., 2017), and Focal Loss. The findings, detailed in Table 6,

underscore Focal Loss’s outstanding contribution across several

key metrics Accuracy, Precision, Recall, and Weighted F1-Score.

Notably, Focal Loss achieves an Accuracy of 91.8%, Precision of

91.9%, Recall of 91.8%, and a Weighted F1-Score of 91.5%. These

figures significantly surpassed the performance metrics recorded

for the other loss functions. Focal Loss is designed to address

class imbalances in classification problems by introducing dynamic

weight adjustment mechanisms and modulation coefficients into

the loss function, making the model more focused on samples that

are difficult to classify correctly. This method not only enhances

the model’s ability to identify minority class samples but also

ensures its easy implementation and low computational complexity

through its concise formula design. The application of Focal Loss

effectively addresses the issue of class imbalance and improves the

overall performance of the IGGCN model in the task of epilepsy

classification. In summary, owing to the significant performance

enhancement provided by Focal Loss and its efficient strategy for

tackling class imbalance, this study identifies it as the optimal

predictive loss function for the IGGCNmodel.

5 Discussion

Seizure classification is crucial for enhancing patient outcomes

and medical operational efficiency. Although traditional machine

learning techniques have provided valuable insights in some
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FIGURE 5

The topological optimization e�ect of IGGCN model on four types of epileptic seizure types. (A) Original graph of a specific slice for patient number

6904 (CFSZ). (B) Original graph of a specific slice for patient number 2380 (GNSZ). (C) Original graph of a specific slice for patient number 1413

(ABSZ). (D) Original graph of a specific slice for patient number 8444 (CTSZ). (E) Optimized graph of a specific slice for patient number 6904 (CFSZ).

(F) Optimized graph of a specific slice for patient number 2380 (GNSZ). (G) Optimized graph of a specific slice for patient number 1413 (ABSZ). (H)

Optimized graph of a specific slice for patient number 8444 (CTSZ).

FIGURE 6

The impact of parameters λ and η on IGGCN.
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TABLE 5 Results of ablation experiment.

Model Accuracy (CI) Precision (CI) Recall (CI) Weighted F1-score (CI)

IDGL 69.7% (67.9–71.4%) 63.6% (61.7–65.4%) 69.7% (67.9–71.4%) 62.1% (60.8–63.4%)

IGGCN (w/o GGNN) 76.7% (75.0–78.3%) 77.3% (75.7–78.9%) 76.7% (75.0–78.3%) 72.8% (71.6–73.9%)

IGGCN (w/o Graph Attention) 75.9% (74.3–77.6%) 76.9% (75.3–78.6%) 75.9% (74.3–77.6%) 71.4% (70.2–72.6%)

IGGCN 91.8% (90.7–92.8%) 91.9% (90.8–93.0%) 91.8% (90.7–92.8%) 91.5% (90.5–92.6%)

CI, 95% confidence intervals (lower-upper bound). The bold part is the optimal result of this evaluation indicator.

TABLE 6 Results of using di�erent loss functions.

Model Accuracy (CI) Precision (CI) Recall (CI) Weighted F1-score (CI)

Categorical cross-entropy loss 68.2% (66.3–70.1%) 61.4% (59.6–63.3%) 68.2% (66.3–70.1%) 62.2% (60.9–63.5%)

Weighted cross-entropy loss 71.1% (69.3–72.9%) 69.5% (67.7–71.3%) 71.1% (69.3–72.9%) 63.6% (62.3–64.9%)

Generalized dice loss 71.6% (69.8–73.3%) 71.1% (69.4–72.9%) 71.6% (69.8–73.3%) 63.9% (62.2–65.6%)

Focal loss 91.8% (90.7–92.8%) 91.9% (90.8–93.0%) 91.8% (90.7–92.8%) 91.5% (90.5–92.6%)

CI, 95% confidence intervals (lower-upper bound). The bold part is the optimal result of this evaluation indicator.

instances, they sometimes fall short of addressing the rich spatio-

temporal complexity within EEG signals. The emergence of deep

learning methods, such as CNN (Acharya et al., 2018; Zhou et al.,

2018; Zhang Y. et al., 2019; O’Shea et al., 2020; Altan et al., 2021),

LSTM (Tsiouris et al., 2018; Hu et al., 2020), CNN-LSTM (Shahbazi

and Aghajan, 2018), and GCN (Zhang T. et al., 2019; Wagh and

Varatharajah, 2020; Zhong et al., 2020; Tang et al., 2021; Raeisi et al.,

2022), has marked a notable shift. CNN are designed for processing

grid-like data, leveraging local connectivity and weight sharing to

efficiently capture spatial features. However, their focus on grid-like

data limits their ability to capture the irregular connections in EEG

data, hindering their ability to fully capture the intricate interplay

among multiple electrode signals collected from EEG recordings.

LSTM are specialized for sequential data, using memory cells to

retain long-term dependencies, but they struggle with the spatial

dependencies inherent in EEG signals. GCN, on the other hand,

excel at studying the intricate interplay among multiple electrode

signals due to their strong processing capabilities for capturing the

complex spatial dependencies and relational structures inherent in

graph-structured data collected from EEG data. However, GCN

also face challenges: First, the graph topology often relies on expert

knowledge, which may not accurately reflect connections between

EEG channels and varies significantly across patients, making it

difficult to create a universal graph. Second, GCN struggle with

memorizing long-term sequence information, which is essential for

recognizing and utilizing long-term dependencies in EEG signals.

To address these issues, we propose IGGCN, a model designed

to refine the graph topology through iterative learning, allowing

for a more precise depiction of the intricate interplay within

EEG signals. The GGNN module effectively captures the long-

term dependencies among nodes in the EEG signal topology

through a sophisticated gating mechanism. The results of ablation

experiments result in Table 5 confirms the efficacy of iterative

learning and GGNN module in seizure classification tasks. The

results in Table 6 demonstrate the effectiveness of Focal Loss in

addressing class imbalance in epilepsy classification tasks. The

results of comparisons with other baseline models in Table 3

TABLE 7 Comparison of parameter number and running time of di�erent

models.

Model Parameter quantity Duration epochs

Dense-CNN 10.92 M 20-min

LSTM 0.50 M 5-min

CNN-LSTM 5.9 M 10-min

Corr-DCRNN 0.28 M 4-min

Dist-DCRNN 0.16 M 4-min

IGGCN 0.85 M 7-min

reveal that the IGGCN model significantly improves classification

performance. These findings suggest that the IGGCN model offers

an innovative and potent approach to the automated classification

of epileptic seizures.

However, the IGGCN model still encounters certain issues.

The confusion matrix analysis in Figure 3B shows that the CFSZ

category achieves superior classification outcomes, likely because

of its large proportion in the training dataset, which causes the

model to focus more on this category. As a result, the classification

performance of other categories, such as GNSZ, CTSZ, and ABSZ,

has decreased. Moreover, all misclassified instances are incorrectly

assigned to the CFSZ category, which has the highest number

of samples. Although the IGGCN model incorporates Focal Loss

to balance the model’s attention across different seizure types

and mitigate the impact of class imbalance, the efficacy of this

approach still requires enhancement. We will explore additional,

more effective strategies to address class imbalance in the future.

The IGGCN model combines graph learning and GGNN

layers in each iterative step, which adds to the complexity of

its training process. Experimental data reveals that the model

encompasses 0.85M trainable parameters. Within an RTX 3080

GPU experimental setup, each training epoch consumes about 7

min, culminating in a total training duration of around 17 h.

As depicted in Table 7, performance evaluations for all models
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were conducted using identical hardware configurations. In the

future, we plan to light-weight the model architecture to reduce the

number of model parameters, thereby improving the practicality of

the model and making it more competitive in actual scenarios.

6 Conclusion and future work

EEG data, inherently non-Euclidean and irregular, poses

unique challenges for the classification of epilepsy seizures. To

address this, we introduce a novel approach termed IGGCN, which

synergizes IDGL with GGNN to enhance seizure classification. By

iteratively refining the EEG graph structure, IGGCN significantly

improves classification outcomes. Demonstrated on a substantial

public dataset TUSZ, the method achieves remarkable results,

notably in Recall and Weighted F1-Score, which stand at 91.8

and 91.5% respectively. This marks a considerable advancement in

classifying less common epilepsy types. To mitigate the effects of

dataset imbalance, the Focal Loss function is employed, boosting

Accuracy in minority classes. IGGCN offer a promising tool for

clinical epilepsy diagnosis, providing critical insights to clinicians

and easing their diagnostic workload. Beyond EEG data, the

methodology introduced here presents a versatile framework

applicable to a range of research fields utilizing graph-based data

representations.

In the future, we will explore more effective ways to address

class imbalances while making lightweight improvements to the

IGGCN architecture to improve the model’s usefulness. These

advances will provide healthcare professionals with more efficient

and precise diagnostic insights, enabling the implementation of

personalized treatment strategies.
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