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This study leverages deep learning to analyze sex di�erences in brain MRI

data, aiming to further advance fairness in medical imaging. We employed

3D T1-weighted Magnetic Resonance images from four diverse datasets:

Calgary-Campinas-359, OASIS-3, Alzheimer’s Disease Neuroimaging Initiative,

and Cambridge Center for Aging and Neuroscience, ensuring a balanced

representation of sexes and a broad demographic scope. Our methodology

focused on minimal preprocessing to preserve the integrity of brain structures,

utilizing a Convolutional Neural Network model for sex classification. The

model achieved an accuracy of 87% on the test set without employing total

intracranial volume (TIV) adjustment techniques. We observed that while the

model exhibited biases at extreme brain sizes, it performed with less bias when

the TIV distributions overlapped more. Saliency maps were used to identify brain

regions significant in sex di�erentiation, revealing that certain supratentorial

and infratentorial regions were important for predictions. Furthermore, our

interdisciplinary team, comprising machine learning specialists and a radiologist,

ensured diverse perspectives in validating the results. The detailed investigation

of sex di�erences in brain MRI in this study, highlighted by the sex di�erences

map, o�ers valuable insights into sex-specific aspects of medical imaging and

could aid in developing sex-based bias mitigation strategies, contributing to the

future development of fair AI algorithms. Awareness of the brain’s di�erences

between sexes enables more equitable AI predictions, promoting fairness in

healthcare outcomes. Our code and saliencymaps are available at https://github.

com/mahsadibaji/sex-di�erences-brain-dl.
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1 Introduction

Deep learning (DL) has emerged as a powerful tool for analyzing medical image data,
such as Magnetic Resonance Imaging (MRI), due to its ability to automatically extract
relevant features, assisting radiologists in disease diagnosis and treatment planning (Zhou
et al., 2021). However, there are some challenges in translating DL models for the clinical
environment related to model reliability and explainability, limiting the usage of such tools
outside research (Singh et al., 2020). The decision-making process of DL models should
be understandable, allowing for validation of the clinical relevance of their findings. The
results should be consistent and unbiased across various demographic groups to avoid
discrimination and misdiagnosis (Chan, 2019). Consequently, models should address
different sources of bias related to demographic variables like age and sex. Comprehensive
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model evaluations, including performance analysis on data
subgroups and the application of explainable AI methods, are
required (Stanley et al., 2023).

It is crucial to ensure that deep learningmodels perform reliably
and consistently across diverse demographic subgroups, such as
sex. Fairness in this context refers to the unbiased performance
of DL models, where outcomes do not disproportionately favor
any specific group, thus avoiding potential discrimination in
clinical decision-making (Chouldechova and Roth, 2020). Studying
sex differences is particularly important for understanding subtle
differences that contribute to unraveling the causes of and
treatments for various neurological and neuropsychiatric disorders
(Mendrek, 2015). By thoughtfully incorporating sex differences
into the development of DL models, we can enhance fairness,
ensuring that these models deliver unbiased performance. This
approach helps achieve equitable healthcare outcomes for both
males and females, reducing the risk of sex-based biases in clinical
decision-making.

In our previous study (Dibaji et al., 2023), we assessed
the influence of sex on brain age prediction models, observing
performance disparities across various sex-specific subgroups and
datasets. Similarly, Piçarra and Glocker (2023) also investigated sex
and race bias in brain age prediction models, highlighting the need
for comprehensive bias assessment in such models. Klingenberg
et al. (2023) found that MRI-based models for Alzheimer’s disease
detection performed significantly better for females than for males,
even when trained on balanced datasets, underscoring the need
for further sex-specific considerations to enhance the fairness and
reliability of such algorithms. Although female and male brains are
similarly structured, differences exist in the overall brain volume,
as well as in cortical and subcortical regions (Williams et al., 2021).
Understanding these nuances is beneficial for refining disease
diagnosis and comprehending why the prevalence and prognosis
of certain neurological diseases differ between males and females
(Sanchis-Segura et al., 2022). Specifically, leveraging this knowledge
could optimize DL models, enhancing the performance for both
demographic groups.

Several studies have focused on classifying sex from brain

medical images usingMachine Learning (ML)methods. A common
challenge addressed in these studies is the Total Intracranial
Volume (TIV) difference between males and females, with TIV
being, on average, 10%–15% smaller in females (Sanchis-Segura

et al., 2020). Consequently, studies have proposed methods for
careful control of TIV differences between the sexes. One such
method is TIV-matching, where males and females of equivalent
TIV are matched for the development set (Ebel et al., 2023;
Wiersch et al., 2023). With a large sample size, these studies
have managed to maintain a high accuracy using traditional ML
techniques (Support Vector Machine and Logistic Regression).
Another approach involves preprocessing steps, performing spatial
non-linear and z-score normalization, which reduces TIV bias to
some extent, though not entirely (Ebel et al., 2023).

A key focus of this study is the development of “sex
differences map" through saliency analysis, which reveals the
critical brain regions involved in distinguishing between male
and female brains. These maps provide valuable insights into
neuroanatomical distinctions between the sexes and hold potential

for guiding the development of more fair and unbiased AI
models for healthcare. To create these maps, we developed a DL
model for sex classification using four public brain MRI datasets,
applyingminimal preprocessing, including skull stripping and rigid
registration, to preserve brain structure integrity. We utilized a
3D Convolutional Neural Network (CNN) architecture for this
task. Instead of controlling for TIV during training, we opted
to minimally preprocess the data and later conducted a post-hoc

analysis to determine whether the model primarily utilized TIV
or successfully identified other critical neuroanatomical features
for sex classification. A key component of our methodology was
the integration of explainability techniques to identify the brain
regions that the DL model deemed important for distinguishing
between male and female brains. We assessed these saliency maps
both quantitatively, using a region-labeled atlas, and qualitatively,
through expert evaluation by a radiologist, ensuring that the
model’s focus aligned with relevant neuroanatomical structures.
Figure 1 provides an overview of the methodology steps.

Different from related works in the literature, we opted not to
apply TIV adjustment techniques, such as TIV-matching, during
the training phase of this study. While TIV adjustment can
help control for volumetric differences between male and female
brains, these techniques often require discarding valuable data
or performing extensive preprocessing. Such preprocessing can
introduce artifacts or lead to the loss of critical neuroanatomical
information, particularly in studies focusing on small or intricate
brain structures. This loss of detail can potentially obscure relevant
features and limit the overall performance of deep learning models.
Given these concerns, we decided to retain the natural variation
in our datasets and perform minimal preprocessing, which allowed
the model to learn directly from a broader range of brain data. Post-
hoc analysis was conducted to assess the model’s reliance on TIV,
ensuring that it captured relevant neuroanatomical features beyond
simple volumetric differences.

The contributions of this study are as follows: (1) Creation of
a “sex differences map" through class saliency analysis, identifying
brain regions crucial for distinguishing male and female brains,
validated through both quantitative analysis and radiologist
evaluation; (2) Adaptation of a 3D CNN architecture for sex
classification using publicly available brain MRI datasets with
minimal preprocessing to preserve brain structure integrity; (3)
Detailed evaluation of model performance, including post-hoc

analysis of its reliance on TIV, and detailed performance metrics
stratified by datasets, vendors, magnetic field strengths, and age
range to assess robustness and identify potential biases.

2 Methodology

2.1 Datasets

For the experiments, 3D T1-weighted MR images from four
publicly accessible datasets were employed: the Calgary-Campinas-
359 (CC-359) dataset (Souza et al., 2018), the Open Access Series
of Imaging Studies-3 (OASIS-3) (LaMontagne et al., 2019), the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr et al.,
2008), and the Cambridge Center for Aging and Neuroscience
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FIGURE 1

Overview of the methodology: (1) Data acquisition from four publicly available datasets (ADNI, OASIS3, CC359, CamCAN). (2) Minimal preprocessing,

including skull stripping, rigid registration, and intensity normalization, followed by stratified splitting based on sex, vendor, and magnetic field

strength. (3) Training of the SFCN architecture on the stratified data split. (4) Evaluation with stratified performance metrics and post-hoc TIV analysis

to assess bias. (5) Interpretability using class saliency maps processed into a “Sex Di�erences Map" and validated through radiologist and CerebrA

atlas assessments.

dataset (Cam-CAN) (Shafto et al., 2014; Taylor et al., 2017). The
inclusion of these datasets was driven by the need for healthy
control groups, leading us to aggregate data from multiple sources.
Additionally, the availability of sex and age information was a
critical criterion for dataset selection. Participant demographics in
these datasets were determined through self-reporting. In instances
where multiple scans were available for a subject, only their earliest
scan was used to avoid data leakage. Table 1 summarizes the
information available for each dataset, including sex, age, vendor,
and magnetic field strength. Notably, these datasets represent
females and males almost equally.

2.2 Preprocessing

The pre-processing approach was deliberately kept minimal
to standardize the heterogeneous multi-center datasets without
significantly altering their original state. Minimal preprocessing
preserves the natural neuroanatomical features crucial for tasks
like sex classification while ensuring the data is adequately
standardized for DL training (Grødem et al., 2024). The specific
steps taken, including brain extraction, rigid registration, and
intensity normalization, are standard practices in brain MRI
preprocessing (Glasser et al., 2013).

To implement this minimal approach, the initial step in
this process involved brain extraction of three datasets using
the SynthStrip tool from Freesurfer (skull stripping masks are

available for CC359) (Hoopes et al., 2022; Kelley et al., 2024).
Subsequently, the brain-extracted images were registered to the
MNI152 standard atlas using FSL’s FLIRT tool (Smith et al., 2004).
Six-degree-of-freedom rigid registration was chosen to rotate and
translate images to a common space without altering individual
brain volumes. The processed scans were of size (193, 229, 193),
and z-score normalization was applied to image intensities by
subtracting the mean and dividing by the standard deviation of
the voxel intensities. The processed images have a mean intensity
of 0, standard deviation of 1, and a voxel size of 1 mm3. TIV
statistics for the raw images in the test set were estimated using
the Freesurfer “recon-all" command tool. The estimated TIVs were
in mm3 and were divided by 1,000 to obtain measurements in ml
(Sanchis-Segura et al., 2022).

2.3 Sex classifier

To perform the sex classification task, we utilized a CNN
architecture, the Simple Fully Convolutional Network (SFCN)
(Peng et al., 2021). Although this model was proposed for brain
age prediction as a classification task, it also showed promising
performance in sex classification. This architecture comprises seven
blocks in total: the first five blocks each consist of a 3 × 3 × 3
convolutional layer, batch normalization layer, a max pooling layer,
and ReLU activation to generate the feature map and reduce the
spatial dimension. The sixth block has a 1 × 1 × 1 convolutional
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TABLE 1 Dataset description.

Dataset #subjects Sex (F:M) Age Vendor Field (T)

CC-359 359 183:176 29–80 GE, Philips, Siemens 1.5, 3

ADNI 367 186:181 56–90 GE, Philips, Siemens 1.5, 3

OASIS-3 731 416:315 42–95 Siemens 1.5, 3

CamCAN 653 330:323 18–88 Siemens 3

Columns from left to right: dataset name, number of subjects (all healthy), sex distribution, age range, MRI vendor, and magnetic field strength.

layer, a batch normalization layer, and ReLu activation. The
last block contains an average pooling layer, a dropout layer
(50% during training), and a convolutional layer. The model’s
architecture was largely retained as the original model with minor
changes: the kernel dimensions of the average pooling layer were set
to 6×7×6 to align with the input size, the number of classes was set
to 1 for binary classification, and the softmax output activation was
replaced with the sigmoid function to better suit the binary nature
of the classification task with one output neuron. Unlike softmax,
which is designed for multi-class classification, sigmoid outputs the
probability of the instance belonging to the positive class (in this
case arbitrarily chosen to be the Male class).

2.4 Interpretability method

To better comprehend the decision-making process of the DL
model, we utilized class saliency maps as proposed by Simonyan
et al. (2013). This method involves the computation of the gradient
of the class score with respect to the input image layer, using
a single back-propagation pass through the image classification
network. The gradient indicates the contribution of each voxel
to the class score, providing a spatial visualization of the regions
within an image that are most important for the model’s decision.
We chose this method after testing several alternatives, such as
GradCAM and SmoothGrad, because it consistently produced the
most detailed and informative saliency maps, crucial for analyzing
subtle neuroanatomical differences relevant to sex classification.
Additionally, the method is computationally efficient, requiring
only a single back-propagation pass through the network. The
intensity values in the saliency maps were min-max normalized to
range from 0 (least important) to 1 (most important) (Saporta et al.,
2022).

2.5 Experimental design

This study was designed to evaluate the performance of DL,
specifically CNNs, for sex classification. We aggregated brain MRI
data from four public datasets to explore the sex differences in
the brain. The experimental design was carried out in several
stages: preprocessing, dataset splitting, training, evaluation, and
interpretability assessment (Figure 1).

Preprocessing steps, including skull stripping, rigid
registration, and intensity normalization, were applied to all
data prior to the dataset split. These minimal steps were chosen
to preserve as much information from the raw data as possible

while standardizing the data for model training. The aggregated
dataset was divided into three distinct subsets: 80% was allocated
for training (1,688 samples), 10% for validation (211 samples),
and 10% for testing (211 samples). This division was executed
in a stratified manner, ensuring consistent representation of key
features—sex, vendor, and magnetic field strength—across subsets.
These characteristics were chosen for stratification because they
are known to influence MRI data characteristics. Sex differences
in brain structure are central to our study, while variations in
vendor and magnetic field strength can introduce systematic
differences in image quality and signal, which could impact the
model’s generalizability and accuracy (Souza et al., 2018). Within
each subset, the sex distribution was 53% female and 47% male,
with vendor distribution of 11% GE, 8% Philips, and 81% Siemens.
Magnetic field strengths were represented by 79% at 3 T and 21%
at 1.5 T.

To determine the optimal hyperparameters for training the
CNN, we conducted preliminary experiments in which we
systematically varied key parameters, such as batch size, initial
learning rate, and learning rate scheduler. These experiments
involved testing a range of commonly used values and assessing
their impact on convergence speed, training and validation loss,
and overall accuracy. Based on these preliminary results, we
selected the following hyperparameters for the final model training:
a batch size of 16, an initial learning rate of 0.01, and the
Adam optimizer with Binary Cross Entropy as the loss function
(Semenov et al., 2019). To further optimize the learning rate during
training, we implemented the “ReduceLROnPlateau" strategy,
which decreased the learning rate by a factor of 0.1 after five epochs
without improvement in validation loss. Training was conducted
over 50 epochs.

To mitigate overfitting and improve model generalization, data
augmentation was applied during training. Specifically, 50% of
the scans were randomly rotated by 15◦ on-the-fly. This rotation
was chosen to introduce variability in scan orientation without
distorting key neuroanatomical structures that are crucial for sex
classification. Other augmentation techniques, such as random
flipping and contrast adjustments, were considered but ultimately
not implemented due to their limited impact during preliminary
experiments.

The optimized model with the lowest validation loss during
the epochs was selected for evaluation on the test set. Performance
was assessed using accuracy, balanced accuracy, recall, precision,
and F1-score. To further investigate the model’s decision-making
process, saliency maps for each correctly classified scan in the test
set were generated using the Captum library (Kokhlikyan et al.,
2020). Non-linear registration was applied to these maps to align
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themwith theMNI152 standard brain atlas using FSL FNIRT, along
withmin-max normalization. The processedmaps were averaged to
identify regions critical for distinguishing between male and female
brains. Non linear registration was crucial because the saliency
maps were in the native image space of each scan, and variations
in brain size and shape across subjects could lead to misalignment
during averaging. Therefore, we ensured that corresponding brain
regions were aligned across all subjects, allowing for the creation
of a single composite map that accurately reflects sex differences in
brain structure from the DL model’s perspective.

The “sex differences map" was first analyzed by a radiologist
to ensure that the model’s focus aligned with clinically relevant
neuroanatomical structures. After the radiologist’s review, we used
the CerebrA atlas to quantify the importance of the specific
brain regions identified by the model. The CerebrA atlas provides
detailed cortical and subcortical labels for the brain (Manera et al.,
2020). For each labeled region, a saliency score was calculated,
defined as the proportion of salient voxels within that region (voxels
with saliency values >0.1). Additionally, the mean saliency value
for each region was computed and then min-max normalized
to the range [0, 1]. To derive a more representative measure of
importance, we calculated a weighted saliency score by multiplying
the saliency score by the normalized mean saliency value (Stanley
et al., 2022). This approach allowed us to quantify the significance
of each brain region in the model’s predictions.

2.6 TIV considerations

TIV is known to be a potential confounding factor in sex
classification models. However, in this study, we deliberately chose
not to correct for TIV during the training phase. One of the
core objectives of our study is to minimize preprocessing steps in
order to preserve the integrity of the brain images and enhance
the applicability of DL models in clinical settings. TIV correction
represents an extensive preprocessing step that might introduce
biases or obscure relevant biological information, particularly in
small and subtle brain structures. By avoiding TIV correction, we
aim to enable the model to learn directly fromminimally processed
brain images, thereby preserving the natural variations in brain
structures that are potentially crucial for accurate sex classification.

Instead of adjusting for TIV during training, we chose to assess
its impact on the model’s performance in a post-hoc analysis. This
approach allows us to determine the extent to which the model
depends on TIV versus other neuroanatomical features, offering a
clearer understanding of the model’s reliance on different aspects of
the brain data.

For TIV analysis, Freesurfer measurements were used,
excluding one unprocessable test sample, resulting in 210 samples.
To assess the impact of TIV on model performance, we performed
a post-hoc analysis using TIV quantiles and Kernel Density
Estimation (KDE). The test set was divided into three TIV quantiles
(each including 70 samples), representing low, medium, and
high TIV ranges, to systematically evaluate model performance
across different brain sizes (Figure 2). This quantile-based approach
ensured that each TIV range was equally represented, allowing
us to identify any biases the model might have toward extreme
TIV values.

We also employed KDE to focus the analysis on the TIV range
where male and female distributions overlapped the most, i.e.,
where TIV differences were minimized. A 20% density threshold
was applied to exclude the lower-density tails of the distribution,
thus emphasizing the regions where the TIV values of both sexes
were most similar and TIV was not an overt differentiating factor
between sexes (Figure 5). This approach, especially effective in
handling non-normally distributed data, focuses on the densest
regions, avoiding outliers or less representative data. The threshold
was selected after testing several alternatives, finding that 20%
provided the most informative results without excluding too much
data or including too many extreme cases. This approach helped
us isolate the TIV ranges that contributed most to balanced
classification performance, minimizing potential sex-based bias.

3 Results

The model with the lowest validation loss was evaluated using
binary classification metrics. This model achieved an accuracy
of 89.5% on the validation set. The overall accuracy on the test
set was 87.20%, with subgroup accuracies of 88% for females
and 86% for males. Overall AUC-ROC, F1-score, precision, and
recall were 93.36%, 86.67%, 86.14%, and 87%, respectively.. We
conducted a detailed evaluation of model performance across
various subgroups based on different datasets, scanner vendors,
magnetic field strengths, and age ranges. The performance metrics
for each subgroup within these variables are presented in Table 2.

Figure 3 illustrates the averaged saliency maps for males and
females, respectively. This map highlights the brain regions deemed
significant by the model for making predictions. It was generated
by averaging the saliency maps of accurately classified test samples.
Correctly classified samples were utilized in order to identify the
most consistent and reliable regions identified by the model. The
Spearman correlation between these two maps (females vs. males)
was 0.99 (p < 0.05), suggesting a very strong positive relationship,
indicating that the maps consistently rank the importance of
regions in a similar manner.

3.1 Post-hoc TIV analysis

In our post-hoc analysis, we observed that the accuracy values
across TIV-based quantiles were relatively consistent, ranging from
85 to 89%. However, classification performance varied with TIV;
females were classified more accurately at lower TIVs (60 true
positives, one false positive), while males were more accurately
classified at higher TIVs (59 true positives, one false positive).
Interestingly, the middle TIV quantile showed a similar error
rate for both sexes. Table 3 summarizes the performance across
three TIV quantiles separately for males and females. Balanced
accuracy on each TIV quantile highlights the true performance by
accounting for the imbalance within the quantiles.

Figure 4 shows how predictions varied based on TIV values.
It can be observed that most samples in the lower TIV range
are classified as female, and most scans in the higher TIV
range are classified as male. In other words, as TIV increases,
the number of scans classified as male increases. In the middle
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FIGURE 2

The illustration shows the distribution of Total Intracranial Volume (TIV) across three distinct quantiles, each comprising 70 samples. These quantiles

were determined to facilitate an in-depth analysis of model performance variations across varying ranges of TIV.

TABLE 2 Comparison of performance metrics across di�erent dataset sources, MRI scanner vendors, and magnetic field strengths in the test set.

Variable Subgroup Balanced accuracy Precision Recall F1 score

Dataset ADNI 0.863 0.846 0.917 0.880

CC359 0.851 0.929 0.765 0.839

OASIS3 0.858 0.731 0.905 0.809

CamCAN 0.920 0.971 0.868 0.917

Vendor GE 0.917 1.000 0.833 0.909

Philips 0.819 0.857 0.750 0.800

Siemens 0.877 0.855 0.888 0.871

Field 1.5T 0.837 0.818 0.857 0.837

3T 0.885 0.884 0.873 0.878

Age <55 0.889 1.000 0.778 0.875

55–70 0.844 0.788 0.867 0.825

≥70 0.886 0.870 0.930 0.899

range of TIV, classification as male versus female is balanced,
indicating reduced model bias compared to the higher and lower
TIV extremes.

Using KDE with a 20% threshold, we identified the overlapping
TIV range of 1,378–1,666 (Rtiv) (Figure 5). The model’s
classification performance was most balanced between sexes
in this range. The model’s accuracy within this range suggests that
the reliance on TIV as a discriminative feature was minimized,
resulting in more equitable performance across sexes.

In order to create the final averaged saliency map, a balanced
subset was extracted from Rtiv, comprising an equal number of
male and female samples (98 in total). This subset was specifically
chosen to include only correctly classified samples. This approach
ensures the final map is equally influenced by female and male
samples and represents reliable and consistent regions considered
important. We computed a final averaged saliency map from this
subset, depicted in Figure 6.

Supratentorial regions that were most important for prediction
included the inferior frontal lobe and frontal operculum (seen in

panel Figure 6B), the parasagittal frontal lobe, more specifically
the medial aspect of the superior frontal gyrus (seen in panel
Figure 6C), the mesial temporal lobe cortex and subcortical white
matter (seen in panel Figure 6A), the anterior limb and genu
of the internal capsule (seen in panel Figure 6A) and the optic
chiasm and adjacent posterior aspect of the gyrus rectus (not
shown). Infratentorial regions that were most important for
prediction included the anterior and lateral surface of the pons
and mesencephalon (seen in panel Figure 6A) and the cerebellar
hemispheric surfaces, particularly the lateral surface (seen in panel
Figure 6A).

To quantify the importance of brain regions, we computed
saliency scores, which represent the percentage of salient
voxels within each labeled region from the CerebrA atlas.
Additionally, we calculated weighted saliency scores, which
incorporate both the proportion of salient voxels and their
saliency values, reflecting the significance of each region in
the model’s predictions. Detailed results for all regions are
provided in the Supplementary Table S1. The top 10 regions
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FIGURE 3

Axial MRI slices comparing average saliency maps for correctly classified male (top row) and female (bottom row) subjects. From left to right, Panels

(A), (B), and (C) correspond to di�erent axial levels for both male and female subjects. Normalized saliency scores are color-coded from blue (least

important, score 0) to red (most important, score 1).

TABLE 3 Model accuracy for sex classification across di�erent Total Intracranial Volume (TIV) quantiles.

Quantile TIV range Female accuracy Male accuracy Balanced accuracy

First 1,032–1,443 98.4% 33.3% 65.8%

Second 1,447–1,597 87.2% 80.6% 83.9%

Third 1,599–1,935 30.0% 98.3% 64.2%

Each quantile represents a range of TIV values in milliliters, with separate accuracy percentages reported for female and male subjects, as well as the overall balanced accuracy for each quantile.

identified through this analysis, ranked by weighted saliency
scores, include the left entorhinal cortex, right pars orbitalis,
right pars triangularis, right pallidum, right basal forebrain, right
optic chiasm, left rostral anterior cingulate, right pars opercularis,
right entorhinal cortex, and right lateral orbitofrontal. Figure 7
visualizes the saliencymap overlaid on these top anatomical regions
identified by the model along with their corresponding weighted
saliency scores.

4 Discussion

The proposed sex classification model achieved an accuracy
of 87% on the test set. We deliberately chose not to apply TIV
adjustment techniques, such as TIV matching, which often results
in the exclusion of a significant portion of the available dataset.
Additionally, we did not apply preprocessing steps like non-linear
spatial and Z-Score normalization. By minimizing the use of
preprocessing, we aimed to keep the brain structures and features
as close to their natural form as possible, avoiding the introduction
of artifacts or noise into the images.

While TIV correction is a common practice, it may not always
be necessary or desirable depending on the study’s objectives. Given
our goal of developing models that are more generalizable and less
dependent on specific preprocessing steps, avoiding TIV correction
was a considered and valid choice. In the post-hoc analysis of TIV,
a comparison of model performance across TIV values indicated
that predictions were less biased in Rtiv where the TIV distribution
of females and males had the most overlap (Figure 4). The model’s
accuracy in Rtiv was comparable to its overall accuracy. Moreover,
the averaged saliency maps over all test samples (Figure 3) and the
balanced subset in Rtiv (Figure 6) showed similar regions with a
Spearman correlation of 0.99 (p < 0.05). Figure 8 further confirms
consistent predictive regions across TIV quantiles and sexes.

This study advances sex classification using brain MRI data

by employing a 3D CNN model with minimal preprocessing,
intentionally avoiding TIV adjustments to maintain natural brain

structure variations. Unlike studies such as Ebel et al. (2023) and
Wiersch et al. (2023), which control for brain size to reduce bias,
our approach embraces these variations to explore their relevance
in clinical settings. Ebel et al. (2023) used logistic regression on
volume-matched gray matter data, achieving 92% accuracy, and
a 3D CNN (BraiNN) on the same data, achieving 88% accuracy.
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FIGURE 4

Sex classification prediction according to total intracranial volume

(TIV) for 211 samples, including density plots for male and female

distributions. The dashed line represents the classification threshold

at a probability of 0.5. While the extremes of the TIV scale are

strongly correlated with sex prediction–higher TIV for males and

lower TIV for females–there is less bias in the middle TIV range.

Wiersch et al. (2023) utilized voxel-wise gray matter volume
with an SVM, reaching 92.55% accuracy after TIV control. In
contrast, Hu et al. (2019) focused on optimizing their multi-
layer 3D convolutional extreme learning machine (MCN-ELM),
achieving 98.06% accuracy without TIV adjustment, but they did
not emphasize interpretability or the identification of brain regions
contributing to sex differences.

Our minimal preprocessing allows the identification of
nuanced sex differences, validated through interdisciplinary
radiological assessment. While Bozek et al. (2021) also utilized
interpretability using SHAP analysis on volumetric features, our
approach extends this by leveraging 3D MRI images to create a
detailed “sex differences map" through saliency analysis. This not
only provides a high classification accuracy of 87% but also offers
a robust, interpretable map of sex differences, validated by experts.
To our knowledge, no other study has focused as extensively on
visualizing important brain regions for sex classification.

Upon reviewing the saliency maps, Radiologist J. Ospel (co-
author) observed that key regions for sex prediction in our model,
such as the mesial temporal lobe cortex and superior frontal gyrus
cortex, are situated in the gray matter. This observation aligns
with previous studies showing notable differences in gray matter
volumes between males and females, even when total brain volume
is accounted for Liu et al. (2020). Gray matter predominantly
contains the somatodendritic tissue of neurons (i.e., the actual cell
bodies), whereas white matter is primarily comprised of myelinated
connecting axons (the “connecting fibers"). Some studies have
shown a relatively higher percentage of gray matter in women,
and it has been hypothesized that this results in prioritization of

computational power over transfer across distant regions and could
compensate for the overall lower brain parenchymal volume in
women. Interestingly, not only total gray matter volumes, but also
the distribution of gray matter between the cerebral hemispheres,
have been shown to differ between women and men, with women
showing a more symmetric distribution between both hemispheres
(Gur et al., 1999).

Of note, regions like the cerebellum and temporal lobe cortex,
known for their sex differences in gray matter volume (Lotze et al.,

2019), were also significant in our model. Moreover, our model
identified areas like the internal capsule and optic chiasm/posterior

gyrus rectus, which, to our knowledge, have not been previously
highlighted as being different among sexes in the literature. These

regions have distinct functions: the internal capsule is crucial
for connecting the cerebral hemispheres with various subcortical

structures, the optic chiasm is part of the optic pathway and

contains the crossing fibers of both optic nerves—lesions that
compress the optic chiasm such as pituitary adenomas, often lead

to homonymous hemianopsia, i.e., visual field loss in the same
halves of the visual field of each eye (Wolberg et al., 2024). Other

regions, such as the inferior frontal gyrus, have more complex
roles in inhibitory and attention control, and language production,

depending on hemisphere dominance (Hampshire et al., 2010;
Ishkhanyan et al., 2020).

Quantitative analysis using the CerebrA atlas further supported
our findings. For each labeled region, we calculated a saliency

score, representing the proportion of salient voxels, and a weighted
saliency score that accounted for voxel intensity. These scores

quantified the importance of each brain region in the model’s
predictions. The top regions identified through this analysis

included the left and right entorhinal cortex (part of the medial
temporal lobe), right pars orbitalis, right pars triangularis, right

pars opercularis, and right lateral orbitofrontal cortex (regions
in the inferior frontal lobe), as well as the right optic chiasm.

These findings align with the radiologist’s observations and provide
a more detailed understanding of the neuroanatomical areas
contributing to our model’s decision-making. Additionally, the
quantitative analysis highlighted other regions, such as the right
pallidum, right basal forebrain, and left rostral anterior cingulate
(Figure 7).

Given the association of structural brain anatomy with

functionality and behavioral patterns, one might hypothesize that
sex differences in brain structure also translate into differences in

functionality and behavior. However, this is not necessarily true.
For example, while females have brain volumes that are on average

10%–15% smaller compared to males, there is no difference in
average intelligence levels between the two sexes (Burgaleta et al.,

2012). This highlights the fact that brain size or structure alone does
not directly correlate with cognitive performance or behavior.

There is also growing recognition of the numerous
compensatory mechanisms and redundancies in the brain

that mitigate the impact of anatomical differences on function.
Evolutionary processes, hormonal influences, and developmental
factors all contribute to shaping brain structure, but these factors
do not always lead to functional disparities (DeCasien et al., 2022).
Therefore, caution should be taken when inferring sex differences
in functionality and behavior based solely on structural differences,
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FIGURE 5

Kernel Density Estimation (KDE) of TIV for female and male groups, with a 20% threshold applied to exclude lower density values. The overlapping

region Rtiv = [1, 378 ml, 1, 666 ml] indicates the range of TIV values most common to both sexes, signifying the highest density overlap between the

distributions.

FIGURE 6

Axial MRI slices and a 3D rendering displaying average saliency map for 98 correctly classified samples (50% females, 50% males) within the TIV range

of 1,378–1,666 ml, with blue to red indicating low to high importance. The range was determined using KDE, filtering out values below 20% of

maximum density for both sexes. From left to right, Panels (A), (B), and (C) highlight di�erent axial levels with key brain structures for sex classification.

FIGURE 7

Saliency map overlaid on MNI152 template, highlighting the top 10 anatomical regions from the CerebrA atlas identified by the model using

weighted saliency scores. Weighted saliency scores represent each region’s importance in the model’s predictions, considering both the proportion

of salient voxels and their saliency values. The regions are color-coded according to the legend, with percentages indicating the weighted saliency

score for each region.

as observed anatomical variations may not necessarily translate
into functional or behavioral differences between men and women.

We assessed the model’s generalization by aggregating multiple
public datasets from various institutions. This strategy increased
data volume and introduced a range of patient demographics

and clinical practices, enriching our dataset’s diversity. Including
different vendors and magnetic field strengths further diversified
our dataset, which is crucial for developing robust DL models
adaptable to various clinical settings. Table 2 confirms this,
showing consistent performance across subgroups for each
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FIGURE 8

Average saliency maps for correctly classified female and male subjects across three TIV quantiles, each representing a specific range of TIV values.

Panels (A), (B), and (C) showcase axial levels that highlight key brain structures relevant for sex classification.

variable and reinforcing the model’s reliability across diverse
clinical scenarios. These measures collectively boost accuracy and
reliability, improving real-world healthcare applicability (Rouzrokh
et al., 2022).

Sex differences in brain structure are known to interact with
aging, which can influence the performance of classificationmodels
across different age groups. Research has shown that while sex-
related structural differences are present throughout adulthood,
they may be more prominent in early to mid-adulthood (Lotze
et al., 2019). We analyzed model performance across different
age ranges using thresholds based on key periods of brain aging
identified in the literature. The first threshold was set at 55 years, as
studies indicate that this is the period when more pronounced age-
related changes in brain structure, particularly in gray and white
matter, begin to emerge, marking the transition from midlife to
older adulthood (Raz et al., 2005). The second threshold was set
at 70 years, reflecting the transition into advanced aging, where
the rate of brain atrophy accelerates significantly, particularly in
regions such as the prefrontal cortex and hippocampus (Zhang
et al., 2010). These thresholds allow us to explore how aging
might impact sex classification model performance, capturing both
midlife transitions and advanced aging effects. As shown in Table 2,
the model performed consistently across all age groups, with
balanced accuracy values of 0.889 for individuals under 55, 0.844
for those between 55 and 70, and 0.886 for those over 70. While

there is some variation in performance, the model’s ability to
classify sex is generally stable across these age ranges. The slight
dip in performance in the 55–70 age group could reflect the onset
of age-related changes that modestly affect the structural features
the model relies on, but the overall consistency suggests that sex
classification remains effective across different age ranges.

Many brain disorders have a clear sex prevalence. As
an example, demyelinating diseases such as multiple sclerosis
and other immune-mediated inflammatory brain disorders are
more prevalent in females (Avila et al., 2018), while certain
types of neurodegenerative diseases, such as Parkinson’s disease,
occur more commonly in males (Young et al., 2023). This
implies that the pre-test probability for many neurological
conditions [the probability of a screened person having the
disease (Attia et al., 2004)] is influenced by patient sex, and
accurate classification of patient sex would therefore be expected
to improve any algorithm aimed at diagnosing this condition.
Furthermore, for some brain conditions, the prognosis differs
between males and females. For example, after being diagnosed
with glioblastoma, the most aggressive of the primary brain tumors,
males have, on average, shorter survival compared to females
(Moore et al., 2022).

Furthermore, sex differences in brain atrophy patterns
offer another example of how these variations might inform
individualized treatment strategies. For instance, for Alzheimer’s
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disease, women often experience a faster atrophy rate in key brain
regions compared to men, even with similar biomarker levels.
These morphological differences could help tailor treatments more
precisely for men and women, moving toward a more personalized
medicine approach in AD (Ferretti et al., 2018). Incorporating sex-
related information into diagnostic and prognostic models would
improve the tool’s reliability, supporting fairer and more effective
treatment strategies.

To enhance bias mitigation and model optimization using
the sex-differences saliency map, we propose two strategies. First,
for post-processing bias mitigation, we suggest evaluating model
performance through an interpretability map on the test set.
If this map shows a strong correlation with the sex-differences
saliency map, it could indicate the presence of sex bias within the
model. Recognizing such biases is crucial for initiating corrective
actions. Second, for in-processing bias mitigation during training,
we recommend adapting the reweighing bias mitigation algorithm
(Kamiran and Calders, 2012) at a voxel level. This involves
adjusting voxel weights in images based on the sex-differences
saliency map to direct the model’s focus toward more task-relevant
brain features and reduce the impact of sex-specific characteristics,
thereby promoting a more equitable predictive process.

Our study has limitations, particularly in distinguishing
between sex and gender in medical research. Sex, categorized
as male or female, refers to biological factors and is considered
static. In contrast, gender encompasses social roles, behaviors,
expressions, and identity, existing along a continuum and subject
to change over time. While gender identity usually aligns with
biological sex, it’s important to note that transgender individuals,
though a small percentage [< 1% in the U.S. (Chan, 2019)],
are part of the population. Therefore, some differences identified
by our algorithm might be attributable to gender rather than
sex. Additionally, the included datasets presented self-reported
sex information, which, for a few individuals, may reflect gender
identity rather than sex assigned at birth. This practice is common
in biomedical research, where self-report questions are often used
to characterize sex or gender identity, and the distinction between
these concepts is not always made clear (Stites et al., 2023). This
lack of clarity can introduce variability in datasets, as research
participants may reference different concepts when answering
questions about sex or gender. While we do not expect this issue
to significantly impact the development of our algorithm, it is a
potential source of variability that should be acknowledged.

Another limitation of our study is related to the class saliency
map method. While this method provided the best results in
our experiments and the generated maps were validated by our
radiologist, it is important to acknowledge that it is sensitive to
noise, which can result in less stable visualizations. The effectiveness
of this method is closely tied to the CNN architecture, potentially
limiting its ability to fully capture non-linearities in deeper models.

Lastly, although we employed stratified splitting in our study
to ensure representativeness, we recognize that the use of stratified
cross-validation could further improve the assessment of our
model’s generalizability. Furthermore, we acknowledge that not
employing Intensity Standardization techniques (Nyúl et al., 2000)
may limit our ability to fully correct for inter-scanner variability in
intensity distributions.We applied z-score normalization; however,
this approach does not account for the non-standardness inherent

in MRI intensities across different scanners, which can result in
residual discrepancies affecting comparability and generalizability.
Incorporating intensity standardization in future work could help
address these limitations and improve consistency across datasets.

5 Conclusion

A key outcome of our study is the development of sex-
differences maps through saliency analysis, which identified critical
brain regions involved in sex classification. These maps offer
deep learning-based insights into sex differences in the brain
and hold the potential to enhance diagnostic and prognostic
algorithms by identifying and addressing sex-based biases,
ultimately contributing to more equitable healthcare interventions.
This interdisciplinary approach, combining machine learning and
radiological expertise, emphasizes the importance of fairness in
ensuring that the outcomes are not only accurate but also reliable
and relevant. Our sex classification model achieved an accuracy of
87%, aggregating four diverse datasets with minimal preprocessing
to maintain brain structure integrity. The model showed biases
at extreme brain sizes but was less biased in ranges where male
and female Total Intracranial Volume distributions overlapped the
most.

The insights gained from the sex-differences maps also
have broader applicability. For example, these maps could be
utilized for the refinement of diagnostic tools for neurological
conditions for both males and females by informing critical brain
regions. Additionally, they could be adapted to other fields where
understanding region-specific influences is important, such as
targeted medical interventions based on brain imaging data. While
promising, our approach has certain limitations, including the
sensitivity of saliency maps to noise, which may affect the stability
of the visualizations. Future work could focus on refining these
maps to enhance their robustness and exploring their application
in different contexts to further validate their utility.

Data availability statement

Publicly available datasets were analyzed in this study.
The CC359 dataset is available for download at https://www.
ccdataset.com/download. The Cambridge Centre for Ageing and
Neuroscience (CamCAN) dataset can be accessed at https://
camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/. Data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is available
at https://adni.loni.usc.edu/data-samples/access-data/. The Open
Access Series of Imaging Studies (OASIS-3) dataset can be accessed
at https://www.oasis-brains.org/#data. The code and reported
saliency maps are available at https://github.com/mahsadibaji/sex-
differences-brain-dl.

Author contributions

MD: Conceptualization, Data curation, Formal analysis,
Methodology, Validation, Visualization, Writing – original draft,
Writing – review & editing. JO: Formal analysis, Validation,
Writing – original draft, Writing – review & editing. RS:

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2024.1452457
https://www.ccdataset.com/download
https://www.ccdataset.com/download
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://adni.loni.usc.edu/data-samples/access-data/
https://www.oasis-brains.org/#data
https://github.com/mahsadibaji/sex-differences-brain-dl
https://github.com/mahsadibaji/sex-differences-brain-dl
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Dibaji et al. 10.3389/fncom.2024.1452457

Conceptualization, Resources, Supervision, Validation, Writing –
review & editing. MB: Conceptualization, Funding acquisition,
Resources, Supervision, Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. We
acknowledge the support from the Alberta Graduate Excellence
Scholarship, the Natural Sciences and Engineering Research
Council (NSERC), and Alberta Innovates. Data collection and
sharing for this project was partly funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National Institutes of
Health Grant U01 AG024904) and DOD ADNI (Department of
Defense award number W81XWH-12-2-0012).

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2024.1452457/full#supplementary-material

References

Attia, J. R., Sibbritt, D. W., Ewald, B. D., Nair, B. R., Paget, N. S., Wellard, R. F., et al.
(2004). Generating pre-test probabilities: a neglected area in clinical decision making.
Med. J. Aust. 180, 449–454. doi: 10.5694/j.1326-5377.2004.tb06020.x

Avila, M., Bansal, A., Culberson, J., and Peiris, A. N. (2018). The role of sex
hormones in multiple sclerosis. Eur. Neurol. 80, 93–99. doi: 10.1159/000494262

Bozek, J., Kesedzic, I., Novosel, L., and Bozek, T. (2021). Classification and feature
analysis of the human connectome project dataset for differentiating between males
and females. Automatika 62, 109–117. doi: 10.1080/00051144.2021.1885890

Burgaleta, M., Head, K., Álvarez-Linera, J., Martínez, K., Escorial, S., Haier, R., et
al. (2012). Sex differences in brain volume are related to specific skills, not to general
intelligence. Intelligence 40, 60–68. doi: 10.1016/j.intell.2011.10.006

Chan, P. S. (2019). Invisible gender in medical research. Circ. Cardiovasc. Qual.
Outcomes. 12:e005694. doi: 10.1161/CIRCOUTCOMES.119.005694

Chouldechova, A., and Roth, A. (2020). A snapshot of the frontiers of fairness in
machine learning. Commun. ACM 63, 82–89. doi: 10.1145/3376898

DeCasien, A. R., Guma, E., Liu, S., and Raznahan, A. (2022). Sex differences in the
human brain: a roadmap for more careful analysis and interpretation of a biological
reality. Biol. Sex Differ. 13:43. doi: 10.1186/s13293-022-00448-w

Dibaji, M., Gianchandani, N., Nair, A., Singhal, M., Souza, R., Bento, M., et
al. (2023). “Studying the effects of sex-related differences on brain age prediction
using brain MR imaging," in Workshop on Clinical Image-Based Procedures (Cham:
Springer), 205–214. doi: 10.1007/978-3-031-45249-9_20

Ebel, M., Domin, M., Neumann, N., Schmidt, C. O., Lotze, M., Stanke, M., et al.
(2023). Classifying sex with volume-matched brain MRI. Neuroimage Rep. 3:100181.
doi: 10.1016/j.ynirp.2023.100181

Ferretti, M. T., Iulita, M. F., Cavedo, E., Chiesa, P. A., Schumacher Dimech,
A., Santuccione Chadha, A., et al. (2018). Sex differences in Alzheimer
disease—the gateway to precision medicine. Nat. Rev. Neurol. 14, 457–469.
doi: 10.1038/s41582-018-0032-9

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the
human connectome project.Neuroimage 80, 105–124. doi: 10.1016/j.neuroimage.2013.
04.127

Grødem, E. O., Leonardsen, E., MacIntosh, B. J., Bjørnerud, A., Schellhorn, T.,
Sørensen, Ø., et al. (2024). A minimalistic approach to classifying Alzheimer’s disease
using simple and extremely small convolutional neural networks. J. Neurosci. Methods
411:110253. doi: 10.1016/j.jneumeth.2024.110253

Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett,
P., et al. (1999). Sex differences in brain gray and white matter in healthy
young adults: correlations with cognitive performance. J. Neurosci. 19, 4065–4072.
doi: 10.1523/JNEUROSCI.19-10-04065.1999

Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., and Owen, A. M.
(2010). The role of the right inferior frontal gyrus: inhibition and attentional control.
Neuroimage 50, 1313–1319. doi: 10.1016/j.neuroimage.2009.12.109

Hoopes, A., Mora, J. S., Dalca, A. V., Fischl, B., and Hoffmann, M.
(2022). Synthstrip: skull-stripping for any brain image. Neuroimage 260:119474.
doi: 10.1016/j.neuroimage.2022.119474

Hu, D., Luo, Z., and Zhao, L. (2019). Gender identification based on human brain
structural MRI with a multi-layer 3d convolution extreme learning machine. Cogn.
Computa. Syst. 1, 91–96. doi: 10.1049/ccs.2018.0018

Ishkhanyan, B., Michel Lange, V., Boye, K., Mogensen, J., Karabanov, A.,
Hartwigsen, G., et al. (2020). Anterior and posterior left inferior frontal gyrus
contribute to the implementation of grammatical determiners during language
production. Front. Psychol. 11:685. doi: 10.3389/fpsyg.2020.00685

Jack Jr, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey,
D., et al. C., et al. (2008). The Alzheimer’s disease neuroimaging initiative (Adni): MRI
methods. J. Magn. Reson. Imaging 27, 685–691. doi: 10.1002/jmri.21049

Kamiran, F., and Calders, T. (2012). Data preprocessing techniques for classification
without discrimination. Knowl. Inf. Syst. 33, 1–33. doi: 10.1007/s10115-011-0463-8

Kelley, W., Ngo, N., Dalca, A. V., Fischl, B., Zöllei, L., and Hoffmann, M. (2024).
Boosting skull-stripping performance for pediatric brain images. arXiv [Preprint].
arXiv:2402.16634. doi: 10.48550/arXiv.2402.16634

Klingenberg, M., Stark, D., Eitel, F., Budding, C., Habes, M., Ritter, K., et al. (2023).
Higher performance for women than men inMRI-based Alzheimer’s disease detection.
Alzheimers Res. Ther. 15:84. doi: 10.1186/s13195-023-01225-6

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., et al.
(2020). Captum: a unified and generic model interpretability library for pytorch. arXiv
[Preprint]. arXiv:2009.07896. doi: 10.48550/arXiv.2009.07896

LaMontagne, P. J., Benzinger, T. L., Morris, J. C., Keefe, S., Hornbeck, R., Xiong,
C., et al. (2019). Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset
for normal aging and Alzheimer disease. medRxiv. doi: 10.1101/2019.12.13.19014902.
[Epub ahead of print].

Liu, S., Seidlitz, J., Blumenthal, J. D., Clasen, L. S., and Raznahan, A.
(2020). Integrative structural, functional, and transcriptomic analyses of sex-
biased brain organization in humans. Proc. Nat. Acad. Sci. 117, 18788–18798.
doi: 10.1073/pnas.1919091117

Lotze, M., Domin, M., Gerlach, F. H., Gaser, C., Lueders, E., Schmidt, C. O., et al.
(2019). Novel findings from 2,838 adult brains on sex differences in gray matter brain
volume. Sci. Rep. 9:1671. doi: 10.1038/s41598-018-38239-2

Manera, A. L., Dadar, M., Fonov, V., and Collins, D. L. (2020). Cerebra, registration
and manual label correction of mindboggle-101 atlas for MNI-ICBM152 template. Sci.
Data 7:237. doi: 10.1038/s41597-020-0557-9

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2024.1452457
https://www.frontiersin.org/articles/10.3389/fncom.2024.1452457/full#supplementary-material
https://doi.org/10.5694/j.1326-5377.2004.tb06020.x
https://doi.org/10.1159/000494262
https://doi.org/10.1080/00051144.2021.1885890
https://doi.org/10.1016/j.intell.2011.10.006
https://doi.org/10.1161/CIRCOUTCOMES.119.005694
https://doi.org/10.1145/3376898
https://doi.org/10.1186/s13293-022-00448-w
https://doi.org/10.1007/978-3-031-45249-9_20
https://doi.org/10.1016/j.ynirp.2023.100181
https://doi.org/10.1038/s41582-018-0032-9
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.jneumeth.2024.110253
https://doi.org/10.1523/JNEUROSCI.19-10-04065.1999
https://doi.org/10.1016/j.neuroimage.2009.12.109
https://doi.org/10.1016/j.neuroimage.2022.119474
https://doi.org/10.1049/ccs.2018.0018
https://doi.org/10.3389/fpsyg.2020.00685
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.48550/arXiv.2402.16634
https://doi.org/10.1186/s13195-023-01225-6
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.1101/2019.12.13.19014902
https://doi.org/10.1073/pnas.1919091117
https://doi.org/10.1038/s41598-018-38239-2
https://doi.org/10.1038/s41597-020-0557-9
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Dibaji et al. 10.3389/fncom.2024.1452457

Mendrek, A. (2015). Is it important to consider sex and gender in neurocognitive
studies? Front. Psychiatry 6:83. doi: 10.3389/fpsyt.2015.00083

Moore, K. J., Moertel, C. L., and Williams, L. A. (2022). Young adult males have
worse survival than females that is largely independent of treatment received for many
types of central nervous system tumors: a national cancer database analysis. Cancer
128, 1616–1625. doi: 10.1002/cncr.34120

Nyúl, L. G., Udupa, J. K., and Zhang, X. (2000). New variants of a method of MRI
scale standardization. IEEE Trans. Med. Imaging 19, 143–150. doi: 10.1109/42.836373

Peng, H., Gong, W., Beckmann, C. F., Vedaldi, A., and Smith, S. M. (2021).
Accurate brain age prediction with lightweight deep neural networks.Med. Image Anal.
68:101871. doi: 10.1016/j.media.2020.101871

Piçarra, C., and Glocker, B. (2023). “Analysing race and sex bias in brain age
prediction," in Workshop on Clinical Image-Based Procedures (Cham: Springer),
194–204. doi: 10.1007/978-3-031-45249-9_19

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D.,
Williamson, A., et al. (2005). Regional brain changes in aging healthy adults:
general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689.
doi: 10.1093/cercor/bhi044

Rouzrokh, P., Khosravi, B., Faghani, S., Moassefi, M., Vera Garcia, D. V., Singh, Y.,
et al. (2022). Mitigating bias in radiology machine learning: 1. data handling. Radiol.
Artifi. Intell. 4:e210290. doi: 10.1148/ryai.210290

Sanchis-Segura, C., Aguirre, N., Cruz-Gómez, Á. J., Félix, S., and Forn,
C. (2022). Beyond “sex prediction”: estimating and interpreting multivariate
sex differences and similarities in the brain. Neuroimage 257:119343.
doi: 10.1016/j.neuroimage.2022.119343

Sanchis-Segura, C., Ibañez-Gual, M. V., Aguirre, N., Cruz-Gómez, Á. J., and Forn,
C. (2020). Effects of different intracranial volume correction methods on univariate sex
differences in grey matter volume and multivariate sex prediction. Sci. Rep. 10:12953.
doi: 10.1038/s41598-020-69361-9

Saporta, A., Gui, X., Agrawal, A., Pareek, A., Truong, S. Q., Nguyen, C. D., et
al. (2022). Benchmarking saliency methods for chest x-ray interpretation. Nat. Mach.
Intell. 4, 867–878. doi: 10.1038/s42256-022-00536-x

Semenov, A., Boginski, V., and Pasiliao, E. L. (2019). “Neural networks
with multidimensional cross-entropy loss functions," in Computational Data
and Social Networks: 8th International Conference, CSoNet 2019, Ho Chi Minh
City, Vietnam, November 18-20, 2019, Proceedings 8 (Cham: Springer), 57–62.
doi: 10.1007/978-3-030-34980-6_5

Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., et al.
(2014). The cambridge centre for ageing and neuroscience (Cam-CAN) study protocol:
a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing.
BMC Neurol. 14, 1–25. doi: 10.1186/s12883-014-0204-1

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: visualising image classification models and saliency maps. arXiv [Preprint].
arXiv:1312.6034. doi: 10.48550/arXiv.1312.6034

Singh, A., Sengupta, S., and Lakshminarayanan, V. (2020). Explainable
deep learning models in medical image analysis. J. Imaging 6:52.
doi: 10.3390/jimaging6060052

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural
mr image analysis and implementation as FSL. Neuroimage 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051

Souza, R., Lucena, O., Garrafa, J., Gobbi, D., Saluzzi, M., Appenzeller, S., et al.
(2018). An open, multi-vendor, multi-field-strength brain MR dataset and analysis
of publicly available skull stripping methods agreement. Neuroimage 170, 482–494.
doi: 10.1016/j.neuroimage.2017.08.021

Stanley, E., Wilms, M., Mouches, P., and Forkert, N. (2023). “Exploring the role of
explainability for uncovering bias in deep learning-based medical image analysis," in
Medical Imaging with Deep Learning, short paper track.

Stanley, E. A., Wilms, M., Mouches, P., and Forkert, N. D. (2022). Fairness-related
performance and explainability effects in deep learningmodels for brain image analysis.
J. Med. Imaging 9:061102. doi: 10.1117/1.JMI.9.6.061102

Stites, S. D., Cao, H., James, R., Harkins, K., Coykendall, C., Flatt, J. D., et al. (2023).
A systematic review of measures of gender and biological sex: exploring candidates for
Alzheimer’s disease and related dementias (AD/ADRD) research. Alzheimers Dement.
15:e12359. doi: 10.1002/dad2.12359

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., et al.
(2017). The cambridge Centre for ageing and neuroscience (cam-can) data repository:
structural and functional MRI, MEG, and cognitive data from a cross-sectional adult
lifespan sample. Neuroimage 144, 262–269. doi: 10.1016/j.neuroimage.2015.09.018

Wiersch, L., Hamdan, S., Hoffstaedter, F., Votinov, M., Habel, U., Clemens, B., et al.
(2023). Accurate sex prediction of cisgender and transgender individuals without brain
size bias. Sci. Rep. 13:13868. doi: 10.1038/s41598-023-37508-z

Williams, C. M., Peyre, H., Toro, R., and Ramus, F. (2021). Neuroanatomical norms
in the UK biobank: the impact of allometric scaling, sex, and age. Hum. Brain Mapp.
42, 4623–4642. doi: 10.1002/hbm.25572

Wolberg, A., Tripathy, K., and Kapoor, N. (2024). Homonymous Hemianopsia.
Treasure Island, FL: StatPearls Publishing.

Young, J. E., Wu, M., and Hunsberger, H. C. (2023). Editorial: Sex and
gender differences in neurodegenerative diseases. Front. Neurosci. 17:1175674.
doi: 10.3389/fnins.2023.1175674

Zhang, Y., Qiu, C., Lindberg, O., Bronge, L., Aspelin, P., Bäckman, L.,
et al. (2010). Acceleration of hippocampal atrophy in a non-demented elderly
population: the snac-k study. Int. Psychogeriatr. 22, 14–25. doi: 10.1017/S104161020
9991396

Zhou, S. K., Greenspan, H., Davatzikos, C., Duncan, J. S., Van Ginneken, B.,
Madabhushi, A., et al. (2021). A review of deep learning in medical imaging: imaging
traits, technology trends, case studies with progress highlights, and future promises.
Proc. IEEE 109, 820–838. doi: 10.1109/JPROC.2021.3054390

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2024.1452457
https://doi.org/10.3389/fpsyt.2015.00083
https://doi.org/10.1002/cncr.34120
https://doi.org/10.1109/42.836373
https://doi.org/10.1016/j.media.2020.101871
https://doi.org/10.1007/978-3-031-45249-9_19
https://doi.org/10.1093/cercor/bhi044
https://doi.org/10.1148/ryai.210290
https://doi.org/10.1016/j.neuroimage.2022.119343
https://doi.org/10.1038/s41598-020-69361-9
https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.1007/978-3-030-34980-6_5
https://doi.org/10.1186/s12883-014-0204-1
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.3390/jimaging6060052
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2017.08.021
https://doi.org/10.1117/1.JMI.9.6.061102
https://doi.org/10.1002/dad2.12359
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1038/s41598-023-37508-z
https://doi.org/10.1002/hbm.25572
https://doi.org/10.3389/fnins.2023.1175674
https://doi.org/10.1017/S1041610209991396
https://doi.org/10.1109/JPROC.2021.3054390
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Sex differences in brain MRI using deep learning toward fairer healthcare outcomes
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Preprocessing
	2.3 Sex classifier
	2.4 Interpretability method
	2.5 Experimental design
	2.6 TIV considerations

	3 Results
	3.1 Post-hoc TIV analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


