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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder characterized by cognitive decline, memory loss, and impaired daily

functioning. Despite significant research, AD remains incurable, highlighting

the critical need for early diagnosis and intervention to improve patient

outcomes. Timely detection plays a crucial role in managing the disease more

effectively. Pretrained convolutional neural networks (CNNs) trained on large-

scale datasets, such as ImageNet, have been employed for AD classification,

providing a head start for developing more accurate models.

Methods: This paper proposes a novel hybrid deep learning approach that

combines the strengths of two specific pretrained architectures. The proposed

model enhances the representation of AD-related patterns by leveraging the

feature extraction capabilities of both networks. We validated this model using

a large dataset of MRI images from AD patients. Performance was evaluated in

terms of classification accuracy and robustness against noise, and the results

were compared to several commonly used models in AD detection.

Results: The proposed hybrid model demonstrated significant performance

improvements over individual models, achieving an accuracy classification

rate of 99.85%. Comparative analysis with other models further revealed the

superiority of the new architecture, particularly in terms of classification rate

and resistance to noise interference.

Discussion: The high accuracy and robustness of the proposed hybrid model

suggest its potential utility in early AD detection. By improving feature

representation through the combination of two pretrained networks, this model

could provide clinicians with a more reliable tool for early diagnosis and

monitoring of AD progression. This approach holds promise for aiding in timely

diagnoses and treatment decisions, contributing to better management of

Alzheimer’s disease.

KEYWORDS

Alzheimer’s disease (AD), pretrained networks (PN), evaluation metrics (EM), SMOTE,
data augmentation (DA)

1 Introduction

Alzheimer’s disease (AD) is a degenerative neurological condition marked by cognitive
decline, behavioral abnormalities, and memory loss. In order to manage the illness
and enhance the patients’ quality of life, early diagnosis is essential. However, because
the structural alterations in Alzheimer’s disease are subtle and complex, precisely
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identifying the condition using MRI scans remains a substantial
issue. Brain MRI pictures show subtle structural differences
that are difficult to interpret without sophisticated tools, and
conventional diagnostic procedures frequently fail to capture these
complex patterns. In order to support healthcare practitioners,
more sophisticated, dependable, and automated classification
systems are required. This is because early and accurate diagnosis
might be challenging.

The complex patterns in MRI scans that differentiate
between different stages of Alzheimer’s disease are difficult for
traditional machine learning models and even some deep learning
architectures to grasp. Issues including overfitting, computational
efficiency, and cross-dataset generalization are not sufficiently
addressed by many of the models that are currently in use. More
advanced models are therefore required in order to efficiently
learn and generalize these patterns, resulting in classifications that
are more accurate. Though promising in other medical imaging
tasks, advanced deep learning models are still limited in their
ability to classify AD patients because of the particular difficulties
presented by the disease’s course and its subtle impacts on brain
structure. This justifies the exploration of novel model architectures
and combinations to push the boundaries of what is currently
achievable in AD diagnosis.

In this paper, we present a combinatorial deep learning
method that combines DenseNet121 and Xception, two potent
pretrained networks. DenseNet121’s dense connection makes
feature reuse and gradient flow more effective. Because every
layer in DenseNet121 is feed-forward coupled to every other
layer, the vanishing gradient issue is lessened and feature
reuse is encouraged, which enhances learning and performance.
Conversely, Xception lowers model parameters and improves
computational performance thanks to its depthwise separable
convolutions. The convolution procedure is broken down into
two parts in this architecture: a depthwise convolution and a
pointwise convolution. This results in a significant reduction
in computational cost without sacrificing performance. By
combining these two networks, we aim to leverage the strengths
of both architectures, resulting in a model that is both
powerful and efficient.

Our strategy produced excellent results, with an average
improvement in accuracy of 10% over the previous approaches.
The effective fusion of Xception’s efficient convolutions and
DenseNet121’s dense connectivity is responsible for this
improvement. By using the Synthetic Minority Over-sampling
Technique (SMOTE), which addressed the dataset’s class imbalance
problem, this performance improvement was further improved.
In order to balance the dataset without just copying existing
samples, SMOTE creates synthetic samples for the minority
class by interpolating between existing samples. The model can
learn more efficiently thanks to this balanced dataset, particularly
when some stages of Alzheimer’s disease are underrepresented in
the training set.

Considerable progress has been made in the categorization
of Alzheimer’s disease from MRI scans using the suggested
combinatorial strategy. Utilizing the advantages of both Xception
and DenseNet121, our model offers a reliable and effective solution.
While Xception’s computational efficiency enables faster and more
resource-efficient training and inference, DenseNet121’s dense
connections enable a better and more thorough grasp of the subtle

aspects of MRI images. SMOTE integration makes the model more
robust in real-world applications by improving its generalization
across imbalanced datasets. These developments open the door to
earlier and more precise Alzheimer’s disease diagnosis, which may
improve patient outcomes and facilitate the development of more
potent disease management techniques. This study highlights the
potential of combinatorial deep learning approaches in overcoming
existing limitations and sets the stage for future research in
this critical area.

This paper is structured as follows: we explain in section 2 some
State-Of-the-Art Models, the dataset, preprocessing steps, followed
by overviews. Some mathematical formulations of the proposed
model are described in Section 3 as well as the proposed model
architecture. In Same section, the proposed model’s architecture
will be presented. Section 4 details the results achieved in this study.
In Section 5, we discuss the results. Finally, the implications of
our findings and future directions for research are exposed. Our
approach demonstrates the potential of the proposed hybrid model
in enhancing Alzheimer’s research, providing a framework that can
be extended to other medical imaging applications.

2 Related work

In the domain of medical image analysis, transfer learning
(TL) has received a lot of attention. One example of this is
its use in the image classification of the Alzheimer’s Disease
dataset. In a related study, You et al. (2020) Developed a
cascade neural network that utilizes both gait and EEG data
for AD classification, significantly outperforming other methods
with a three-way AD classification accuracy of 91.07%. The
next year, Mohammed et al. (2021) proposed many machine
learning algorithms and deep learning models to classify images
of OASIS and Alzheimer’s disease Datasets, they achieved an
average accuracy equal to 94%. Furthermore, a recent study
by Al Shehri (2022) proposed a deep learning-based solution
using DenseNet-169 and ResNet-50 CNN architectures for the
diagnosis and classification of Alzheimer’s disease. The DenseNet-
169 architecture achieved training and testing accuracy values
of 0.977 and 0.8382, respectively, while ResNet-50 had accuracy
values of 0.8870 and 0.8192. One study by Thayumanasamy
and Ramamurthy (2022) evaluated various machine learning and
deep convolutional architectures for detecting Alzheimer’s disease
(AD) from mild cognitive impairment (MCI), Accuracy equal to
82.2% was achieved by using DenseNet169. In a recent study
by Bamber and Vishvakarma (2023) presents a model using a
shallow convolution layer in a convolutional neural network for
Alzheimer’s disease diagnosis in image patches, boasting a high
accuracy rate of 98%. Another study by Mahmud et al. (2023)
evaluate approach on a dataset of MRI scans from patients with
AD and healthy controls, achieving an accuracy of 95% for
combined ensemble models. Raza et al. (2023) focus on segmenting
and classifying Magnetic Resonance Imaging (MRI) scans of
Alzheimer’s disease, their approach involves leveraging transfer
learning and customizing a convolutional neural network (CNN),
accuracy achieved 97.84%. In same year, Balaji et al. (2023)
create a hybrid deep learning model based on CNN and LSTM
architectures, to classify images of two datasets, they also performed
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segmentation to improve results, accuracy of 98.5% is achieved.
A recent study by Ching et al. (2024) focus on using EfficientNet-
B0 to classify AD images and reached accuracy equal to 87.17%.
In same year, Ali et al. (2024) uses Fuzzy C-means technique for
image segmentation and merge LSTM architecture with CNN one
to classify brain images, they reached an accuracy of 98.13%. In
this study, we propose to integrate Xception and DenseNet121,
two newly modified pretrained deep learning networks. At 99.85%,
the suggested model has the highest accuracy. These works show
how transfer learning can be used to improve the accuracy of
image classification in the Alzheimer’s dataset and show how
transfer learning can be used to further develop deep learning-
based techniques.

3 Database study and preprocessing

The dataset of MRI images (link in Data Availability statement)
initially consists of two parts: Training and Testing images, each
with over 5000 images classified according to the severity of
Alzheimer’s disease. Figure 1 shows some AD images categorized
into four classes: Very Mild Demented, Mild Demented, Moderate
Demented, and Non-Demented. Using the same methodologies
as the proposed architecture, a comparison study with other
pretrained networks has been conducted to assess the performance
of the suggested model. All the dataset images were preprocessed as
follows:

– Splitting data: the dataset contains two files: train and test. In
this study, we merge the two parts and split obtained data into
ratios of 80% for training and 20% for testing.

– Resizing Images: All images were resized to reduce
computational power consumption and speed up application
execution. By standardizing the image dimensions, we ensured
that the model could process the data more efficiently, leading
to faster training times without compromising accuracy.

– Data Augmentation: Data augmentation techniques were
employed to create new training datasets that are variations
of the original images. This process helps prevent overfitting
by exposing the model to a wider variety of data. The
augmentation methods used include:

• Rotation: Rotating images helps the model become
invariant to the orientation of the MRI scans, allowing it
to learn features regardless of image alignment.
• Flipping (Horizontal and Vertical): Flipping images

increases data diversity by creating mirror images,
which helps the model learn to recognize features from
different perspectives.
• Shifting (Width and Height): Shifting images horizontally

and vertically helps the model become invariant to small
positional changes in the MRI scans.
• Zoom: Applying zoom augmentation ensures the model

can handle variations in the size of brain structures, helping
it focus on different levels of detail.
• Brightness Adjustment: Adjusting brightness variations

makes the model robust to changes in lighting

conditions, ensuring consistent performance across
different MRI scans.

These augmentation techniques not only increase the quantity
of training data but also enhance the model’s ability to generalize
by learning from a more diverse set of images. This diversity helps
improve the model’s robustness and accuracy in identifying features
relevant to different stages of Alzheimer’s Disease.

– Oversampling with SMOTE: The Synthetic Minority
Oversampling Technique (SMOTE) was used by Chawla et al.
(2002) and applied in this study to address the issue of unbalanced
classes. SMOTE generates synthetic samples for the minority class
by interpolating between existing samples.

3.1 Transfer learning technique

A powerful deep learning method called transfer learning
(TL) uses model parameters that have previously been trained
on a large dataset (such as the 1000-class ImageNet Dataset).
Pretrained weights are also used in this strategy to speed up learning
and improve accuracy in our model. It’s basically the same as
imparting knowledge that one person has acquired to another.
Instead than concentrating only on training the Fully Connected
layers while maintaining the CNN layer unaltered, all layers are
learned throughout the transfer learning process. Training just
the CNN layers (either fully or partially) is one way to improve
the model’s performance. This technique is used in this study by
choosing two pretrained networks which are: DenseNet121 (Gupta
and Mesram, 2022) and Xception (Chollet, 2017). The aim of this
study is to merge these two PN, as will be described later, to improve
the classification process.

3.2 Mathematical Formulations

• Performance metrics
TP: True Positives
TN: True Negatives
FP: False Positives
FN: False Negatives
For the hybrid model:
AccHybrid: Accuracy of the hybrid model

AccHybrid =
TPHybrid+TNHybrid

TPHybrid+TNHybrid+FPHybrid+FNHybrid
(1)

If AccHybrid is higher than AccDenseNet121 and AccXception, it
indicates that the hybrid model is more accurate in its predictions.
The hybrid model combines features from both DenseNet121 and
Xception, potentially leveraging their complementary strengths,
which can result in improved classification performance compared
to each individual model. Thus, a higher accuracy for the
hybrid model shows that it has a better overall performance
in correctly identifying samples, proving its superiority over the
individual models.
• Overall Performance Improvement
For the hybrid model:
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FIGURE 1

Example of images belongs to four classes from Alzheimer’s dataset.

1AccHybrid : Improvement in accuracy of the hybrid model

1AccHybrid = AccHybrid−max
(
AccDenseNet121, AccXception

)
(2)

The improvement in 1AccHybrid measures how much
the accuracy of the hybrid model exceeds that of the
best-performing individual model (either DenseNet121 or
Xception). By subtracting the maximum accuracy of the
individual models from the accuracy of the hybrid model, we
can quantify the enhancement in performance provided by
the hybrid approach. A positive value of indicates that the
hybrid model offers superior accuracy compared to the single
best model, demonstrating its effectiveness in improving
classification results beyond what each individual model
alone can achieve.
• Concatenation of Output Layers
O: Output layer
For the hybrid model:
OHybrid: Output layer of the hybrid model
ODenseNet121: Output layer of DenseNet121
OXception: Output layer of Xception
⊕: Concatenation operation

OHybrid = ODenseNet121 ⊕OXception (3)

• Ensemble Performance Gain
For the hybrid model:
GAcc : Gain in accuracy

GAcc =
AccHybrid − AccDenseNet121 + AccHybrid − AccXception

2
(4)

The ensemble performance gain GAcc calculates the average
improvement in accuracy provided by the hybrid model compared
to each individual model. It is determined by averaging
the differences in accuracy between the hybrid model and
DenseNet121, and between the hybrid model and Xception.
This calculation helps quantify the extent to which the hybrid
model outperforms both individual models. A positive GAcc value
signifies that the hybrid model achieves better accuracy than either
DenseNet121 or Xception, thereby demonstrating the advantages
of combining the strengths of both models. This gain highlights
the effectiveness of the hybrid approach in improving classification
accuracy beyond what is achieved by each individual model alone.
• Error Reduction
E: Error rate
Acc: Accuracy
For the hybrid model:
1E: Error reduction

1E = min
(
EDenseNet121, EXception

)
−EHybrid (5)

E = 1 − Accuracy (6)

Error reduction 1E measures how much the hybrid model’s
error rate is reduced compared to the best-performing individual
model. It is calculated by subtracting the error rate of the
hybrid model from the minimum error rate of DenseNet121
and Xception. This metric helps to quantify the improvement
in classification performance of the hybrid model by showing
that it has a lower error rate than the best individual model.
A lower error rate in the hybrid model indicates enhanced
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TABLE 1 Evaluation metrics of different models.

Accuracy (%) F1Score (%) AUC (%) Precision (%) Recall (%) P-values

Alzheimer’s dataset

InceptionV3 93 93.3 95.7 93.5 93.5 0.059

Xception 95.5 95.5 97 95.6 95.6 0.6

DenseNet121 96.2 96.2 97.5 96.3 96.3 0.19

DenseNet121&InceptionV3 95.7 95.7 97.2 95.8 95.8 0.45

DenseNet121&Xception 99.85 99.85 99.9 99.85 99.88 15× 10−12

The bold values are the values of the proposed model.

FIGURE 2

Architecture of the proposed model.

FIGURE 3

Feature fusion architecture.

accuracy and effectiveness in classification, providing evidence that

combining the two models leads to better overall performance

compared to relying on either model alone. This reduction in error

underscores the advantage of the hybrid approach in minimizing

misclassifications.

• Statistical Significance

For the hybrid model:

DAcc,i : Difference in accuracy for the i-th sample

DAcc,i : Mean difference in accuracy

sD,Acc : Standard deviation of the differences in accuracy
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FIGURE 4

Confusion matrices of different models, where (a) confusion matrix of DenseNet121 model, (b) confusion matrix of Xception model, (c) confusion
matrix of inception model, (d) confusion matrix of InceptionV2&DenseNet121 model, (e) confusion matrix of Xception&DenseNet121 model.

tAcc : t-value for accuracy

DAcc,i = AccHybrid,i−max
(
AccDenseNet121,i, AccXception,i

)
(7)

DAcc =
1
n

n∑
i = 1

DAcc,i (8)

sD,Acc =

√√√√ 1
n− 1

n∑
i = 1

(
DAcc,i−DAcc

)2 (9)

tAcc =
DAcc

sD,Acc/
√

n
(10)

To determine the statistical significance of the hybrid model’s
performance improvement, we calculate several key metrics. First,
DAcc,i measures the accuracy difference between the hybrid model
and the best individual model for each sample, showing how
much better the hybrid model performs on a sample-by-sample
basis. The mean difference in accuracy DAcc averages these
differences across all samples, indicating overall improvement.
The standard deviation of these differences sD,Acc assesses the
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FIGURE 5

Accuracy and loss curves for different models.

TABLE 2 Comparison between two proposed approaches (with and without SMOTE Technique).

Accuracy (%) F1Score (%) AUC (%) Precision (%) Recall (%)

Alzheimer’s dataset

Proposed approach (without SMOTE) 88.6 89.1 90.3 90 89.4

Proposed approach (with SMOTE) 99.85 99.85 99.9 99.85 99.88

The bold values are the values of the proposed model.

variability of the improvements, with a low value suggesting
consistent superiority. Finally, the t-value tAcc assesses the statistical
significance of the mean accuracy improvement by comparing
DAcc to its standard error. A high t-value confirms that the
observed improvement in accuracy is statistically significant,
demonstrating the hybrid model’s robustness and superiority over
the individual models.

3.3 The model structure

The architecture combines feature extraction from these pre-
trained models with additional convolutional layers, upsampling,
and fully connected layers to optimize the model’s performance.

Below is a detailed explanation of each sub-module in the
architecture presented by Figure 2:
• Freezing DenseNet121 Model:

The DenseNet121 model is used as a feature extractor,
but its weights are "frozen", meaning they are not updated
during training. This allows the model to leverage pre-
trained weights without modifying them. The output of
the frozen DenseNet121 model is passed to the next
convolutional layer.

• Freezing Xception Model:
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TABLE 3 Comparison between the proposed model and state
of the art models.

References Model
name/type

Dataset
used

Accuracy
(%)

Nancy Noella
and
Priyadarshini,
2023

Bagged
Ensemble
Learning
Classifier

AD−PD 90.3

Lubis et al., 2022 Naïve Bayes +
Invariant
Moment

AD MRI 94

Hussain and
Shiren, 2023

SVM +
Watershed

Segmentation

ADNI 96.25

Shobha and
Karthikeyan,
2024

AlexNet AD MRI 94.5

Zhang et al.,
2024

Attention
Mechanism +

GAN

MRI−PET 89.9

The proposed
Model 2024

DenseNet121+
Xception

ADMRI 99.85

The bold values are the values of the proposed model.

TABLE 4 Comparison between the proposed model and state of the art
models applied on MRI images from ADNI dataset.

References Model
name/type

Accuracy (%)

Hazarika et al., 2023 Hybrid LeNet + AlexNet 93.58

Khan et al., 2023 Segmentation + Modified
VGG

97.89

Balasundaram et al.,
2023

Hippocampus
Segmentation + CNN

94

Aborokbah, 2024 UNet + EfficientNet-B0 98.12

Esam and Mohammed,
2024

Modified CNN 97

Shaffi et al., 2024 Ensemble Classifier 96.52

Neethu and Roopa
Jayasingh, 2024

MCLSO + SpinalNet 92.6

The proposed model
2024

DenseNet121+Xception 99.85

The bold values are the values of the proposed model.

Similarly, the Xception model is also frozen and used as
a feature extractor. The frozen model’s output is sent to a
convolutional layer.

• Convolution Layer (for DenseNet121 and Xception):

After extracting features from both DenseNet121 and
Xception, these features are further processed by
convolutional layers. The convolution layers apply
filters to extract spatial hierarchies from the feature maps.
These layers help in refining the features obtained from the
pre-trained models.

• UpSampling Layer (for DenseNet121 and Xception):

Once features are processed through the convolution
layers, the UpSampling layers increase the resolution of the
feature maps (essentially scaling them up). This is likely
done to match the spatial dimensions of the two models’
feature maps before concatenating them.

• Concatenated Layer:

The outputs from the upsampled DenseNet121 and
Xception models are concatenated along the channel
dimension. This step fuses the feature representations
from both models, combining their strengths to
form a more comprehensive feature set for the next
stage of the model.

• Fully Connected Layer 1:

After concatenation, the fused feature map is passed
through a fully connected (dense) layer. This
layer serves to learn and capture more abstract
relationships in the combined features, transforming
the spatial features into more compact, higher-level
representations.

• DropOut:

Dropout is applied to prevent overfitting by randomly
setting a fraction of the input units to 0 during training.
This forces the model to not rely on any one specific feature
and improves generalization.

• Fully Connected Layer 2:

Another fully connected layer follows the dropout. This
layer further transforms the features, likely preparing
them for the final classification. It’s part of the final
layers that learn high-level representations to differentiate
between the classes.

• Global Average Pooling:

Global average pooling reduces the spatial dimensions
of the feature maps by averaging them across each
channel. This reduces the dimensionality of the output,
producing a single value per feature map (or channel).
It replaces traditional fully connected layers before the
output, promoting model generalization and reducing the
risk of overfitting.

• Output Layer:

The final output layer produces the class probabilities
for the input data. This layer takes the reduced
representation from the global average pooling layer
and outputs a prediction, likely using softmax activation
for multi-class classification in Alzheimer’s disease MRI
image classification.
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FIGURE 6

Exploring the impact of Gaussian Blur (σ = 0.2, 0.4, 0.6), salt-and-pepper noise (p = 0.05, 0.1, 0.15), and speckle noise (σ = 0.1, 0.2, 0.3) on
Alzheimer’s dataset image classification for each class, where (a) impact of noises in Class 1, (b) impact of noises in Class 2, (c) impact of noises in
Class 3, (d) impact of noises in Class 4.

4 Results

Several evaluation criteria, including accuracy, precision, recall,
F1-score, and AUC, are used to assess how well deep learning
architecture’s function.

Where the percentage of accurate predictions to all occurrences
analyzed is measured by the Accuracy metric. The positive patterns
that are accurately predicted from all of the projected patterns in a
positive class are measured using the precision metric. The fraction
of positive patterns that are correctly categorized is measured by
recall, and the harmonic mean of recall and accuracy values is
represented by the F1score metric. These evaluation metrics are
more explained by Hossin and Sulaiman (2015).

Recall =
TP

TP+FN
(11)

Precision =
TP

TP + FP
(12)

F1Score = 2.
Precision.Recall

Precision+ Recall
(13)

Accuracy =
TN + TP

TN + TP + FN + FP
(14)

The Area Under the Curve (AUC) is an effective metric having
values in the interval [0, 1]. Since there is perfect discrimination
between instances of the two classes, the AUC is equal to 1.
Conversely, when all Benign cases are classified as Malignant, the
AUC equals 0 and vice versa.

In this part, we use Kaggle platform with GPU P100 service for
training and testing our proposed model to increase the running
time of our code. The computer used for the experiments includes
the following features: Windows 10 Professional, 64-bit operating
system, Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz 2.21 GHz
8 GB Memory, x64-based processor. The specific approach is
started by resizing images to 120x120 format. The next step
consists of applying Data Augmentation on Alzheimer’s Dataset
to get accurate results, this stage is followed by using the SMOTE
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TABLE 5 Impact of various noise types on Alzheimer’s dataset image
classification: all predicted classes match real classes.

Corresponding figure Noise type and parameter

Figure 6a (Class 1) Gaussian Blur (σ = 0.2, σ = 0.4, σ = 0.6)

Salt-and-Pepper (p = 0.05, p = 0.1, p = 0.15)

Speckle Noise (σ = 0.1, σ = 0.2, σ = 0.3)

Figure 6b (Class 2) Gaussian Blur (σ = 0.2, σ = 0.4, σ = 0.6)

Salt-and-Pepper (p = 0.05, p = 0.1, p = 0.15)

Speckle Noise (σ = 0.1, σ = 0.2, σ = 0.3)

Figure 6c (Class 3) Gaussian Blur (σ = 0.2, σ = 0.4, σ = 0.6)

Salt-and-Pepper (p = 0.05, p = 0.1, p = 0.15)

Speckle Noise (σ = 0.1, σ = 0.2, σ = 0.3)

Figure 6d (Class 4) Gaussian Blur (σ = 0.2, σ = 0.4, σ = 0.6)

Salt-and-Pepper (p = 0.05, p = 0.1, p = 0.15)

Speckle Noise (σ = 0.1, σ = 0.2, σ = 0.3)

Technique to solve the problem of imbalanced classes (The
“Moderate Demented” class contains only 52 images). After that, we
apply freezing on the first 40 layers of DenseNet121 and Xception
models (freeze technique is used to make architecture more robust
and to avoid overfitting), then merging them as explained in
“The novel planned strategy” Part. The “Adam” optimization
(Kingma and Jimmy, 2014) applied and learning rate parameter
is fixed to 0.0001, the loss function is “categorical_crossentropy”,
the activation function chosen is “RELU’ in hidden layers and
“Softmax” is applied to the output layer. The first Fully Connected
layer have 2048 nodes and the second one have 1048 nodes, each
one is followed by dropout layers (with dropout rate equal to
0.3). We use EarlyStopping (with “patience” parameter equal to
7), and L2 Regularization (with waited decay equal to 0.001) to
avoid overfitting problem. Note that the number of epochs for
train was fixed to 20. The performance of the suggested model
in comparison to the normal and hybrid pretrained models is
displayed in Table 1. Figure 1 illustrated the different classes into
the dataset, while Figure 2 show the proposed model’s architecture
with details also explained in sub section 3.3. According to
Figure 3, the Xception model outputs a tensor of shape (None, 4,
4, 2048), while DenseNet121 produces a tensor of shape (None,
3, 3, 1024). To harmonize these feature maps, each output is
passed through a convolutional layer with 3 filters of size (3,
3), reducing the channel dimensions to 3, resulting in tensors
of shape (None, 4, 4, 3) for Xception and (None, 3, 3, 3) for
DenseNet121. These are then upsampled to (None, 12, 12, 3)
using factors of (3, 3) and (4, 4) respectively, aligning their spatial
dimensions. Finally, the upsampled feature maps are concatenated
along the channel axis, resulting in a fused tensor of shape (None,
12, 12, 6). Figure 4 show respectively the confusion matrixes of
DenseNet121, Xception, InceptionV3, InceptionV3&DenseNet121
and Xception&DenseNet121 of Alzheimer’s Dataset. Take note that
there are fewer False Positive and False Negative cases in the
confusion matrix of Xception&DenseNet121.

The performance of various models is greatly impacted by
the critical usage of data augmentation strategies in this study.
Figure 5 illustrated different curves of respectively accuracy
and loss of each model in case of train and validation cases.

Table 1 shows a comparison, in term of evaluation metrics,
between different models: DenseNet121, Xception, InceptionV3,
DenseNet121&InceptionV3 and DenseNet121&Xception. In
Table 2, We offer an additional comparison in the AD Dataset
between EM with and without the SMOTE approach. We compare
results of the proposed model with some state-of-the-art ones
in Table 3. In Table 4, we also make a comparison between our
proposed model and some other models using the same dataset
(MRI images from ADNI dataset). In Figure 6 and Table 5,
we investigate the robustness of our Alzheimer’s dataset image
classification model through the injection of various types of noise.
The goal is to understand how different types and levels of noise
affect the performance of the model across different classes. We
applied three types of noise to the original images: Gaussian Blur
with standard deviations (σ) of 0.2, 0.4, and 0.6 to simulate different
levels of blurring, Salt-and-Pepper Noise with probabilities (p)
of 0.05, 0.1, and 0.15 to mimic pixel corruption, and Speckle
Noise with standard deviations (σ) of 0.1, 0.2, and 0.3 to simulate
multiplicative noise. By experimenting with multiple parameter
values for each type of noise, we aimed to observe their effects on
the classification performance of our model. Our findings highlight
the importance of evaluating model robustness against various
types and levels of noise. Understanding the impact of noise on
classification accuracy is crucial for developing more robust and
reliable deep learning models for Alzheimer’s disease diagnosis.
To ensure the robustness and generalizability of the proposed
model, a 5-fold cross-validation approach was employed in Table 6.
The dataset was randomly split into five subsets, and the model
was trained and evaluated five times, each time using a different
subset as the test set while the remaining four subsets were used
for training. This process was implemented with shuffling enabled
to ensure randomness and a fixed seed for reproducibility. After
each fold, the accuracy was recorded, and the final performance
was assessed by calculating the mean and standard deviation of
the accuracy across all folds. The cross-validation yielded a mean
accuracy of 99.72% and a standard deviation of 0.0141. To gain
deeper insights into the discriminative power of the features
extracted by the proposed model, dimensionality reduction
techniques such as UMAP was applied. Specifically, features were
extracted from the penultimate layer of the suggested model and
then projected into a 2-dimensional space using UMAP (Uniform
Manifold Approximation and Projection). UMAP was configured
with 5 neighbors and a minimum distance of 0.3 to balance local
and global structure in the data, while preserving the cluster
structure. Figure 7 shows the resulting 2D scatter plot in the
proposed model, in DenseNet121 model and the Xception model.

5 Discussion

The proposed hybrid model integrates DenseNet121 and
Xception architectures, leveraging their unique strengths to
improve the classification of Alzheimer’s disease using MRI images.
The approach centers on freezing the pre-trained layers of these
models to retain their pre-learned features while preventing the
model from becoming overly complex or prone to overfitting. This
combination of architectures is particularly appropriate for medical
imaging tasks due to their proven success in domains such as breast
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TABLE 6 Cross-validation technique.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean Standard deviation

Alzheimer’s Dataset

Cross-validation accuracies 99.66 99.85 99.74 99.65 99.7 99.72 0.0141

FIGURE 7

UMAP projection of extracted features: visualization of class separation in each model.

and brain image classification. By freezing the pre-trained layers,
the model benefits from the robust feature extraction capabilities
of DenseNet121 and Xception while still allowing the new layers to
adapt specifically to Alzheimer’s MRI data.

An essential enhancement to this approach is the application
of SMOTE (Synthetic Minority Over-sampling Technique), which
addresses class imbalance by generating synthetic examples for
underrepresented classes. This results in a more balanced training
dataset, allowing the model to better generalize across all classes.
The model’s performance improvement, especially in correctly
classifying minority classes, demonstrates the effectiveness of
SMOTE in reducing bias and improving overall accuracy. This
method enhances the model’s ability to identify complex features
in the minority classes, which is crucial for a more equitable
classification performance. Moreover, the model’s ability to remain
robust under noisy conditions, such as Gaussian blur and
salt-and-pepper noise, showcases its reliability for real-world
medical imaging applications. Noise is an inherent challenge
in medical images due to factors like equipment limitations

or patient movement, and a model that can maintain high
accuracy under these conditions is vital for clinical deployment.
The robustness observed across various noise types highlights
the model’s resilience, underscoring its potential for reliable
clinical use. The hybrid model’s architecture, which balances
DenseNet121’s dense connections and Xception’s computational
efficiency through depthwise separable convolutions, contributes
to an effective extraction and processing of features from
MRI images. This synergy between the two models results
in a powerful classifier that captures complex patterns while
maintaining reasonable computational costs. Nevertheless, the
increased complexity and resource demands present challenges,
particularly in terms of training time and memory requirements.
Future research could explore optimization techniques like pruning
and quantization to reduce model size and improve efficiency
without sacrificing performance.

In conclusion, the proposed hybrid model effectively
capitalizes on the strengths of both DenseNet121 and
Xception while addressing key challenges like class imbalance
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and noise robustness. While the model exhibits improved
performance and robustness, future work should focus on further
optimization and exploration of complementary architectures
to enhance computational efficiency and scalability for broader
clinical application.

6 Conclusion and recommendations

6.1 Conclusion

In this long work, we used a large Alzheimer’s disease (AD)
dataset to carefully assess the performance of five different models:
DenseNet121, Xception, InceptionV3, DenseNet121&InceptionV3,
and DenseNet121&Xception. Beyond a simple evaluation, we
also suggested new, altered architectures for DenseNet121,
InceptionV3, MobileNetV2, and InceptionV3. The most notable
accomplishment is the exceptional accuracy of our model, which
achieved an astounding 99.85% inside the AD dataset. This notable
enhancement marks a major advancement in our newly suggested
architecture’s ability to classify and detect things. By utilizing
these cutting-edge neural networks, we support the continuous
endeavors to improve patient care and early AD diagnosis. Our
results highlight the potential utility of transfer learning techniques
in medical imaging, underscoring the significance of ongoing
innovation in the battle against Alzheimer’s.

6.2 Recommendations

– Further Validation on External Datasets: Although the
model performs remarkably well on the current AD dataset,
it is essential to validate its generalizability by testing it on
external and more diverse datasets, particularly those from
different populations or imaging sources.

– Incorporate Explainability Methods: For clinical adoption,
incorporating explainability techniques (e.g., Grad-CAM,
SHAP) would help provide insights into the decision-making
process of the model, ensuring transparency and fostering
trust among healthcare professionals.

– Optimization for Real-Time Deployment: Investigating
lightweight versions of the hybrid model could make it more
suitable for real-time deployment in clinical settings where
computational resources may be limited. This could involve
pruning, quantization, or the integration of more efficient
architectures like MobileNetV2.

– Broader Clinical Applications: Given the success in
Alzheimer’s classification, the hybrid architecture could be
adapted and tested for other neurodegenerative diseases, such
as Parkinson’s and Huntington’s disease, thereby broadening
its impact on early diagnosis across a range of conditions.

– Ongoing Research in Transfer Learning: Continuous
refinement of transfer learning approaches should be pursued
to stay ahead in the rapidly evolving field of medical imaging.

Exploration of novel pre-training strategies on larger, more
diverse medical datasets could further boost performance in
specialized tasks.
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