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Top-down visual attention is a fundamental cognitive process that allows

individuals to selectively attend to salient visual stimuli in the environment.

Recent empirical findings have revealed that gamma oscillations participate

in the modulation of visual attention. However, computational studies face

challenges when analyzing the attentional process in the context of gamma

oscillation due to the unstable nature of gamma oscillations and the complexity

induced by the layered fashion in the visual cortex. In this study, we propose

a layer-dependent network-of-networks approach to analyze such attention

with gamma oscillations. The model is validated by reproducing empirical

findings on orientation preference and the enhancement of neuronal response

due to top-down attention. We perform parameter plane analysis to classify

neuronal responses into several patterns and find that the neuronal response

to sensory and attention signals was modulated by the heterogeneity of the

neuronal population. Furthermore, we revealed a counter-intuitive scenario that

the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses

to the attentional input. By modification of the original model, we confirmed

layer 6 plays an indispensable role in such cases. Our findings uncover the layer-

dependent dynamics in the cortical processing of visual attention and open

up new possibilities for further research on layer-dependent properties in the

cerebral cortex.

KEYWORDS

visual attention, mean-field approximation, gamma oscillation, cortical column,

orientation preference, quadratic integrate-and-fire model, winner-take-all

1 Introduction

Top-down attention is the ability to deliberately filter sensory information from the

environment and focus on one feature out of many others. In the scope of visual attention,

features like location, orientation, and object are encoded by anatomically distributed

neuronal populations (Serences and Yantis, 2006). The dynamic competition of neuronal

populations in the visual cortex is modulated by top-down signals from cortical areas

(Katsuki and Constantinidis, 2014; Paneri and Gregoriou, 2017). Our study focuses on the

selective attention of oriented bars in the receptive field, but the approach we proposed can

be employed to study the dynamics of other cortical functions.

The microcircuits in the neocortex are organized in a columnar structure

(Mountcastle, 1957), which is typically a six-layered architecture for each column.
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In the primary visual cortex, the cortical column has been found to

strongly respond to bar stimuli presented in the receptive field if its

orientationmatches the preferred orientation of the column (Hubel

and Wiesel, 1959; Reynolds et al., 1999). Moreover, if a second

bar is aligned with a non-preferred orientation, the neuronal

response of the column will be largely suppressed. Interestingly,

if visual attention is prompted to the bar with the preferred

orientation, the neuronal response of the column will recover to

the original level. By comparing the level of firing rates across

different sensory and attentional inputs, an ordered pattern of

neuronal response can be observed (Reynolds et al., 1999; Luck

et al., 1997). Themathematical analysis of the neuronal dynamics in

columns is inherently challenging due to the layered structure and

heterogeneity of neurons in neuronal populations (Lengler et al.,

2013), even though the physiological information of connectivity

between columns is available. Large-scale simulations of finite-

size neuronatudy the dynamical properties of visual attention

(Corchs and Deco, 2002; Wagatsuma et al., 2011; Potjans and

Diesmann, 2014). However, larges-scale simulation cannot ignore

the fluctuations around fixed points owing to the finite-size

effect (Pikovsky and Ruffo, 1999) and random connections in the

neuronal network (Landau and Sompolinsky, 2018). To analytically

and systematically investigate the complex interactions between

layers and populations, large-scale simulation was not enough, but

mean-field approximationmodels in analytical formwere required.

In the case of heterogeneous neuronal populations, the widely

used leaky integrate-and-fire (LIF) model in large-scale simulation

(Wagatsuma et al., 2011; Potjans and Diesmann, 2014) cannot

be dimension reduced using Lorentzian ansatz due to the leaky

term. Therefore, a layer-dependent method that can intrinsically

bridge single neuronal dynamics and population-level dynamics

becomes indispensable.

Recent advances in neuroscience have shed light on the role

of gamma oscillations mediating working memory (Pina et al.,

2018), signal discrimination (Masuda and Doiron, 2007) as well as

attentional processes in the visual cortex (Tiesinga and Sejnowski,

2009; Goddard et al., 2012; Bosman et al., 2012; Magazzini and

Singh, 2018; Han et al., 2022). Gamma oscillations often occur

in response to tonic constant current (Whittington et al., 1995;

Bartos et al., 2007; Akao et al., 2018) and are thought to reflect

the coordinated firing of large populations of neurons (Buzsáki

and Wang, 2012; Litwin-Kumar and Doiron, 2012). Models for

gamma oscillations range fromWilson-Cowan (Keeley et al., 2019)

for a recent review) to very detailed models with conductance-

based neurons (Traub et al., 1997). In between these two extremes,

are models of individual neurons whose spiking dynamics are

generated with simple first-order differential equations such as

the leaky integrate-and-fire and the quadratic integrate-and-fire

(QIF) models. Large networks of QIF neurons have a nice property

in that under certain assumptions on the heterogeneity (e.g.,

parameters are taken from a Lorentzian distribution) and coupling

(generally all-to-all), they can be reduced to an exact mean-field

equation for each population (Montbrió et al., 2015; Dumont

et al., 2017; Devalle et al., 2017; Bick et al., 2020). Thus, this

intermediate level of modeling gamma oscillations allows one

to carefully explore networks of networks in a computationally

efficient manner.

In this paper, we start with a multi-columnar architecture

including two cortical columns in the visual cortex and the neurons

in populations are modeled by the QIF model. The model for

mean-field neuronal dynamics is derived using the Lorentzian

ansatz in order to analyze the response of the cortical columns

to different sensory and attention conditions. Previous empirical

studies on cats (Hubel and Wiesel, 1959) and monkeys (Luck et al.,

1997; Reynolds et al., 1999; Bosman et al., 2012; Rohenkohl et al.,

2018; Bogadhi et al., 2018) have demonstrated that attentional

modulation can increase or decrease the firing rate or gamma-

band power in the visual cortex, depending on the conditions

in visual attention tasks. we reproduce these empirical findings

of orientation preference and the attentional enhancement of

neuronal response to validate our computational model. Then

we perform parameter analysis to investigate the oscillations

exhibited in themulti-columnarmodel and group them into several

patterns. Furthermore, we investigate the modulation effect of

visual attention on multiple layers and find an exceptional case

that layer 2/3 and layer 5 show opposite responses to attentional

input. Finally, by modifying the original multi-columnar model,

we confirm that layer 6 plays an indispensable role in such layer-

specific dynamics.

2 Materials and methods

2.1 Multi-columnar architecture

We studied a multi-columnar model of two columns in the

visual cortex, depicted in Figure 1A. The structure (Wagatsuma

et al., 2011; Potjans and Diesmann, 2014) and initial parameter

settings (Thomson and Morris, 2002; Thomson et al., 2002;

Binzegger et al., 2004) were based on previous studies. Each layer

contained an excitatory population and an inhibitory population

of neurons. The numbers of neurons in each population (NY )

were listed in Table 1. Arrows in Figure 1A represent major

neuronal connections between populations. Only connections with

probabilities larger than 0.04 were shown; other sparse connections

were not shown. The intra-column connection probabilities of

the pathway from population Y to population X PXY were listed

in Table 2. There were also inter-column connections, projecting

from the excitatory population of layer 2/3 to the inhibitory

population of the same layer in the other column. The connection

probability Pinter was set to 0.1. Neuronal populations in layer 4

of the columnar model received bottom-up sensory input, while

layer 2/3 and layer 5 received top-down attention input. The

projection probability of sensory and attention inputs were listed

in Table 3. We mimicked visual stimulus and attention prompt

of horizontal and vertical bars in the experiment as in Figure 1B.

Each column had its distinct preferred orientation of bar stimuli.

Neuronal populations receiving sensory input in the column were

more activated if the preferred stimulus was presented and less

activated with the unpreferred stimulus. The sensory input to the

preferred column was ten times larger than to the unpreferred

column and the sensory inputs of two bar stimuli are independent

(Wagatsuma et al., 2011; Potjans and Diesmann, 2014). As the

model in Figure 1A, column 1 (C1) on the left preferred the
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FIGURE 1

(A) The structure of the multi-columnar model. The red triangles with the letter E denote excitatory populations, while the blue circles with the letter

I denote inhibitory populations. The pathways originating from excitatory populations are represented in red indicating an excitatory role to target

populations, while the pathways originating from inhibitory populations are represented in blue indicating an inhibitory role to target populations. (B)

Five conditions mimic sensory and attention inputs in experiments. The gray background denotes the receptive field, black bars denote visual stimuli

and the green ellipse denotes attention prompting. (C) Time course of firing rate (FR) of population 1L5E under five conditions. 1back,E and 1back,I are

set to be 0.3 and 0.02, respectively. The upper five figures are schematic diagrams of five conditions in which only sensory and attention projections

are shown. The lower five figures show the firing rate of population 1L5E under five conditions respectively. Areas shaded in the gray background

indicate the condition with no stimulus while areas shaded in the white background indicate conditions with sensory and/or attention input. (D) Time

courses under five conditions are put together to compare the neuronal response to di�erent sensory and attention inputs. The color of each time

course is the same as in (C). (E) Envelopes of time courses within the same axes as (D). The color of each time course is the same as in (C).

horizontal bar, and column 2 (C2) on the right preferred the vertical

bar. As Figure 1B shows, five conditions are investigated in this

paper, which are: S1 (only bar stimulus preferred by column 1

presented), S2 (only bar stimulus preferred by column 2 presented),

S1S2 (both bar stimuli presented), S1S2 + A1 (both bar stimuli

presented while the attention goes to the bar preferred by column

1), S1S2+A2 (both bar stimuli presented while the attention goes to

the bar preferred by column 2).

TABLE 1 Number of neurons in each population (Wagatsuma et al., 2011).

Population NY Population NY

L2/3E 10341 L2/3I 2917

L4E 10957 L4I 2739

L5E 2425 L5I 532

L6E 7197 L6I 1474
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TABLE 2 Connection probabilities PX
Y (Wagatsuma et al., 2011).

From

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

To L2/3E 0.1184 0.1552 0.0846 0.0629 0.0323 0.0 0.0076 0.0

L2/3I 0.1008 0.1371 0.0363 0.0515 0.0755 0.0 0.0042 0.0

L4E 0.0077 0.0059 0.0519 0.1453 0.0067 0.0003 0.0453 0.0

L4I 0.0691 0.0029 0.1093 0.1597 0.0033 0.0 0.1057 0.0

L5E 0.1017 0.0622 0.0411 0.0057 0.0758 0.3765 0.0204 0.0

L5I 0.0436 0.0269 0.0209 0.0022 0.0566 0.3158 0.0086 0.0

L6E 0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0401 0.2252

L6I 0.0364 0.0010 0.0034 0.0005 0.0277 0.0080 0.0658 0.1443

2.2 Neuron model

The neuronal populations in the multi-columnar model were

composed of Quadratic-Integrate-and-Fire (QIF) neurons (Kotani

et al., 2014). The i-th neuron in population X had membrane

potential Vi,X , and was subject to the internal dynamics, synaptic

current, and external input current Ii,X , leading to

C
dVi,X

dt
= gL,X

(Vi,X − VR)(Vi,X − VT)

VT − VR

−
∑

Y

gXY (Vi,X − Vsyn,Y )+ Ii,X , (1)

where C = 1(µF/cm2) is the membrane capacitance, and gL,X is

the leak conductance, set to 0.08 (mS/cm2) for excitatory neurons

and 0.1 (mS/cm2) for inhibitory neurons. VR = −62 (mV) is the

resting potential and VT = −55 (mV) is the firing threshold. gXY
is the synaptic conductance of the pathway from population Y to

population X. Vsyn,Y is the reversal potential, set to 0 (mV) for

excitatory neurons and −70 (mV) for inhibitory neurons. Ii,X =

Iback,X + Isens,X + Iattn,X is the external input current, where Isens is

bottom-up sensory input, Iattn = 0.02 (mA/cm2) is the top-down

attention input, and Iback is the background current. The ratio of

Isens and Iattn to excitatory and inhibitory population is determined

by the projection probability listed in Table 3. The background

current Iback,X obeys a Cauchy-Lorentzian distribution

fX(Iback,X) =
1

π

1back,X

(Iback,X − Īback,X)2 + 1back,X

, (2)

where Īback,X and 1back,X are the center and width of the

distribution, respectively. The ratio of background current to the

excitatory and inhibitory population is set to be Īback,E : Īback,I =

1 : 0.8. The dynamics of the synaptic conductance gXY obeys the

following equation

dgXY
dt

= −
1

τd,Y
gXY + ḡXY · PXY ·

NY
∑

k=1

NS
∑

i=1

δ(t − ti,Y(k)), (3)

where τd,Y is the decay time of population Y, set to be 2 (ms)

for excitatory populations and 5 (ms) for inhibitory populations

TABLE 3 Projection probability of sensory and attention inputs

(Wagatsuma et al., 2011).

From

Sensory Attention

To L2/3E 0.0 0.1

L2/3I 0.0 0.085

L4E 0.0983 0.0

L4I 0.0619 0.0

L5E 0.0 0.1

L5I 0.0 0.085

L6E 0.0 0.0

L6I 0.0 0.0

TABLE 4 Peak conductance gX
Y
(ms/cm2) (Brunel and Wang, 2003; Bartos

et al., 2001; Gupta et al., 2000).

From

Excitatory
population

Inhibitory
population

To Excitatory population 4.069× 10−3 2.672× 10−2

Inhibitory population 3.276× 10−3 2.138× 10−2

(Brunel and Wang, 2003). ḡXY is the peak conductance of the

pathway from population Y to population X, and the values

are listed in Table 4 to match physiologically plausible values.

δ(·) is the delta function representing spikes transmitted from

other neurons, and ti,Y(k) is the time of i-th spike of the k-

th neuron in the population Y. Therefore, the Equations 1–3

describe the microscopic dynamics of each neuron in the multi-

columnar model.

2.3 Mean-field approximation model

To study the collective behavior of neuronal populations and

the interactions among populations, as well as eliminate the

stochastic firing of neurons, we employ the Lorentzian ansatz

(Montbrió et al., 2015) to the system and derive a mean-field
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approximation model for each population as follows. Firstly, to

simplify the notation of the QIF model, we define ζX , ηX and κX as

ζX =
gL,X

C(VT − VR)
, (4a)

ηX = −
gL,X(VT + VR)

C(VT − VR)
, (4b)

κX =
gL,XVTVR

C(VT − VR)
. (4c)

Applying Equation 4 to Equation 1, we get

V̇i,X = ζXV
2
i,X + ηXVi,X + κX −

∑

Y

gXY (Vi,X − Vsyn,Y )+ Ii,X .

(5)

Consider the thermodynamic limit of infinite neuronal

population NX −→ ∞, we drop the indices and introduce

phase density function ρX(VX|IX , t) to population X. At time

t, the probability that neurons exist which membrane potential

is between V and V + 1V with the input current of

IX , is
∫ v+1v
v ρX(VX|IX , t)dVX . Since the number of neuron

is conservative, ρX(VX|IX , t) satisfies the following continuity

equation

∂

∂t
ρX(VX|IX , t) = −

∂

∂VX

[

ρX(VX|IX , t)V̇X

]

. (6)

According to the Lorentzian ansatz (LA) (Montbrió et al., 2015;

Akao et al., 2019), the following conditional density function in

the form of Lorentzian function completely describes the low-

dimensional dynamics of the neuronal population X:

ρX(VX|IX , t) =
f (IX)

π

xX(IX , t)
[

VX − yX(IX , t)
]2

+ xX(IX , t)2
, (7)

where xX(IX , t) is the time-dependent half-width and yX(IX , t)

is the center of the distribution. Together, they describe the

low-dimensional dynamics of the phase density function ρX .

Apply Equation 7 to Equation 6, we obtain the low-dimensional

dynamics as

∂

∂t
xX(IX , t) = 2ζXxX(IX , t)y(IX , t)+ ηX(t)xX(IX , t)

−
1

C
xX(IX , t)

∑

Y

gXY , (8a)

∂

∂t
yX(IX , t) = −ζXxX(IX , t)

2 + ζXyX(IX , t)
2 + ηX(t)yX(IX , t)

+ κX(t)+
1

C

[

∑

Y

gXYVsyn,Y − yX(IX , t)
∑

Y

gXY

]

+ IX .

(8b)

Consider a complex variable ωX(IX , t) ≡ xX(IX , t) + iyX(IX , t)

and apply it to Equation 8, the dynamics of low-dimensional

behavior can be combined as

∂

∂t
ωX(IX , t) = iζXωX(IX , t)

2 + ηX(t)wX(IX , t)+ κX(t)

+
1

C

[

∑

Y

gXYVsyn,Y − ωX(IX , t)
∑

Y

gXY

]

+ IX . (9)

Now we introduce two collective observables: firing rate rX(t)

and mean membrane potential vX . The firing rate rX(t) can be

derived by integrating the flow velocity in the dynamics of the

phase density function for all IX at the point VX = Vpeak, where

Vpeak is the firing threshold. If we set Vpeak approaches infinity as

Vpeak −→ ∞, rX(I, t) can be computed by

rX(I, t) = ρX(VX −→ ∞|IX , t)V̇X(VX −→ ∞|IX , t). (10)

Apply Equations 5, 7 to Equation 10, one can obtain the simple

identity

rX(I, t) =
f (IX)

π
xX(IX , t). (11)

The total firing rate r(t) comes to be

rX(t) =
1

π

∫ ∞

−∞

xX(IX , t)f (IX)dIX . (12)

On the other hand, yX(IX , t) is the mean of the membrane

potential for each IX value:

yX(IX , t) = p.v.

∫ ∞

−∞

ρX(VX|IX , t)VXdVX . (13)

Note that this integral is defined by the Cauchy principal value

p.v.
∫∞

−∞
h(x)dx = limR−→∞

∫ R
−R h(x)dx, in order to eliminate the

uncertainty of the integral. Then mean membrane potential is then

vX(t) =

∫ ∞

−∞

yX(IX , t)fX(IX)dIX . (14)

Since IX = Iback,X + Isens,X + Iattn,X and Iback,X follows

a Lorentzian distribution, as Equation 2, the integrals in

Equations 12, 14 can be analytically evaluated over the closing

contour in the complex IX plane using the residue theorem. Thus

the firing rate rX and mean membrane potential vX are determined

by the value of ω at the pole of f (IX) in the lower half IX plane:

πrX(t)+ ivX(t) = ω(ĪX − i1X , t) (15)

Finally, we evaluate Equation 9 at IX = Īback,X+Isens,X+Iattn,X−

i1back,X , and thus obtain Equation 16 as

drX

dt
= 2ζXrXvX + ηXrX −

rX

C

∑

Y

gXY +
ζX

π
1back,X , (16a)

dvX

dt
= ζXv

2
X + ηXvX + κX −

π2

ζX
r2X

+
1

C

(

∑

Y

gXYVsyn,Y − vX
∑

Y

gXY

)

+ Īback,X + Isens,X + Iattn,X , (16b)

dgXY
dt

= −
1

τd,Y
gXY + ḡXY · PXY · NY · rY , (16c)

where rX and vx are the firing rate and mean membrane potential

of population X. The ratio of three current sources is set to be

Isens : Iattn : Īback = 9 : 3 : 16 (Wagatsuma et al., 2011). Therefore, the

Equation 16 described the mean-field dynamics of each population
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in the multi-columnar model. The simulations in this paper were

all based on Equations 4, 16. All the simulations are integrated by

the Euler method, with a time step 1t = 0.01(ms), using MATLAB

(R2022b, https://www.mathworks.com/products/matlab.html). For

simulations except for Figure 2D, we simulated 10 s of neuronal

activity. The MATLAB code for simulation and analysis is available

at https://github.com/Shawnzty/multicolumn.

3 Results

To confirm the validity of our multi-columnar model

composed of the neuronal population with mean-field

approximation, we first reproduced the empirical findings about

orientation preference and the enhancement of neuronal response

due to visual attention. In order to validate our model, which

consists of a neuronal population with mean-field approximation,

we first sought to replicate the observed phenomena of orientation

preference and the amplification of neuronal response due to

visual attention.

3.1 The firing rate of the excitatory
population in layer 5 shows an ordered
pattern

Layer 5 of the visual cortex was found to be an integration

center for the signal from all other layers of the cortical column

and project the integrated signal to other regions of the neocortex

or subcortical structures (Kasper et al., 1994; Tang and Higley,

2020; Shai et al., 2015). Therefore, we focused on the firing rate

of the excitatory population in layer 5 of column 1 (hereafter

referred to as 1L5E). For all conditions, both with and without

sensory and attention input, the population 1L5E generates gamma

oscillations whose center frequency is 30 (Hz) (Figure 1C). Note

that we simulated the system for 5 s before applying sensory

and/or attention input, so the influence of initial conditions on the

dynamics could be eliminated. In Figure 1D, we aligned all the time

courses in the same axes and found that the center frequency didn’t

change with the condition of sensory and attention input. Only the

amplitudes of oscillation were changed due to sensory and attention

input. For condition S1, since the sensory input was preferential

to column 1, 1L5E was activated and the amplitude of oscillation

reached a higher level than the steady state. For condition S2,

the sensory input was preferential to column 2, so the sensory

input to column 1 was ten times less than condition S1; because

of the inhibition from column 2 to column 1, the amplitude of

oscillation decreased to a lower level than the steady state. When

both sensory inputs were presented (condition S1S2), due to the

inhibition from column 2 to column 1, the amplitude of oscillation

reached a medium level, suppressed from condition S1. However,

if the attention input was prompted to the preferred stimulus

(condition S1S2 + A1), the amplitude of oscillation was increased to

a higher level than condition S1S2. Finally, the attention prompted

to column 2 increased the inhibition from column 2 to column

1 resulting in a lower level than the condition S1S2. To compare

the amplitude of oscillations, we aligned the envelope of firing rate

under five conditions in the same axes (Figure 1E) and found an

ordered pattern of firing rates:

S1, S1S2 + A1 > S1S2 > S1S2 + A2, S2.

This ordered pattern of the amplitude of firing rates agreed with

empirical findings on cat (Hubel and Wiesel, 1959), primate (Luck

et al., 1997; Reynolds et al., 1999; Bosman et al., 2012; Rohenkohl

et al., 2018; Bogadhi et al., 2018) and other computational

simulations (Wagatsuma et al., 2011; Potjans and Diesmann, 2014).

3.2 The ordered pattern only appears in a
restricted region in the parameter plane of
heterogeneity

The heterogeneity of neurons played a pivotal role in

influencing characteristics of gamma oscillations (Wang and

Buzsáki, 1996; Litwin-Kumar and Doiron, 2012; So et al., 2014)

and attention (Zdorovtsova et al., 2023; Daitch and Parvizi, 2018).

Notably, studies have shown that the dispersion of background

input currents directly shaped neuronal heterogeneity even within

the same type (Montbrió et al., 2015; Zheng et al., 2021). In our

study, we manipulated the dispersion of background current in

our model by two parameters 1back,E and 1back,I , which denote

heterogeneity of excitatory and inhibitory populations respectively.

In light of the observed ordered pattern, we investigate the

potential relationship between its appearance and the heterogeneity

of background input current. Of the many possible parameters

to vary, we chose the dispersion of the background inputs

(heterogeneity) as we found that these are a major factor in

determining the existence of gamma oscillations (see, e.g. Figure

4 of Devalle et al., 2017).

Figure 2A is the parameter plane of (1back,E, 1back,I) divided

by five colored regions. In the blue region, the heterogeneity of

background current for the inhibitory populations was relatively

large while heterogeneity for the excitatory populations was

relatively small on the parameter plane, resulting in the inhibition

being strong and no oscillations were observed, as Figure 2B. Since

the system usually took <2 s to reach the new steady state under

sensory and/or attention input, we showed the dynamics up to 3 s

after applying external input (t= 5 – 8(s)) in the figures hereafter.

While oscillations in neuronal response were observed in the

green region, the firing rate in Figures 2C–2E, H showed that four

patterns of the amplitudes were possible with sensitive parameter

selection and none of them were in same ordered pattern as

Figures 1D, E. The amplitude spectrum in the bottom panel of

Figure 2C was obtained by performing a Fourier transform on the

firing rate data under condition S1S2 + A1 in the last second,

the same as all the amplitude spectra later. The only peak of the

frequency amplitude was in the gamma band and the amplitude in

the slower frequency band was always zero. The parameter setting

at letter D on the plane showed nontrivial activities as the raw

firing rate in Figure 2D. For all conditions, the population did not

immediately reach a new steady state, but took a very long time.

The power spectrum showed different patterns of firing rate at the

new steady state under sensory and/or attentional input. Besides,

we observed that the firing rate at the new steady state contained
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FIGURE 2

Parameter plane analysis shows di�erent patterns of neuronal response. (A) Parameter plane of 1back,E and 1back,I. (B–H) Firing rate of the population

1L5E with parameter settings corresponding to the location of letters marked on (A). (B) only shows the raw data of the firing rate. (D) shows the raw

data and power spectrum of the firing rate under each condition respectively. (C, E–H) show raw data, envelope, and power spectrum of firing rate

where the power spectrums are for condition S1S2 + A1. Dashed lines in the amplitude spectra denote f = 25 (Hz). Parameter setting of the picked

points: (B, 1back,E = 0.05, 1back,I = 0.04); (C, 1back,E = 0.11, 1back,I = 0.04); (D, 1back,E = 0.15, 1back,I = 0.04); (E, 1back,E = 0.2, 1back,I = 0.04); (F,

1back,E = 0.35, 1back,I = 0.04); (G, 1back,E = 0.2, 1back,I = 0.02); (H, 1back,E = 0.2, 1back,I = 0.0095).

both beta and gamma frequency bands. Figure 2E showed another

amplitude pattern with beta and gamma frequency bands, with

two peaks in the gamma band. Note that the parameter setting

of the letter H was in the green region beside the boundary of

multiple regions. Figure 2H showed that the neuronal responses

kept exhibiting fluctuations at the level of the original steady

state. The dominant frequency was in the gamma band but the

component in the beta band was non-zero.
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The parameter setting in the red region can reproduce an

ordered pattern similar to the one in Figure 1E. The amplitude

spectrum in Figure 2G shows two peaks of frequency amplitude

in the gamma band and no amplitude in lower frequency bands.

In the yellow region, as Figure 2F showed, the order of oscillation

amplitude was consistent with the ordered pattern as Figures 1E,

2G, while the beta frequency exists in the firing rate.

3.3 Layers 2/3 and 5 can exhibit opposite
responses to attentional input

Several models of neuronal networks have been proposed to

elucidate the underlying mechanisms of selective activation and

attentional enhancement in the visual cortex (Reynolds et al.,

1999; Boynton, 2005; Buia and Tiesinga, 2008). The winner-take-all

(WTA) theory, particularly, has been instrumental in capturing the

dynamic competition between columns (Fukai and Tanaka, 1997;

Wagatsuma et al., 2011). The WTA theory can be summarized

as when inter-column inhibition dominates over intra-column

inhibition, a unique winner survives in the competition. Large-

scale simulation of neuronal networks confirmed the winner-take-

all dynamics in the attention selection of stimulus competition

mediated by gamma oscillations (Börgers et al., 2008). According

to the previous study based on similar settings (Wagatsuma et al.,

2011), the WTA of the multi-columnar model happened in layer

2/3, where the firing rate of the excitatory population in layer

2/3 (hereafter refer to the one in column 1 as 1L2/3E) exhibits

characteristic dynamics. As can be seen in Figure 1A, in our model,

inter-column interactions are mediated only by layer 2/3, so it is

expected that if WTA is necessary for an ordered pattern, we should

not be able to get the ordered pattern if WTA across layer 2/3 does

not hold.

Surprisingly, it is possible to maintain an ordered pattern in

layer 5 and get anti-WTA behavior in layer 2/3 (that is, S1S2+A2 >

S1S2 + A1). Figure 3 depicts various behaviors of layer 2/3 in

the parameter plane under 2 scenarios: A attention only and A

attention plus stimulus to both columns (S1S2) (see Figures 3A, B).

In the green regions of the parameter plane (Figure 3D), attention

in column 1 leads to increased activity in column 1 and decreased

activity in column 2 because the excitation in the attended column

engages the inhibition in the unattended column. The yellow region

in Figure 3F corresponds to parameters that show the normal

ordered pattern in layer 5. When equal sensory inputs are given

to both columns and attention is given to column 1, then we expect

that the layer 2/3 excitatory activity in column 1 will exceed that

of column 2 because of the WTA property. However, as seen in

Figure 3E, there is a small blue region of parameter space where

S1S2 + A1 reduces the excitatory activity in 1L2/3E while S1S2+A2

enhances it. There is a small intersection of this area with that

in Figure 3E, shown in Figure 3G where the normal response to

attention occurs in layer 5 but anti-WTA takes place in layer 2/3

(labeled the concurrent case). Subfigures in the top row of Figure 4

show the responses of excitatory cells in column 1 layer 2/3 under

the S1S2 and S1S2 + A1 or A2 stimulus conditions at each of the

four points shown in the parameter planes in Figures 3D–G. The

bottom row shows the behavior of layer 5 in all five conditions.

Recall that the normally ordered pattern in layer 5 is

S1, S1S2 + A1 > S1S2 > S1S2 + A2, S2.

In particular, Figures 4D, H show that in the S1S2 + A1

condition excitatory activity increases in layer 5 column 1 (H) but

decreases in layer 2/3 (D). That is,WTA in layer 2/3 is not necessary

for an ordered pattern in layer 5 and, in fact, the ordered pattern

occurs even if layer 2/3 shows anti-WTA behavior.

3.4 Layer 6 is crucial in the opposite
responses of layers 2/3 and 5 to attentional
input

To get some understanding of the concurrent scenario, in

Figure 5, we look at the normalized excitatory and inhibitory

firing rates in each of the 4 layers across the six conditions. In

particular, we focus on Figures 5C, D corresponding to the normal

ordered pattern and the concurrent cases from Figures 3F, G. For

each neuronal population, we normalized the firing rate value by

using the maximum and minimum values across all six conditions,

including the activity before the stimulus and five types of stimulus.

Three observations can be extracted from the line chart of the

normalized firing rate.

1. It was evident that the response trends of both excitatory and

inhibitory populations vary considerably across layers. This

implied a layer-dependent modulation of neuronal excitability,

rejecting the notion that the column of neuronal clusters

operates as a single, uniform entity. Rather, our observations

suggested a more nuanced interplay of activity, where different

layers exhibited unique responses to distinct sensory and

attention conditions.

2. We discovered that the response trends of excitatory and

inhibitory populations were not necessarily in the same

direction or opposite. Specifically, an increase in the firing

rate of the excitatory population due to a change in condition

did not unambiguously predict the behavior of the inhibitory

population, which can be either more activated or inhibited.

3. Since we are interested in the concurrent case that 1L2/3E

and 1L5E exhibiting opposite responses to attentional input,

we focused on Figures 5C, D. We observed that the excitatory

population in Layer 6 (1L6E, represented by the solid yellow line

in the upper panels) exhibits inverse changes from S1S2 + A1 to

S1S2+A2 in parameter settings indicated by square and triangle

markers. This observation suggests the possibility that layer 6

may influence the occurrence of the concurrent case.

To investigate whether layer 6 was necessary for the concurrent

case, we adjusted the architecture outlined in Figure 1A by

removing layer 6 from the multi-columnar model (Figure 6A). To

achieve so, we set the connection probabilities between layer 6 and

other layers to be zero, while keep all the other parameters the same

as the original setting in Table 2. We confirmed the existence of the

ordered pattern in the revised model, as the region shaded in yellow

in Figure 6C. A typical time course of 1L5E presenting an ordered

pattern was shown in Figure 6G. However, we found neither anti-

WTA dynamics nor concurrent case in the revised model and the
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A B C

D E F G

FIGURE 3

A concurrent case that 1L2/3E and 1L5E exhibit opposite responses to attentional input. (A, B) Multi-columnar model under conditions with only

attention input (A) or with both sensory and attention input (B). All connections among neuronal populations are not shown. (C) Venn diagram shows

the relation of various state sets. Circle, plus, triangle, and square markers represent typical parameter settings that result in four cases. (D–G)

Parameter planes of 1back,E and 1back,I. The colors of scatter plots are consistent with those used in (C). Parameter setting of the picked points: (Circle,

1back,E = 0.12, 1back,I = 0.04); (Plus, 1back,E = 0.08, 1back,I = 0.02); (Square, 1back,E = 0.3, 1back,I = 0.02); (Triangle, 1back,E = 0.46, 1back,I = 0.045).

A B C D

E F G H

FIGURE 4

Time courses of firing rate of population 1L2/3E and 1L5E with parameter settings represented by markers in Figures 3D–G. (A, E) corresponds to the

parameter setting at the circle marker. (B, F) corresponds to the parameter setting at the plus marker. (C, G) corresponds to the parameter setting at

the square marker. (D, H) corresponds to the parameter setting at the triangle marker. The upper and lower panels of figures are raw data and the

envelope of firing rate, respectively. Line colors correspond to five conditions in Figure 1C.

responses of 1L2/3 and 1L5E to attentional input were always in the

same direction within the ordered pattern scenario (Figures 6D–

G). One possible reason for this can be seen by referring to the

pathways in Figure 1A. The heightened level of excitatory activity

in layer 6 during S1S2 + A1 increases the inhibitory activity in

layer 4 (compare Figures 5C, D) which projects directly to layer 2/3
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A B C D

FIGURE 5

Normalized firing rate across input conditions for each neuronal population. (A–D) The normalized firing rate of excitatory (upper panels) and

inhibitory (lower panels) populations in column 1 with parameter settings represented by markers in Figures 3D–G. Line and dot colors denote layers

in column 1, and the solid or dot line denotes the excitatory or inhibitory population, corresponding to those in the legend.

excitatory neurons and lowers their activity. To test this hypothesis,

we blocked the pathway from L6E to L4I in the original model and

simulated the modified model (Figure 7A). To achieve so, we set

the connection probabilities between these two populations to be

zero (PL4IL6E = 0), while keep all the other parameters the same as

the original setting in Table 2. Similar to the result obtained in the

layer 6 removed model in Figure 6, we found the ordered pattern

on the parameter plane but both the anti-WTA case and concurrent

case disappeared (Figures 7B, C). The responses of 1L2/3 and 1L5E

to attentional input were always in the same direction within the

ordered pattern scenario (Figures 7D–G). Since layer 6 only has

strong projections to excitatory and inhibitory populations in layer

4 (Figure 1A), we also tested the existence of concurrent cases with

pathway L6E to L4E blocked (Figure 8A). To achieve so, we set

the connection probabilities between these two populations to be

zero (PL4EL6E = 0), while keep all the other parameters the same

as the original setting in Table 2. We found a region of anti-WTA

dynamics (Figure 8C), a region of the ordered pattern (Figure 8D),

and further an interaction region of the concurrent case (Figure 8E)

when pathway from L6E to L4E was blocked. The attention input

can either increase (Figure 9A) or decrease (Figure 9B) the firing

rate of the population L2/3E depends on the parameter settings.

The ordered pattern only appears in a restricted region, but not

on the entire plane (Figures 9E, F). What’s more, the firing rate of

1L2/3E can achieve a higher level either with an attentional input

(Figure 9C) or without an attentional input (Figure 9D), while

1L5E maintained an ordered pattern of firing rate (Figures 9G, H).

Therefore, we confirmed the indispensable role of the pathway from

L6E to L4I for the occurrence of the concurrent case.

4 Discussion

4.1 Model significance and comparison
with previous models

Columns in the visual cortex have an intrinsic preference

for oriented bars of specific orientation when presented in

their receptive fields; multiple oriented bars induce competition

between neighboring columns (Hubel and Wiesel, 1959; Reynolds

et al., 1999). In order to explore this in the context of gamma

oscillations, we have developed amulti-layermodel withmean-field

approximated neuronal populations for each cortical column in the

visual cortex.

The network-of-networks feature of cortical columns presents

difficulties for computational studies, especially in the context

of gamma oscillations. Large-scale simulation of neuronal

populations cannot avoid the finite-size effects, and the unstable

nature of gamma oscillations causes stochastic dynamics in

simulation. We referred the parameter settings of structure and

connectivity of previous large-scale simulation studies (Wagatsuma

et al., 2011; Potjans and Diesmann, 2014), but the proposed model

were different in single neuron model, heterogeneity in neuronal

populations and mean-field approximation. The referred studies

studied LIF model with identical neurons while the current study

considered QIF model with heterogeneous neurons. This is due

to the need of performing mean-field approximation to neuronal

populations and further systematically investigate the attentional

modulation under the changing parameters.

We proposed a layer-dependent network-of-networks

approach with experimentally obtained connectivity. The

mesoscopic model for each heterogeneous neuronal population,

as Equation 16, is derived from the QIF model using Lorentzian

ansatz. The mean-field approximation of identical neuronal

populations composed of leaky integrate-and-fire (LIF) neurons

was explored in previous studies (Brunel, 2000; Schwalger

et al., 2017). However, the Lorentzian ansatz used to reduce

the dimensionality of the heterogeneous population cannot be

employed in the LIF model due to the shape of the leaky term.

We extended the LIF model, based on linear transfer function,

to the QIF model and employed Lorantzian ansatz to capture the

collective dynamics of heterogeneous neuronal populations. The

dynamics of each population is described by three equations: firing

rate rX , mean membrane potential vX , and synaptic conductance

gXY . The entire multi-columnar system consists of 16 populations

including two columns, four layers for each column, and two

populations in each layer. The derived mesoscale model enables us

to investigate dynamics with gamma oscillation which cannot be

achieved by conventional reduced models such as Wilson Cowan

model (Wilson and Cowan, 1972). It is known that the firing of
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FIGURE 6

The ordered pattern exists when layer 6 is removed in the

multi-columnar model, but neither the anti-WTA case nor the

concurrent case exists. (A) Multi-columnar model with layer 6

removed. (B, C) Parameter plane of 1back,E and 1back,I. The colors of

scatter plots are consistent with those used in Figures 3D–G. (D–G)

Time courses of firing rate of population 1L2/3E and 1L5E with

parameter settings represented by markers in (B, C). The upper and

lower panels of subfigures are raw data and the envelope of firing

rate, respectively. Line colors correspond to five conditions in

Figure 1C. Parameter setting of the picked points: (Circle,

1back,E = 0.2, 1back,I = 0.02); (Square, 1back,E = 0.3,

1back,I = 0.02).

neurons in the visual cortex representing orientation preference is

associated with gamma oscillation (Bosman et al., 2012; Han et al.,

2022). The derived model allows us to investigate the relationship

between orientation preference with attentional enhancement and

the gamma oscillations in a layer-dependent manner.

A

B C

D E

F G

FIGURE 7

The ordered pattern exists when the pathway from L6E to L4I is

blocked in the multi-columnar model, but neither the anti-WTA

case nor the concurrent case exists. (A) Multi-columnar model with

the pathway from L6E to L4I blocked. (B, C) Parameter plane of

1back,E and 1back,I. The colors of scatter plots are consistent with

those used in Figures 3D–G. (D–G) Time courses of firing rate of

population 1L2/3E and 1L5E with parameter settings represented by

markers in (B, C). The upper and lower panels of subfigures are raw

data and the envelope of firing rate, respectively. Line colors

correspond to five conditions in Figure 1C. Parameter setting of the

picked points: (Circle, 1back,E = 0.2, 1back,I = 0.022); (Square,

1back,E = 0.2, 1back,I = 0.03).

4.2 Heterogeneity of neuronal population
in the context of gamma oscillation

Rather than assume homogeneous neuronal populations, since

the heterogeneity among the population strongly affects the
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FIGURE 8

The concurrent case exists when the pathway from L6E to L4E is

blocked in the multi-columnar model. (A) Multi-columnar model

with the pathway from L6E to L4E blocked. (B–E) Parameter plane

of 1back,E and 1back,I. The colors of scatter plots are consistent with

those used in Figures 3D–G. Parameter setting of the picked points:

(Circle, 1back,E = 0.12, 1back,I = 0.04); (Plus, 1back,E = 0.08,

1back,I = 0.02); (Square, 1back,E = 0.3, 1back,I = 0.02); (Triangle,

1back,E = 0.42, 1back,I = 0.044).

characteristics of gamma oscillations (Wang and Buzsáki, 1996;

Litwin-Kumar and Doiron, 2012; So et al., 2014) and attention

function (Zdorovtsova et al., 2023; Daitch and Parvizi, 2018), we

manipulated the distribution dispersion of background current

Iback in the same type of neurons, which results in diverse

activity of neurons in each population. As the parameter plane

(Figure 2A) represents, the system exhibited a stationary state

(blue region) with large 1back,I (inhibitory background current

dispersion) and small 1back,E (excitatory background current

dispersion). With this level of heterogeneity, the network is unable

to synchronize into a coherent rhythm, similar to the behavior

of the Kuramoto model with large natural frequency dispersion

(Kuramoto, 1984). Heterogeneity of inhibitory neurons has been

previously shown to induce asynchronous behavior and suppress

oscillations (Wang and Buzsáki, 1996; Pazó and Montbrió, 2014;

Zheng et al., 2021). The situation is more complex for excitatory-

inhibitory systems because the coupling between the excitatory

units and inhibitory units as well as the topology of the network

impacts the synchronization (Montbrió and Pazó, 2018). Here,

we found a wide region in the heterogeneity parameter plane

where the ordered pattern of visual attention was in the context

of gamma oscillations. We showed that gamma oscillations help

the attentional control of orientation selectivity (Magazzini and

Singh, 2018), which complements and provides new insights to

the previous computational results obtained by the numerical

simulation of large-scale neuronal populations (Wagatsuma et al.,

2011; Potjans and Diesmann, 2014). In addition, we found not only

gamma oscillations but also slower (beta frequency) oscillations

and an aperiodic oscillatory state in a considerable parameter

region of 1back,I and 1back,E, as shown in Figure 2A. Such results

were consistent with a recent study that found mixed gamma

and beta/alpha rhythms across cortical layers in a gradient motif

(Mendoza-Halliday et al., 2024), and a previous study of network

models (i.e. couplings of clustered populations) (Litwin-Kumar and

Doiron, 2012).

In Litwin-Kumar et al. (2016), the authors modeled an

inhibitory/excitatory network and introduced heterogeneity among

the inhibitory cells by dividing them into heterogeneous subtypes:

parvalbumin (PV), somatostatin (SOM), and vasointestinal

peptide-expressing (VIP) interneurons. The subtypes were

distinguished by properties such as threshold, adaptation,

connectivity, and rise-time of the synapses. Their work reproduced

and predicted the roles of different subtypes in several phenomena

including disinhibition, surround suppression, and modulation

of orientation tuning all in the context of steady-state responses.

The heterogeneity in our networks arises from the driving current;

in a sense, the equivalent of setting different firing thresholds for

our neurons. Although our work considered only a unimodal

distribution for Iback, the region of the ordered pattern became

wider with the increase of 1back,I (Figure 2A), demonstrating the

importance of the diversity in the characteristics of interneurons

for signal discrimination in the visual cortex. The same Ott-

Antonsen approach that we have used here could be employed

to study other aspects of heterogeneity on the firing patterns and

rhythms of neurons in cortical networks (Gast et al., 2024) as well

as the possibility of adding other neuronal subtypes.

4.3 The ordered pattern induced by visual
attention beyond WTA theory

Previous studies provided a winner-take-all theory to explain

the attentional selection in the visual cortex (Fukai and Tanaka,

1997; Wagatsuma et al., 2011; Chen, 2017; Lee et al., 1999; Zénon

et al., 2009). While this theory provided a substantial framework, it

overlooked the intricacies of network structures and homogenized

the layer-specific inputs and connectivity. Instead, we took the

internal structure of the cortical column into consideration so that

it was possible to investigate the winner-take-all theory in a more

detailed manner. The number of neurons in each population and

the connection between layers were determined by experimental

findings. Furthermore, our model employed layer-specific input

and fixed connectivity (Table 2) between populations. Thus our

quantitative and layer-dependent approach found a concurrent

case that kept an ordered pattern of layer 5 (Figure 4H) while the
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FIGURE 9

Time courses of firing rate of population 1L2/3E and 1L5E with parameter settings represented by markers in Figures Figures 8B–E. (A, E)

corresponds to the parameter setting at the circle marker. (B, F) corresponds to the parameter setting at the plus marker. (C, G) corresponds to the

parameter setting at the square marker. (D, H) corresponds to the parameter setting at the triangle marker. The upper and lower panels of figures are

raw data and the envelope of firing rate, respectively. Line colors correspond to five conditions in Figure 1C.

dynamics of layer 2/3 did not conform toWTA theory (Figure 4D).

The emergence of opposite responses of 1L2/3E and 1L5E in the

presence of sensory input suggested a complex interplay beyond

WTA dynamics.

Our analysis revealed the response of excitatory and inhibitory

populations to the sensory and attention input varied considerably

across layers. This finding demonstrated that neuronal clusters

in a column did not operate uniformly but exhibited distinct

response profiles in different layers, such as were reported in animal

electrophysiology and human fMRI studies (Senzai et al., 2019;

Olman et al., 2012). The network-of-networks approach proposed

in this paper is also a promising method beyond the visual cortex.

Since layer-specific features were also found in rodent auditory

cortical microcircuits (Zempeltzi et al., 2020) and human prefrontal

cortex for working memory (Finn et al., 2019), our method could

be a useful tool to study the general layer-dependent feature in the

cerebral cortex.

Finally, we performed the simulation of the multi-columnar

model with layer 6 removed or the pathway from layer 6 to layer

4 blocked and confirmed the indispensable role of layer 6 for the

concurrent case of opposite responses in layer 2/3 and layer 5.

Layer 6 in the mouse’s primary visual cortex was found to modulate

the gain of sensory-evoked responses in upper layers, affecting

their activity without altering their response characteristics, thereby

acting as a crucial regulator in cortical visual processing (Olsen

et al., 2012; Vélez-Fort and Margrie, 2012).

Building upon our findings, future research can delve deeper

into the causes of the complex layer-dependent dynamics within

neocortical columns and elucidate the underlying mechanisms

driving their interactions. For example, bottom-up and top-down

selective attention are thought to be integrated by a winner-take-all

mechanism in spatial saliency maps (Koch and Ullman, 1985;

Gan et al., 2023), so our layer-dependent approach can be helpful

to model the computations on those maps. Such exploration

may uncover new facets of neuronal activity, paving the way for

more comprehensive models and understanding of the cortical

micro-circuitry.
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