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Introduction: Facial expressions have become a common way for interaction 
among humans. People cannot comprehend and predict the emotions 
or expressions of individuals through simple vision. Thus, in psychology, 
detecting facial expressions or emotion analysis demands an assessment and 
evaluation of decisions for identifying the emotions of a person or any group 
during communication. With the recent evolution of technology, AI (Artificial 
Intelligence) has gained significant usage, wherein DL (Deep Learning) based 
algorithms are employed for detecting facial expressions.

Methods: The study proposes a system design that detects facial expressions 
by extracting relevant features using a Modified ResNet model. The proposed 
system stacks building-blocks with residual connections and employs an 
advanced extraction method with quantum computing, which significantly 
reduces computation time compared to conventional methods. The backbone 
stem utilizes a quantum convolutional layer comprised of several parameterized 
quantum-filters. Additionally, the research integrates residual connections in the 
ResNet-18 model with the Modified up Sampled Bottle Neck Process (MuS-BNP), 
retaining computational efficacy while benefiting from residual connections.

Results: The proposed model demonstrates superior performance by overcoming 
the issue of maximum similarity within varied facial expressions. The system’s ability 
to accurately detect and differentiate between expressions is measured using 
performance metrics such as accuracy, F1-score, recall, and precision.

Discussion: This performance analysis confirms the efficacy of the proposed 
system, highlighting the advantages of quantum computing in feature extraction 
and the integration of residual connections. The model achieves quantum 
superiority, providing faster and more accurate computations compared to 
existing methodologies. The results suggest that the proposed approach 
offers a promising solution for facial expression recognition tasks, significantly 
improving both speed and accuracy.
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1 Introduction

Facial expressions are a form of non-verbal communication that arise from the movement 
of facial muscles to convey emotions or gestures (Khan, 2022). They serve as a means of 
expressing emotions, such as opinions, goals, intentions, and feelings. However, predicting 
human expression is challenging. Currently, computer applications are widely used to calculate 
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facial expression scores. Facial emotion recognition (FER) is essential 
for computer vision-aided applications to enhance human–
computer interactions.

Human faces exhibit a heterogeneous nature, with image 
variations caused by factors such as lighting and poses, which pose 
challenges for computer models to achieve robust and accurate 
predictions (Kaur and Singh, 2022). In FER, the process of associating 
different facial expressions with their corresponding emotions 
involves several steps, including image pre-processing, feature 
selection, and feature classification.

In traditional computer-based models, feature extraction and 
noise reduction have been carried out using polyp (Tsuneki, 2022) 
computer-aided classification models. Various feature extraction 
techniques have been used in existing research, such as principle 
component analysis (PCA) (Sachadev and Bhatnagar, 2022), linear 
discriminant analysis (LDA), individual component analysis (ICA), 
local dynamic pattern (LDP) (Makhija and Sharma, 2019), geometric 
feature mapping (Rosen et  al., 2021), and elastic bunch graph 
mapping (EBGM) (Oloyede et  al., 2020). Machine learning 
(ML)-based algorithms can be  used in the classification process. 
However, an additional feature engineering process is required for 
feature extraction. Deep learning (DL) (Karnati et  al., 2023), a 
sub-domain of ML algorithms, has been widely used in image 
classification tasks for enhanced accuracy. The training time for DL 
algorithms has been less than for ML algorithms. Convolutional 
Neural Network (CNN) (Mohan et al., 2020) is a significant algorithm 
used for image classification as part of ML and deep learning-based 
neural networks (Mungra et al., 2020; Mohan et al., 2021). Unlike the 
traditional models, CNN can extract abstract and accurate features. 
Automatic learning can be enhanced with CNN by adopting depth 
features (Karnati et al., 2022) and block architectures. Traditional 
CNN algorithms perform better for many image classification tasks 
like SVNN (Ghasemi et al., 2020), CIFAR (Yang et al., 2020), and 
MNIST (Kadam et al., 2020).

Quantum-based principles can be  integrated into ML models 
across various domains. Quantum-enabled ML models have been used 
in various algorithms such as quantum neural networks, quantum 
generative models, and quantum support vector machines. Artificial 
intelligence (AI)-based algorithms can be seen as a resemblance of the 
human brain with highly abstract functions. Significant AI models 
include capsule neural networks (Jiang et al., 2020), recurrent neural 
networks (RNN) (Mei et  al., 2019), feedforward neural networks, 
(Tacchino et al., 2020) and CNN. Quantum neural networks (QNN) 
employ quantum mechanisms to enhance the structure of neural 
networks (Wang et  al., 2022). The architecture can be  improved 
through the concepts of quantum interference attributes, quantum 
entanglement, and quantum parallelism. The performance of a 
traditional neural network can be  enhanced by implementing a 
conventional neural network with a quantum neural network. The 
hybrid architectures thus formed can be trained and tested on IBM 
Quantum Experience through Qiskit-enabled quantum computers.

QNNs have similarities with traditional neural models and have 
variation parameters. QNNs have several potential advantages. 
Quantum computers can outperform traditional models in speed for 
Fourier transform based on Shor’s factoring technique. Various 
computational issues can be  efficiently resolved with quantum 
contextuality and non-locality. Moreover, the learning process from a 
quantum dataset created by a quantum process is more efficient than 

a traditional dataset. In large-scale exponential datasets such as 
Hilbert space, the ability of QNN to extract adequate data from the 
quantum state is difficult (Li et al., 2022).

Moreover, quantum networks can perform massive parallel 
calculations and provide high-performance speed. An attention 
mechanism has recently been used in QNN models. An enhanced 
CNN model has been used in a DL computer vision application 
named AlexNet. It has performed data augmentation, convolutions, 
ReLU activations, max pooling, stochastic gradient descent (SGD) 
(Zheng et  al., 2019), and dropout. The issue with deep network 
training can be  mitigated by implementing modified blocks that 
ignore and leap over layers. This enhanced the training of large 
networks with fewer training errors.

Another ResNet model has been implemented for deep-coupled 
low-resolution neural networks (Kavitha et  al., 2022). The ResNet 
model has selected dissimilar features in various facial images. The 
image features have been projected with training from coupled 
mappings of branch networks. The models have been evaluated with 
SCface datasets and LFW datasets and have achieved remarkable 
accuracy for face verification (Singhal et al., 2021). Even though various 
face recognition models have been developed, high recognition rates 
are difficult to achieve with traditional feature classification algorithms.

Moreover, convolutional layers have the ability to handle only 
spatial features in images. Subtle and depth features are not properly 
recognized with CNN models. Furthermore, the abstract features 
extracted in the deep CNN model suffer from vanishing gradient 
issues as the number of layers increases. QNN algorithms provide 
correlated and probabilistic components, whereas performance is 
limited by dimensionality issues and computational bottlenecks. To 
resolve all the above issues, the MuS-BNP with ResNet-18 model 
named MuS-BNP is proposed.

The model uses the FER 13 dataset to predict the facial emotions 
in the images. Unlike traditional CNN and ResNet architecture, both 
shallow and deep features are extracted using a backbone stem 
integrated with a quantum convolutional layer. This layer incorporates 
various parameterized quantum filters, which replace the conventional 
kernel in traditional convolutional layers. The parameterized quantum 
filter is used to obtain quantum bit information in the local data space. 
It includes a double-bit gate that performs quantum entanglement on 
other quantum bits, enhancing the interaction between data points.

In this process, pixel value information is converted into quantum 
state information through quantum state encoding, achieved via a 
quantum rotation gate. The model retains the weight-sharing 
mechanism of the traditional kernel while incorporating quantum 
parameters to boost computational capabilities. Furthermore, the filter 
connection phases in the ResNet-18 model are linked with the 
MuS-BNP through residual connections, which significantly enhance 
computational performance. The major contributions of the proposed 
model, combining the MuS-BNP with the ResNet-18 architecture, are 
as follows:

 • To perform shallow and deep feature extraction through a 
backbone stem network and a modified quantum convolutional 
layer with parameterized quantum filters.

 • To perform facial emotion classification through the proposed 
MuS-BNP with the ResNet-18 model in less computation time.

 • To evaluate the efficacy of the proposed model with performance 
metrics such as accuracy, F1-score, recall, and precision.
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1.1 Contributions

QNNs are typically designed to handle large data efficiently, unlike 
conventional NNs (neural networks), which permit them to 
accomplish better classification. The present study proposes ResNet18 
architecture with a Modified Sampled Bottleneck Process for 
FER. Accordingly, residual connections have been utilized to associate 
the filter connection phase in the ResNet-18 model with the 
MuS-BNP. This architecture helps manage computational efficiency 
while leveraging the benefits of residual connections. Moreover, the 
residual version of the ResNet-18 model with the MuS-BNP has 
employed a simplified module.

Furthermore, the filter expansion layer that follows each module 
has been enlarged with the dimensions of the filter bank. For matching 
the input, it has been integrated before. Thus, it reimburses the 
minimization of dimensionality that is available in an n block.

Feature extraction has also been accomplished with the quantum 
convolutional layer. This is encompassed with various parameterized 
quantum filters. Similar to the convolution kernel present in the 
conventional convolutional layer, the parameterized quantum filter 
finds utility for information extraction that is present in individual 
quantum bits. In an image, the pixel value corresponding to the 
information has been altered into the quantum state information (that 
utilizes quantum state encoding) with the means of the quantum 
rotational gate R (ɵ). In accordance with this process, the procured 
information regarding the features of the image has been modified 
into the angle of the quantum rotatory gate.

Furthermore, for the quantum rotatory gate, the corresponding 
parameters have been afforded by each pixel value. The proposed 
method comprises exclusive quantum mechanical features and retains 
the weight sharing in the convolutional kernel. In the proposed 
technique, individual blocks have a self-regulating convolutional way 
of delivering information in the prior and middle layers.

The strategy introduces the concept of “pass-over,” a modification 
from the ResNet model that builds on modest blocks containing 
residual connections. The traditional residual building block has not 
utilized the information accessible in the middle layer. However, the 
proposed model incorporates pass-over information to capture all 
relevant features.

Thus, the proposed ResNets with QNNs possess the ability to 
generalize. Furthermore, by leveraging the effects of quantum-like 
superposition and entanglement, QNNs obtain several complex 
associations amongst the input features, resulting in model robustness 
and better generalization. The proposed QNN could effectively use 
quantum hardware, leading to the count of quantum gates needed for 
computation. Through this system, quantum gates needed for 
computation are also minimized. The proposed framework finds more 
complex and subtle features of an image than traditional algorithms, 
resulting in robust and optimal classification. Moreover, the proposed 
system performs functions on multiple qubits at concurrent times, 
permitting the effective parallel processing of the features from 
the images.

1.2 Paper organization

Section II of the paper deals with the review of existing literature 
for image recognition and classification through various ML models, 

DL models, and quantum-based DL models. The problems identified 
from the existing literature have also been discussed. Section III 
deals with the proposed flow, architecture, and mathematical 
formulations. Section IV deals with the dataset description, 
performance results, comparative results, and discussions. Section 
V deals with the conclusions and future recommendations of 
the work.

2 Review of literature

Image classification and emotion recognition can be performed 
in literature through various ML algorithms, DL algorithms, and 
enhanced quantum-based ML and DL algorithms. The section briefly 
deals with all conventional models, along with the gaps identified 
from the state of artworks.

A human emotion identification model has been proposed in the 
study (Alreshidi and Ullah, 2020) using two ML algorithms for image 
classification and detection. The model has been trained for real-time 
implementations offline. The faces in the image are initially recognized 
with AdaBoost cascade algorithms (Chen et  al., 2019). The facial 
features denoted by localized appearance data named Neighborhood 
Difference Features (NDF) (Kaplan et al., 2020) have been extracted. 
The association among various NDF patterns has been considered 
rather than intensity data. Even though the study calculates only seven 
facial emotions, it can be extended to more facial feature recognition. 
The model has been invariant to skin color, gender, orientation, and 
illumination. The evaluation results on Real-World Affective Faces 
(RAF) (Jiang et al., 2020) and Static Facial Expressions in the Wild 
(SFEW) (Liu, 2020) datasets have exhibited 24 and 13% accuracy 
enhancement, respectively.

Another study has been designed to identify microexpressions in 
human faces. Unsupervised micro-expression detection models based 
on ML algorithms have been suggested with extreme learning 
machines (ELMs). The algorithm offers higher performance and faster 
training ability than conventional algorithms. The ELM model has 
been compared with the Support Vector Machine (SVM) (Okwuashi 
and Ndehedehe, 2020) benchmark model for training time efficacy. 
Feature extraction has been performed through Local Binary Pattern 
(LBP) (Zhao et al., 2019) on apex-micro expression frame and Local 
Binary Pattern on Three Orthogonal Planes (LBP-TOP)-based 
division of image segments from video through spatiotemporal 
features. The model has been evaluated using a dataset from the 
Chinese Academy of Sciences (CASME II). The results indicate that 
ELM has a better prediction rate and less computation time than SVM 
(Adegun and Vadapalli, 2020).

The facial emotion intensity has been encoded by considering 
multimodal facial behavior for recognizing emotions from intensities. 
The intensity extraction has been performed with ML algorithms like 
Random Forest (RF) (Speiser et  al., 2019), SVM, and K-Nearest 
Neighbor (KNN) (Ma et al., 2020). Three feature extraction methods, 
namely local binary pattern (LBP), histogram of oriented gradients 
(HOG) (Zhou et al., 2020), and Gabor features (Munawar et al., 2021), 
have been implemented. Intensity calculation and emotion 
identification have been performed through a comparative analysis of 
three algorithms on CK, B DFE, JAFEE, and private datasets. Emotion 
recognition and facial intensity detection have been analyzed from the 
three algorithms (Mehta et al., 2019).
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Another fake image detection model has been developed with 
generative adversarial networks (GANs) that create fake images with 
low-dimension noise. Fake images have created various issues in social 
media networks. Contrastive loss-based fake image detection has been 
implemented using the DL-based DenseNet model. Pairwise 
information has been fed as input through a two-streamed network 
model. The training has been performed on the pairwise information 
to identify the fake input image (Hsu et al., 2020). DL-based CNN 
models have exhibited high computational efficiency and 
unsupervised feature extraction. CNN-based image prediction has 
been performed on the FER 2013 dataset. The visual geometric group 
(VGG) algorithm (Deepan and Sudha, 2020) has been used to design 
the model with various learning schedulers and optimization 
techniques. The model’s hyperparameters have been tuned, and the 
accuracy is 73.28% (Khaireddin and Chen, 2021).

High-level feature identification from facial images has been 
performed with a two-layer CNN model and sparse representation. 
The training data independent of feature space has been used to 
sparsely denote the facial features in the proposed Sparse 
Representation Classifier (SRC). Real-world classification and feature 
recognition depend on the proper details extracted from the faces of 
images. The results of the SRC-based feature selector have proved 
superior to other traditional classifiers (Cheng et  al., 2019). The 
transfer learning (TL)-based deep CNN (DCNN) model has been 
developed for accurate classification of images, considering shallow 
and depth features. The pertained DCNN model has been modified 
with a FER-compatible upper dense layer fine-tuned to recognize 
facial emotion. The pipelining technique has been adopted after dense 
layer training and tuning. The model has been tested on pertained 
DCNN models like DenseNet-161 (Song et al., 2019), Inception-v3, 
ResNet-152 (Gour et al., 2020), ResNet-50, ResNet-34, ResNet-18, 
VGG19 and VGG-16, along with JAFFE and KDEF, using a 10-fold 
cross-validation approach (Akhand et al., 2021).

Another study identified facial emotion from video sequences 
with global and local networks (Hu et  al., 2019). The cascaded 
CNN-LSTM networks and Local Enhanced Motion History Image 
(LEMHI) (Gavade et al., 2022) have been implemented for the above 
feature extraction. LEMHI has been used to aggregate the video 
frames as a single frame, which has been fed into the CNN for 
prediction. The global features have been extracted through an 
enhanced CNN-LSTM model as a classifier and feature extractor. The 
final prediction was performed using a late fusion fashion-based 
random search summation model. The information to decode the 
features from facial images has been obtained from each CNN layer. 
The experiments on MMI, CK+, and AFEW datasets have exhibited 
better integrated model performance than the individual model. The 
complexity of the CNN (Jing et  al., 2022) model depends on the 
activation function.

Although the ReLU activation function outperforms tanh and 
sigmoid in many cases, it still has limitations. The ReLu model returns 
zero value on negative inputs, which is termed neuronal necrosis. This 
has been eliminated by implementing a piecewise activation function 
in CNN. The new function has been compared with other functions 
such as softplus-ReLu, leaky ReLu, tanh, and Sigmoid (Zhang et al., 
2022). The comparison of results on the Keras framework utilizing the 
FER13 and JAFFE datasets exhibited better activation function 
performance (Wang et al., 2020). Another deep CNN-based model 
has been implemented with residual blocks for enhanced performance. 

The image labels have been initiated, followed by training on the 
proposed DNN model. Japanese Female Facial Expression (JAFFE) 
and Extended Cohn–Kanade (CK+) datasets have been used to test 
the accuracy of the model (Jain et al., 2019). Computational issues 
have been optimized through an unsupervised ensemble model of 
hybrid deep neural networks (HDNN) and an improved quantum-
inspired gravitational search algorithm (IQI-GSA). Quantum 
computing and gravitational search algorithm (GSA) have been 
combined to form IQI-GSA. The local trapping and stochastic features 
have been handled with the enhanced model. The temporal and 
relational components have been optimized by hybridizing recurrent 
and convolutional (HDCR-NN) neural models. The experimental 
analysis has been performed on KDEF and JAFFE datasets to exhibit 
the model’s efficacy (Kumar et al., 2021).

Transfer learning (Tammina, 2019) with a quantum-based hybrid 
approach has been implemented to ensure security and reliability. The 
fake images have been classified using the ResNet-18-based quantum 
neural model. The model has been trained on various depths, and the 
reliability of vision-based models is tested (Ciylan and Ciylan, 2021; 
Kumar et al., 2022). The kernel-based quantum CNN model has been 
implemented to diagnose pneumonia early. The hybrid model can 
detect pneumonia from chest X-ray images obtained from a public 
repository. High classification accuracy has been obtained with the 
inclusion of a quantum model (Tayba et al., 2022). A parameterized 
circuit-based quantum deep convolutional neural network (QDCNN) 
model has been proposed in another study to classify image emotions. 
Quantum-classical training has been implemented through variational 
quantum algorithms. Parameters have been updated through 
QDCNN, and complexity has been analyzed using GTSRB and 
MNIST datasets to evaluate validity and feasibility (Li et al., 2020).

Tensorflow quantum-based (Lazzarin et al., 2022) QCNN models 
have been implemented for binary image classification. Box-counting-
based fractal features, multi-scale entanglement, and the 
renormalization ansatz model have been used for downscaling, 
followed by classification through hybrid QCNN on the breast cancer 
dataset (Chen et al., 2022). Particle swarm optimization with binary 
encoding (BQPSO) based on quantum principles has been adopted to 
perform binary encoding of image emotions. A CNN model has been 
used to classify the features extracted from the hybrid model. The 
efficacy has been tested with seven benchmark datasets (Li et  al., 
2019). A quantum Hopfield network has been designed by combining 
quantum principles with traditional neural networks. The model has 
been applied to image recognition in a conventional computer, and its 
feasibility has been validated (Liu et  al., 2020). Quantum Neural 
Networks (QNNs) have been evaluated for negational summary and 
binary classification in another algorithm on Google’s quantum 
computing platform (Dong et al., 2022).

Moreover, the FER is considered critical for several 
implementations. However, existing studies have shown better results 
in facial recognition. Moreover, the FER systems have shown 
enhanced accuracy in ML and DL methods compared to the 
conventional FER methods (Borgalli and Surve, 2022).

2.1 Problem identification

Various problems identified from the extensive literature have 
been discussed as follows:
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 • ML algorithms for facial expression recognition suffer from 
dynamic head motion, illumination variants, and noise 
sensitivity. Moreover, spatial and temporal features have not been 
integrated in the study. Furthermore, the work has not considered 
facial deformation and geometric features (Alreshidi and 
Ullah, 2020).

 • Deep CNN-based models can handle spatial features alone in the 
FER 13 dataset (Jain et al., 2019). The vanishing gradient problem 
has occurred with an increase in the number of CNN layers. 
Training CNN-based models such as VGG, ResNet, and 
Inception requires significant computational power and large 
datasets (Akhand et al., 2021).

 • Feature extraction capability in conventional shallow CNN 
models has been limited in the case of high-resolution images (Li 
et al., 2019).

3 Proposed methodology

The proposed study aimed to recognize facial expressions by 
employing quantum computing alongside the ResNet-18 model and 
the MuS-BNP architecture. However, many existing studies have 
intended to perform facial expression recognition. The accuracy of the 
already existing study is less and needs further improvement. In the 
present study, the information present in the qubits has been 
manipulated so that it is capable of producing more quality solutions 
to complex problems quickly. Hence, it is clear that quantum 
computing has been used to address difficult problems. The 
classification of quantum images based on facial expressions using 
modified ResNet architecture is shown in Figure 1.

The FER 13 dataset has been loaded and preprocessed. The 
process of preprocessing transformed the raw data into a usable 
format. The transformed data were then split into training and testing 
sets. A train test split has been used for the model validation 
procedure, which stimulates the model’s performance for new and 
unseen data, and the outcome of the train test split is trained data. The 
trained data was classified using the proposed ResNet-18 model with 
the MuS-BNP, which produces the trained model. Both the trained 
model and test data were used to predict the result. Performance 
metrics such as precision, recall, F-measure, and accuracy were used 
to assess the proposed model.

3.1 Quantum architecture

When QCF is exercised on an input tensor, a feature map is 
produced by each QCF due to the spatial transformation of local 
subsections present in the input tensor using QCF. However, in 
contrast to the modest element-wise matrix multiplication that 
traditional convolutional filters have applied, QCF has used a quantum 
circuit to transform structured and random input data. In the present 
study, a quantum circuit, which is randomly generated, has been used 
in QCF, which is different from the designed structure. By using QCF, 
the process can be formalized and transforms the classical data as 
mentioned below:

 1. Single QCF, which used random quantum circuit ‘q’ and a local 
subsection of images, has been taken as input from the 

dataset u . Each input has been defined as xu , and the matrix 
size of each xu  is n by n,where n 1.>

 2. Though many ways are available to encode xu  at the initial state 
of q, for each QCF, one specific encoding function e has been 
chosen, the encoded initialization state ( )x nix as i enc img=  
has been defined.

 3. After applying the quantum circuit to the initialized state ix, an 
output quantum state ox has been attained, which is the result 
of quantum computation where the relationship between ix 
and ox is given as ( ) ( )( )x x no q i q enc img= = .

 4. Though many ways are available with a finite number of 
measurements to decode the information of ox, to confirm the 
consistency of QCF output with other similar output taken 
from regular classical convolution, the final decoded state has 
been given as ( ) ( )( )( )x x nf dec o dec q enc img= =  where d 
refers to the decoding function, and xf  refers to a scalar value.

 5. The complete transformation of ( )( )( )ndec q enc img  has been 
defined as QCF transformation at this point, in which Q of xu
, aka ( ), , ,x nf Q img enc q dec= . A single QCF visualization has 
been shown in Figure 2, which exhibits the process of encoding, 
applied circuits, and decoding.

 6. The number of classifications that happened when the classical 
convolutional filter was applied as an input from dataset u , the 
required number of computations is given as ( )2O n , placing 
the computational complexity squarely in P. It is not considered 
in the case of computational complexity Q . It has emerged 
from the complexity of random quantum circuit transformation 
q, where e and d  show efficient performance on classical 

devices. Figure 2 illustrates the step-by-step QCF procedure 
in detail.

The present study has highlighted the novelties obtained from the 
QNN algorithm: the quantum convolutional layer generalizability 
inside a usual CNN architecture, the quantum algorithm’s ability to 
be used on practical datasets, and the efficient use of features presented 
by quantum convolution transformation. Later, research was 
conducted in the field of using quantum circuits in ML applications, 
in which randomly parameterized quantum circuits were used to 
process classical data and linear models were trained using the output. 
Quantum transformations have built the model and shown more 
benefits in comparison with further linear models, which are directly 
built on the dataset itself, but the level of performance is not the same 
when compared with other classical models. The experiments in the 
present study have been built on these results, in which quantum 
feature detection has been integrated into more difficult neural 
network architecture since the QNN framework introduced classical 
models that contain non-linearities.

3.2 ResNet18 architecture with modified 
up-sampled bottleneck process

A residual network employs residual blocks, which allow additive 
interaction between the input and output present in the two 
convolutional layers. The advantage of ResNet is given as a gradient 
that flows directly on identity function from future layers to past 
layers, which has partially solved the disappearing gradient problem. 
To improve the flow of information between the layers, original blocks 
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FIGURE 1

Classification of quantum image on facial expression with modified ResNet architecture.

FIGURE 2

An in-depth look at the processing of classical data into and out of the random quantum circuit in the quantum convolutional filter.
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replace the cascade blocks. Two Conv-BatchNorm-ReLU layers are 
used to build every cascade block, two in-out lines, and a shortcut 
connection line. However, the deep layer network contains many 
feature map inputs. To increase computational efficiency, the cascade 
block has been modified into a cascade bottleneck block, which uses 
four four-layer stacks instead of two.

In the present research, residual connections have been used to 
link the filter connection stage in the ResNet-18 model with the 
MuS-BNP. Therefore, the architecture allows for the maintenance of 
computational efficiency, which attains the advantages of the residual 
connection process. A residual version of the ResNet-18 model with 
the MuS-BNP has used a more simplified module. The filter expansion 
layer follows each module in which the dimensions of the filter bank 
have been enlarged. To match the input, it has been added before. 
Hence, it reimburses the reduction of dimensionality available in the 
n block.

Feature extraction was done through the quantum convolutional 
layer, which is composed of several parameterized quantum filters. 
Like the convolution kernel present in the traditional convolutional 
layer, the parameterized quantum filter has been used to extract the 
information present in every quantum bit, which exists in the data 
local space. A quantum filter consists of a double-bit gate in which 
quantum bit unitary conversion can be performed, and a double-bit 
gate is enforced on neighboring quantum bits, which leads to quantum 
entanglement present in neighboring quantum bits. In the image, the 
pixel value of the information has been changed into quantum state 
information (which uses quantum state encoding) using quantum 
rotation gate R(ɵ). Based on the process, the information attained 
about the features of the image has been altered to the angle of the 
quantum rotatory gate. Each pixel value has provided the 
corresponding parameters for the quantum rotatory gate. The 
quantum bit initial state |0 > has been acted by different quantum 
rotatory gates, and the quantum state stores the feature information. 
It can be utilized as model input to QNN. For instance, by considering 
n n∗ , initially, the function of quantum feature extraction is encoded 

into the quantum state by coding the quantum bit. Furthermore, the 
quantum state has evolved by using a parameterized quantum circuit 
and, finally, by using expected value measurement outputs a real 
number. The method possesses both exclusive quantum mechanics 
properties and retains the sharing of weights in the convolutional 
kernel. Figure 3 shows the quantum convolutional layer.

The present study has introduced the quantum circuit with 
parameters to enhance the network’s performance. Quantum filters 
include a rotary gate Ryɵ and a CNOT gate. Figure  4 shows the 
quantum circuit diagram.

ResNet has been used in computer vision applications as a DL 
model. Many convolutional layers have been supported by CNN 
architecture. ResNet-18 is a CNN that consists of 18 layers deep. The 
vanishing of the gradient has been improved by using the network. 
The improved algorithm has used ResNet-18. The existing study has 
optimized the input present in the network. The input features were 
extracted in parallel, and feature fusion was performed at the 
termination of the parallel structure. A specific method has been used 
to accept the three parallel routes. In the convolutional operations 
present in the multi-feature fusion, to confirm the integrity of the 
input image size, the step has been set to 1.

Figure 5 has been used to better understand the process. Similarly, 
when applying the initial residual unit, the number of feature layers 

is increased, and a better interpretation of dimensionalities is 
presented. In the end, the outcomes of three parallel routes were used 
for feature fusion, which extracts the features of the image and, in 
turn, improves the performance of the proposed model. The proposed 
QNN efficiently utilizes quantum hardware and reduces the number 
of quantum gates needed for a particular calculation. Moreover, the 
model outperforms traditional algorithms in identifying complex 
image features, improving classification accuracy and reliability. It 
also performs tasks on several qubits simultaneously, allowing for 
efficient parallel processing of image feature datasets. Figure  6 
illustrates the modified up-sampled bottleneck process with the 
ResNet-18 architecture.

To prevent gradients from vanishing and exploding, the residual 
gradient structure has been used. Feature reuse is helpful for feature 
extraction, and residual units have been improved. During the feature 
extraction process, 128*128 feature information is present as the first 
residual block output, which has been given as the input for the 3rd 
residual block using downsampling, and the input scale has been 
changed to 75*75. Similarly, the first residual block output feature 
information has been sent as input, multiple downsampling has been 
used for the fourth residual block output, and feature size has been 
given as 38*38 and 19*19, respectively. The method that was used in 
the 1st residual block was the same as the second residual block 
output, which was 50*50. The subsampled output has been given to 
the input and output present in the fourth residual block. The residual 
block output is subsampled, and it has been given to the fourth 
residual block output. The complete representation of the modified 
up-sampled bottleneck process is shown in Figure 7.

In the proposed method, every block has an independent 
convolutional way to deliver the information present in the previous 
and middle layers. The strategy exhibits the concept of “pass-over,” 
which has been varied from ResNet, which loads the modest building 
blocks that contain residual connections. The classical residual 
building block does not use the information available in the middle 
layer. However, the proposed model has cached the pass-over 
information to obtain complete features.

The proposed model structure has been designed to achieve many 
features. The pass-over way leads to various feature fields, which 
generate features at various levels of abstraction. Moreover, it 
supported the ensemble effects and showed improved performance 
in classification.

Proposed general form of function, given in Equations 1, 2:
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During the training process of CNN, it was observed that the 
piecewise point of activation function was set between values of 0 and 
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1, greatly influencing the backward propagation of gradient, forward 
propagation of feature, and curve change. At point 0, the function has 
differentiated, and the slope of the function has been changed to 1 
immediately. After conducting many tests, the piecewise function has 
been set as 0.1, and the function is given below in Equation 3:

 

( )
( ) ( )

[ )

[ )

ln 1
. ,0 ;
1 ln 1

ln 2. 0,0.1 ;
1 ln 2

0.1ln 2 0.1, 0.1, ;
1 ln 2

ε

ε

ε

 +
 −∞ + +



+


+ − + ∞ +


a

a

e
a a

e

a a

a a

 

(3)

At the initial stage of the test, the model exhibited overfitting 
directly. It was observed that the slope of the function altered quickly, 
and the transition of the curve’s slope from ( )ln 2 / 1 ln 2+  to 1 could 
not occur directly.

To address this, a linear function was introduced at the range (0.1, 
1), acting as a buffer to stabilize the slope changes. After extensive testing, 
the optimal range was refined to (0.1, 0.2), which effectively mitigated 
the overfitting issue while preserving the model’s performance.

The modified function is as follows in Equation 4:
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The mean value outcome of ReLU has been compared with a new 
function, and the probability model of the parameter has been set as 
( ),αp a , a+ refers to the positive input, a− refers to the negative 

input, á  refers to the probability of input a. The new function output 

FIGURE 3

Quantum convolution layer.

FIGURE 4

Proposed quantum circuit.
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mean value after non-linear transformation is given as follows in 
Equations 5–8:

 ( ) ( ) ,ours oursE a f a a aβ β β+ −= ∑ = ∑ + ∑  (5)

where
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FIGURE 5

The flow of the ResNet-18 model with the MuS-BNP.
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The output mean value of ReLU is

 ( ) ( ) 0ReLU ReLUE a f a waβ += ∑ = ∑ +  (8)

where, ( )ReLUE a  always has a positive value and the result of the new 
function ( )oursE a  has both +ve and –ve values that make the mean 
value close to 0. It has accelerated the convergence of the model and 
updated parameters.

Figure 8 illustrates the workflow of the proposed QCNN, where 
QNNs utilize quantum convolution layers and activation layers to 
extract features from the input images. The process begins with data 
encoding, converting actual images into the required quantum state. 
Quantum convolution is achieved by applying a series of quantum 
gates to the encoded state. The process continues through quantum 
pooling and fully connected layers, where neurons are interconnected 
in a feed-forward configuration, linking preceding neurons with 
subsequent ones. The model’s performance is evaluated, and the final 
quantum state is delivered as the output result.

However, integrating conventional CNN with the QCNN 
framework creates a hybrid model that capitalizes on the strengths of 
both technologies. This approach diverges from usual QCNN formats, 
venturing into new areas of neural network configurations as an 
experimental model. Furthermore, utilizing a quantum simulator to 
run the model and generate results represents significant progress in 
the practical applications of QML. The findings from the proposed 
study indicate that employing a quantum strategy yields superior 
outcomes compared to traditional techniques, as demonstrated by 
improved precision rates when examining face images. These findings 
contribute to the growing knowledge of QML, opening the door to 
further research and experimentation, including the application of 
quantum methods to tackle more complex tasks.

4 Results and discussion

The results that have been obtained by implementing the proposed 
system are included in this section, along with a dataset description, 

performance metrics, experimental results, performance analysis, and 
comparative analysis.

4.1 Dataset description

The study used the FER-2013 dataset, which consists of greyscale 
images, each with dimensions of 48*48 pixels. The images are 
automatically registered, meaning the faces are generally centered, and 
each image occupies a consistent volume of space. The goal of the study 
was to classify the emotions displayed in the facial expressions into one 
of seven categories: Neutral, Surprise, Sad, Happy, Fear, Disgust, and 
Angry. The dataset includes approximately 28,709 examples in the 
training set and 3,589 examples in the public test set. The dataset was 
sourced from https://www.kaggle.com/datasets/msambare/fer2013.

The total images that are considered in the FER-2013 
dataset are tabulated in Table 1 with sample images as shown in 
Figure 9.

FIGURE 6

ResNet18 Architecture with Modified Up Sampled Bottleneck Process.

FIGURE 7

Modified bottle neck with up-sampling.
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4.2 Performance metrics

Performance metrics are generally used to determine the 
performance of the proposed model, which is calculated based on the 
accuracy, precision, recall, and f1-score. Performance metrics are also 
used to determine the proposed model’s efficiency.

 i) Accuracy
The term accuracy can be referred to as the model classification 

rate that is provided through the proportion of correctly classified 
instances ( )Po NeTru Tru+  to the sum of instances in the dataset 
( )Po Po Ne NeTru Fal Tru Fal+ + + . The succeeding equation can 
be used to estimate the accuracy range as given in Equation 9:

 
Ne Po

Ne P Ne Po

Tru TruAccuracy
Tru Tru Fal Falo

+
=

+ + +  
(9)

 ii) Precision
The term precision is defined as the degree of covariance of the 

system, which results from the correctly identified instances PoTru  to 
the total number of instances that are correctly classified 
( )Po poTru Fal+ . It is measured by Equation 10:

 
Po

Po Po

TruPrecision
Tru Fal

=
+  

(10)

In this equation, the variables are defined as NeF al -False Negative, 
PoFal -False Positive, NeTru -True Negative, Poand Tru -True Positive.

 iii) F-Measure
F1-score denotes the weighted harmonic mean value of (Rec) 

recall and (Prec) precision. It is calculated with the following 
Equation 11:

 
2 Rec PrecF measure

Rec Prec
∗ ∗

− =
+  

(11)

 iv) Recall
The term recall quantifies the amount of correct positive 

classifications made out of all the positive classifications that are done. 
It is computed with the following Equation 12:

 
( ) po

Ne Po

Tru
Rec Recall

Fal Tru
=

+  
(12)

4.3 Exploratory data analysis (EDA)

In general, EDA indicates the critical procedure of performing 
primary investigations on the data, realizing patterns, verifying 
assumptions, and spotting anomalies with the help of graphical 
representations and summary statistics. This section deliberates on the 
EDA of the proposed models in the present study for the datasets 
FER-13. The training and test data for different emotions are 
mentioned in Figure 9 for better understanding.

For the FER-2013 dataset, sample images for some common 
emotions like happy, neutral, disgust, sad, angry, fear, and surprise 
have been shown in Figure 10. Based on the images in the dataset, the 
emotions are classified.

The test data for the FER-2013 dataset for the mentioned 
emotions, such as neutral, disgust, fear, anger, sadness, surprise, and 
happiness, has been shown in the graphical representation in Figure 11 
to obtain more clarity.

The considered train and test data for the FER-2013 dataset for 
the mentioned emotions like neutral, disgust, fear, anger, sad, 
surprise, and happy has been shown in the graphical representation 
in Figures 12, 13.

4.4 Experimental results

The test results for the proposed model are shown in Figure 14. 
The proposed system, which used quantum computing and the 
ResNet18 architecture with modified-Up Sampled Bottle Neck Process 
for the FER-2013 dataset, produced the exact predictions. Figures 14, 
15 clearly show that the original emotion and predicted emotions are 

FIGURE 8

Framework of the proposed model.

TABLE 1 Total images in the FER-13 dataset.

FER2013 Total number of images

Anger 4,953

Happy 8,989

Disgust 547

Surprise 4,012

Neutral 6,198

Sad 6,077

Fear 5,121
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the same. Thus, the proposed method recognizes facial emotions with 
utmost accuracy. The proposed method has classified the emotions 
into seven categories: neutral, surprised, sad, happy, fearful, disgusted, 
and angry. From Figure 6, it is clear that the proposed method has 
predicted all seven emotions correctly. On the contrary, the 
misclassification results are shown in Figure 15.

From Figure 16, it was found that the misclassification rate of the 
proposed model was 5 for the original 2.

4.4.1 Statistical tests
Distribution tests have been considered in this case. When the 

dataset pursues normal distribution, it could be found that most of the 

FIGURE 9

Sample images from the dataset.

FIGURE 10

Train and test data for the FER-2013 dataset for different datasets.
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images fall within a certain SD (standard deviation) of the mean. When 
distribution seems to be not normal, it might be found that distribution 
is either skewed or possesses a heavy tail. Additionally, it is probable to 
evaluate if the dataset approximately pursues normal distribution with 
the creation of a data histogram and a visually performed inspection. 
Typically, a normal distribution possesses a bell-shaped curve with most 
of the data points clustered about the mean. When it has been assumed 
that FER-13 is a persistent variable (for instance, facial expression 
intensity), then a data histogram could be created and visually inspected 
for normality. When the histogram roughly pursues a bell-shaped curve, 
this could recommend that the dataset pursue a normal distribution. The 
corresponding histogram plot is shown in Figure 17.

In addition, the Shapiro–Wilk test was undertaken, which is a 
statistical test utilized to determine if sample data is typically distributed 
or not distributed. Moreover, the proposed work has used the FER 2013 
BENCHMARK dataset, and the results for Shapiro–Wilk test statistics 
corresponding to the proposed work give 0.9844 with a p-value equal 
to 0, and it is clearly found that pixel values are not normally distributed.

4.5 Performance analysis

The performance of the proposed system has been analyzed, and 
the corresponding outcomes are discussed in this section.

Figure 18 shows the confusion matrix for the proposed model, 
illustrating the accuracy of emotion predictions. The model has 
successfully predicted the true labels, with “surprise” being the most 
accurately predicted emotion (1755 instances). In contrast, the 
predictions for other emotions were as follows: “neutral” (1251), 
“sad” (1243), “disgust” (994), “anger” (967), “fear” (762), and “happy” 
(96), with “happy” being the least predicted emotion. This analysis 

reveals that “surprise” was the most frequently and accurately 
identified emotion, while “happiness” had the fewest correct 
predictions. Moreover, Figure 19 represents the accuracy analysis of 
FER-2013 and shows both trained and validated accuracy.

From Figure 19a, it is clearly visible that both train and validated 
accuracy have some differences until epoch 10. Train and validated 
accuracy have a closer match on 20, 25, and 30 epochs. Moreover, 
from Figure 19b, it is clearly found that both train and validated loss 
have some differences in epoch 0 and epoch 5. In 10,15,20,25, and 30 
epochs, both train loss and validated loss have a closer match. 
Figure 20 visualizes the performance curves of precision-recall and 
receiver operating characteristics (ROC) of the proposed model on 
the FER-2013 dataset.

Figure 20a shows that the proposed model achieved an AUC value 
of 0.99 for the Precision-Recall curve for surprise, neutral, sad, and 
fear; 0.98 for disgust and anger; and 0.82 for happiness. The AUC 
curve confirms that surprise, neutral, sad, and fear have achieved high 
values, whereas happiness had lower prediction accuracy for the 
FER-2013 dataset.

Figure 20b shows that the ROC curve reached a value of 1.00 for 
anger, disgust, neutral, sad, and fear; 0.99 for surprise and happiness. 
Moreover, the performance metrics of the proposed model are 
tabulated in Table 2.

For instance, the proposed model demonstrates strong 
performance in detecting emotions such as anger, disgust, surprise, 
neutral, sad, and fear, achieving precision, recall, and F1 scores close 
to 0.99 for each, indicating high accuracy and consistency in 
predicting these emotions. However, for the “happy” class, the 
model exhibits a distinction with a precision accuracy of 0.97 but a 
reduced recall rate of 0.84, leading to a slightly lower F1-Score 
of 0.90.

FIGURE 11

Sample images for the FER-2013 dataset with different emotions.

FIGURE 12

Test data for the FER-2013 dataset.

FIGURE 13

Train data for the FER-2013 dataset.
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FIGURE 15

Experimental results for the correct classification of the proposed model.

FIGURE 16

Experimental results for misclassification of the proposed model.

Moreover, it shows that while the model is generally accurate in 
predicting happiness, it fails to account for a significant number of 
actual happy instances. These metrics highlight the model’s strengths 
in most emotional categories but highlight the need for improvement 
in predicting happiness.

Additionally, the model achieved a kappa coefficient of 0.9899, 
an overall accuracy of 0.99, a macro average of 0.99 for precision, 0.97 
for recall, and 0.98 for the F1-score. The weighted averages for 
precision, recall, and F1-score were all 0.99, further confirming the 
model’s robust performance.

Based on the performance analysis, the performance of the 
proposed system that has used quantum computing is found to 
be more efficient. In order to gauge its outstanding performance, the 
proposed system was compared with the conventional system, for 
which a comparative analysis was carried out. The results are discussed 
in the succeeding section.

4.6 Comparative analysis

The proposed system has been compared with four conventional 
studies, and the respective results are discussed in this section. The 
existing study has used various models such as DCNN Model1, 
DCNN Model2, EmNet (average fusion), and EmNet (weighted 
maximum fusion), and their corresponding outcomes are given in 
Table 3.

When compared with the existing study, we can observe that 
the proposed model has attained a higher accuracy of 98.19%, 
which is clearly shown in Table 3. The existing study (Zahara et al., 
2020) has been compared with the proposed model, which used 
quantum computing, and the outcomes are 65.97% accuracy for 
the existing model and 98.19% for the proposed model. Hence, it 

FIGURE 14

Experimental results for correct classification of the proposed model.

FIGURE 17

A histogram plot.
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is clear that the proposed model has better accuracy, as shown in 
Table 3.

The train and test accuracy of the proposed method has been 
compared with the existing study (Bodavarapu and Srinivas, 2021), 
which has used various models like FERConvNet_Gaussian, 
FERConvNet_Nonlocal Means, FERConvNet_Bilateral, and 
FERConvNet_HDM, and the outcomes are shown in Table 4.

From Table 4, it is clear that the proposed method has attained 
higher train accuracy at 99%, and the test accuracy value is given as 
98%, compared with the existing methods used in the existing study.

The performance metrics of the proposed method, which used 
quantum computing, have been compared with the existing study 
(Kim et al., 2021), which has used the SGD and Adam models, and it 
is shown that the proposed model achieves 98.19% of accuracy, 98% 
of precision, recall, and f1_score, compared with 76.17 and 77.17% of 
accuracy, 63.0118 and 66.6236% of precision, 61.0729 and 66.8845% 
of recall, as well as 61.0932 and 66.6779% of f1_score, respectively, for 

FIGURE 18

A confusion matrix.

FIGURE 19

Training performance metrics of the two datasets: (a) accuracy analysis of the FER-2013 dataset and (b) loss analysis of the FER-2013 dataset.

FIGURE 20

Curves visualization of the proposed model on the FER-2013 dataset (a) Precision-Recall curve, and (b) receiver operating characteristics (ROC) curve.

https://doi.org/10.3389/fncom.2024.1435956
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Alsubai et al. 10.3389/fncom.2024.1435956

Frontiers in Computational Neuroscience 16 frontiersin.org

TABLE 3 Comparative analysis of accuracy (Saurav et al., 2021).

Model Accuracy (%)

DCNN Model 1 72

DCNN Model 2 72.02

EmNet (average fusion) 74.11

EmNet (weighted maximum fusion) 74.06

Proposed 98.19

the SGD and Adam optimizers. Hence, it is clearly found that the 
proposed method has higher values in all performance metrics. 
Furthermore, a comparison has been undertaken between proposed 
and conventional methods by considering the JAFFE dataset. The 
respective outcomes are shown in Table 5.

From Table 5, it can be observed that existing algorithms such as 
VGG-16 have revealed an accuracy rate of 97.62%, DenseNet-161 has 
exposed an accuracy of 99.52%, and the Inception-v3 algorithm has 
shown 99.05% accuracy. However, the proposed model has explored 
a high accuracy rate of 99.68%. Similarly, the proposed system has 
been compared with conventional models for the CK+ dataset 
(Shanthi and Nickolas, 2021), and the corresponding outcomes are 
97.86% for the existing model and 98.19% for the proposed model. 
Hence, it can be  concluded that the proposed model has been 
confirmed to be  more effective than conventional models when 
considering challenging datasets like the CK+ dataset and the JAFFE 
dataset. Hence, from the experimental results, performance analysis, 
and comparative analysis, it is clearly shown that the proposed model, 
which used quantum computing and ResNet18 Architecture with 
Modified Up Sampled Bottleneck Process, shows enhanced 
performance with higher accuracy due to effective feature extraction.

5 Discussion

The study (Bursic et  al., 2020) considered two models, 
GRU-Cell RNN and spatio-temporal CNN. These have been 
initially trained upon the facial features alone. It has been found 
that including information associated with language articulation 
has enhanced the accuracy rate to approximately 12%. However, 

the enhancement in accuracy rate has been highly reliant on the 
consecutive frames that have been afforded as input. Though the 
accuracy rate has been satisfactory, there is scope for further 
enhancement. Following this, the research (Qin et al., 2020) has 
aimed at an issue that conventional FER has not been accurate, for 
which CNN and GWT (Gabor Wavelet Transform) have been 
integrated. Initially, histogram equalization, cropping, face 
positioning, and several pre-processing stages were undertaken for 
expression images. Subsequently, keyframes corresponding to the 
expression sequences have been extracted. In this case, GWT was 
used to procure phase features, while CNN was utilized for 
training purposes. Experimentation has accomplished an accuracy 
rate of 96.81%. Furthermore, this study (El Dahshan et al., 2020) 
aimed to perform FER in accordance with QPSO (Quantum 
Particle Swarm Optimization) and DBN (Deep Belief Network). 
The suggested system has encompassed four stages. Initially, 
pre-processing has been undertaken by cropping region of interest 
(ROI) to attain the preferred region, thereby eliminating 
non-essential parts. Furthermore, image downsampling has been 
adapted to reduce the new sub-image size and enhance the 
performance of the system. Emotion class has been found with 
DBN. Rather than adapting the parameters of DBN manually, 
QPSO has been utilized to optimize DBN parameter values 
automatically. The suggested method has been employed in 
datasets including FER-2013. With the employment of the 
suggested system, the accuracy rate has been found to be 68.1% 
for the FER-2013 dataset. Furthermore, the article (Liu et  al., 
2020) has encompassed three major phases: frontal face 
identification module, feature extraction, and classification. 
Feature extraction encompasses dual channels. In this case, one is 

TABLE 4 Comparative analysis of train and test accuracy (Bodavarapu 
and Srinivas, 2021).

Model Train accuracy 
(%)

Test accuracy 
(%)

FERConvNet_Gaussian 98 58

FERConvNet_Bilateral 98 63

FERConvNet_Nonlocal Means 93 61

FERConvNet_HDM 98 95

Proposed 99 98

TABLE 5 Analysis in accordance with an accuracy rate (Akhand et al., 2021).

Pre-trained deep CNN model Accuracy (%)

VGG-16 97.62

VGG-19 98.41

ResNet-18 98.09

ResNet-34 98.57

ResNet-50 99.05

ResNet-152 99.52

Inception-v3 99.05

DenseNet-161 99.52

Proposed model 99.68

TABLE 2 Performance metrics of the proposed model.

Class Precision Recall F1-score

Anger 0.99 0.99 0.99

Happy 0.97 0.84 0.9

Disgust 0.99 0.99 0.99

Surprise 0.99 1 0.99

Neutral 0.99 1 1

Sad 0.99 0.99 0.99

Fear 0.99 1 0.99

Accuracy 0.99

Marco Avg 0.99 0.97 0.98

Weighted Avg 0.99 0.99 0.99
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for raw facial images, while the other one seems to be  for the 
extraction of features from the images. LBP images have been 
utilized to extract texts to enrich the facial features, thereby 
improving the performance of the network. Furthermore, an 
attention mechanism has been adopted. Moreover, the arc-face 
loss function has been included for improvising the distance of the 
inter class and minimizing the distance of the inner class. 
Experimentations have been undertaken on two accessible 
datasets, namely CK+ and FER-2013. Outcomes have revealed an 
accuracy rate of 94.24% for the CK+ dataset and 72.56% for the 
FER-2013 dataset. In spite of various endeavors undertaken by 
existing works, it has been clearly found that there is a scope for 
enhancement with regard to accuracy. Accordingly, the proposed 
system has shown better results in accordance with accuracy 
(98.19%) than conventional systems.

5.1 Ethical implications of FER

Ethical concerns tied to FER technology, such as privacy, consent, 
and potential abuse, are significant. FER technology could enhance 
user interactions in various fields, such as healthcare and security, but 
it also poses risks like privacy invasion and the possibility of 
misidentification or bias, especially toward marginalized groups. To 
encourage ethical use, it is crucial to set up protocols such as obtaining 
consent before collecting emotional data, explaining the data’s 
purpose, and conducting regular assessments to detect and correct 
algorithm biases. Additionally, the establishment of regulatory 
frameworks can help monitor the deployment of FER technologies, 
ensuring their ethical application and preventing infringements on 
fundamental rights. By prioritizing these approaches, individuals can 
reap FER’s advantages, minimize its drawbacks, and establish trust 
with the public.

6 Conclusion

This study aimed to detect emotions from facial expressions 
using quantum computing. The experimental results showed that 
quantum computing performs more effectively, even with large and 
complex datasets. The FER-2013 dataset used in the research and 
ResNet18 Architecture with Modified Up-Sampled Bottleneck 
Process were used to classify emotion types from the provided 
emotions, such as neutral, disgust, anger, sad, happy, surprise, and 
fear. The proposed system performance was evaluated based on four 
performance metrics, and the outcomes were found to be 98.19% 
accuracy, 98% recall, 98% f1-score, and 98% precision. Furthermore, 
comparative analyses were undertaken with four recent studies to 
confirm the efficacy of the proposed system. The outcomes of the 
analysis showed that the proposed model had better values in the 
performance metrics when compared with the existing models. The 
results showed the efficient performance of the proposed system 
over the existing models, and the proposed method achieved 
98.19% accuracy. Furthermore, the standard deviation of the 
proposed system was determined from the execution of the 
proposed system and was found to be  52.69816460460272. 
Moreover, the computational complexity for QNNs typically relies 
on the depth and size of the circuit, the dimensionality of input, and 

the number of training samples. Accordingly, for ResNet18, the 
computational complexity is O(n2.d), where n represents the length 
of image features and d corresponds to the quantum bit dimension. 
With the integration of position encoding, computational 
complexity increases to O (n2.d + n.d2). Future studies should 
further explore the power of quantum computing in machine 
learning applications.
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