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The development of biologically realistic models of brain microcircuits

and regions constitutes currently a very relevant topic in computational

neuroscience. One of the main challenges of such models is the passage

between di�erent scales, going from the microscale (cellular) to the meso

(microcircuit) and macroscale (region or whole-brain level), while keeping at

the same time a constraint on the demand of computational resources. In this

paper we introduce a multiscale modeling framework for the hippocampal CA1,

a region of the brain that plays a key role in functions such as learning, memory

consolidation and navigation. Our modeling framework goes from the single cell

level to the macroscale and makes use of a novel mean-field model of CA1,

introduced in this paper, to bridge the gap between the micro and macro scales.

We test and validate the model by analyzing the response of the system to the

main brain rhythms observed in the hippocampus and comparing our results

with the ones of the corresponding spiking network model of CA1. Then, we

analyze the implementation of synaptic plasticity within our framework, a key

aspect to study the role of hippocampus in learning and memory consolidation,

andwe demonstrate the capability of our framework to incorporate the variations

at synaptic level. Finally, we present an example of the implementation of our

model to study a stimulus propagation at the macro-scale level, and we show

that the results of our framework can capture the dynamics obtained in the

corresponding spiking network model of the whole CA1 area.

KEYWORDS

spiking neural network, hippocampus, mean-field, traveling waves, oscillations,

multiscale

1 Introduction

The development of large-scale models and simulations of brain activity (going from

thousands of neurons to full regions and whole-brain scale) has seen a great advance in

the last few years, boosted by the increase of the computational power and modeling

tools. Many of these models are based on relatively detailed single-cell models and

data-driven connectivity structures, which allows to build simulations that can capture

the specificities of local brain circuits (Markram, 2006; Hjorth et al., 2020; Gandolfi et al.,

2022). Even when the advances have been remarkable, these detailed models demand high
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computational resources and are restricted to local circuits or

brain regions, while building models at whole-brain level with

single-cell resolution is still far from possible. Thus, an alternative

solution that allows to move efficiently between scales (from cells

to regions to whole-brain) is currently of great importance. One

possibility has recently emerged which consists on using mean-

field models of neuronal activity to build large-scale simulations

(Sanz Leon et al., 2013; Sanz-Leon et al., 2015; Goldman et al.,

2023). Mean-field models use statistical techniques to estimate the

activity of large neuronal populations (from hundreds to thousands

of neurons), which allows to reduce the dimensionality of the

system. Thus, the activity of local brain circuits can be described

in terms of a few differential equations, which drastically reduce

the need of computational resources. The low-dimensionality of

these models make them very good candidates to be integrated

into large-scale simulations. Recently developed computational

tools, such as the The Virtual Brain, make use of mean-field field

models together with connectome information to build whole-

brain simulations, and which can be performed without the need

of large computational resources (Sanz Leon et al., 2013). This

approach has been applied to whole-brain simulations for different

species and is being used in basic research (Goldman et al., 2023;

Stenroos et al., 2024) and for clinical applications (Bezgin et al.,

2017; Hashemi et al., 2020), which shows the relevance and utility of

these methods. Although the results obtained so far are notorious,

these methods are normally based on generic mean-field models

(sometimes inspired on cortical microcircuits), which do not

incorporate the specificities of the different brain regions. However,

the different activity patterns and functions that characterize each

region is intrinsically linked to the specific cell-types and local

connectivity structure observed in each area. Thus, in order to

extend the utility and applicability of these methods it is of

fundamental importance to incorporate the cellular heterogeneity

and structural specificity observed in the brain. Some attempts in

this direction have been done, mostly based on phenomenological

mass-models adapted to capture particular dynamics (van Wijk

et al., 2018; Levenstein et al., 2019), but which do not capture cell

specificity and local connectivity structures. Only recently detailed

mean-field models of a specific sub-cortical microcircuit have been

proposed for the cerebellar cortex (Lorenzi et al., 2023), thalamus

(Overwiening et al., 2023), and basal ganglia (Tesler et al., 2023a).

Thus, further developments in this direction are of fundamental

importance.

In this paper we introduce a multiscale modeling framework

of the hippocampus which incorporates a newly developed mean-

field model as the bridge between the different scales. In particular

we focus on the hippocampal CA1, an area known for playing

a key role in main brain functions such as learning, memory

consolidation and navigation (O’Keefe and Nadel, 1978; Buzsáki,

1989; Moser et al., 2008). To develop the mean-field of the CA1

microcircuit we make use of a recently developed formalism

that follows a bottom-up approach starting from the single-cell

level, which allows to build a mean-field model that incorporates

different cell types with specific intrinsic firing properties, and

their synaptic interactions mediated by different receptor types

(El Boustani and Destexhe, 2009; Zerlaut et al., 2018; Di Volo

et al., 2019). In addition we develop a macroscale simulation

of CA1 using the mean-field models as building blocks and

incorporating extended specific connectivity structure based on a

recently developed data-driven method (Gandolfi et al., 2022) (see

Figure 1 for a diagram of the multiscale framework).

In the next sections we first present the model of the CA1

microcircuit and the mean-field formalism with more details and

describe the development of the CA1 mean-field model. We

test and validate our model by analyzing the multiscale model

response under the main oscillatory activity observed in the

hippocampus and comparing the mean-field model results with the

ones of an equivalent spiking network model. Then, we analyze

the implementation of synaptic plasticity within our framework,

a key aspect to study the role of hippocampus in learning and

memory consolidation. Finally we will show how the mean-field

model can be used to build a macroscale simulation taking into

account the realistic extended connectivity of CA1. The modeling

framework presented here allows us to go from single-cell models to

biologically realistic macroscale simulations while keeping a limited

use of computational resources. In addition, our development is

suitable to be incorporated into whole-brain simulation platforms

(such as the TVB; Sanz Leon et al., 2013), which highlights the

importance and usability of this approach.

2 Materials and methods

2.1 Single-cell model

Our multiscale modeling starts at the single-cell level. To
perform single-cell simulations we adopt the Extended-Generalized
Integrate-and-Fire neuronal model (EGLIF; Geminiani et al., 2018;
Lorenzi et al., 2023). The equations for the EGLIF model describe
the time evolution of membrane potential (Vm), slow adaptation
current (Iadap) and fast depolarization current (Idep) (Equations 1–

3):

dVm

dt
=

1

Cm
(
Cm

τm
(Vm(t)− Erev)− Iadap(t)+ Idep(t)+ Ie + Isyn (1)

dIadap

dt
= kadap(Vm(t)− Erev)− k2Iadap(t) (2)

dIdep

dt
= k1Idep(t) (3)

where Isyn is the synaptic current modeling the synaptic stimulus,

Cm is the membrane capacitance, τm is membrane time constant,

Erev is the reversal potential, Ie is the endogenous current, kadap and

k2 are adaptation constants and k1 is the decay rate of Idep. When

a spike occurs at time tspk, the update rules of the state variables is

given by Equations 4–6:

Vm(t
+
spk

) = Vr (4)

Iadap(t
+
spk

) = Iadap(tspk)+ A2 (5)

Idep(t
+
spk

) = A1 (6)

where t+
spk

is the time instant immediately following tspk, Vr is

the reset potential, and A1 and A2 are the model currents update

constants. For our simulations we will consider only two types of

cells [pyramidal cells and fast spiking interneurons (FS)], although

the model could be extended to incorporate more cell types.
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FIGURE 1

Diagram of the multiscale modeling framework. (A) Starting at the single-cell level, we build spiking neural networks taking into account cellular and

local connectivity properties of hippocampus CA1. (B) We develop a mean-field model of the network dynamics using a recent bottom-up

formalism, which incorporates the the cellular and network specificities. (C) Finally we build a macroscale model using the mean-field models

(representing columns or local domains) in combination with realistic extended connectivity of CA1. The image of CA1 is adapted from Gandolfi

et al. (2022). The color code represent di�erent neurons in four layers of CA1: red: Superficial Pyramidal Cells (SP); yellow: Deep Pyramidal Cells (SO);

blue: Stratum Oriens Inhibitory neurons (SO); green: Stratum Pyramidalis Inhibitory neurons (SP); black: Stratum Radiatum Inhibitory neurons (SR);

magenta: Stratum Lacunosum Inhibitory neurons (SLM). For simplicity, in this paper we consider only Pyramidal cells and one type of inhibitory

interneurons, but our framework can be extended to incorporate more cell types.

Regarding the selection of our single cell-model, we note that

a data-driven adaptive GLIF model (AGLIF) has been recently

developed (Marasco et al., 2023), specifically conceived to capture

the detailed dynamics observed experimentally in CA1 neurons

and interneurons. In this work, we used a simplified EGLIF

implementation, which is more easily adaptable to the multiscale

formalism introduced in this paper while still provides an effective

way of simulating the neuronal and population dynamics as will

be shown in the next sections. The model parameters used for

each cell type are given in Table 1. The mean-field formalism used

for the analysis in the following sections has shown to be robust

for large variations in neuronal parameters (Di Volo et al., 2019;

Alexandersen et al., 2024), for which the specific cellular parameters

used here serve as a general reference for building our system.

Regarding the synaptic input, we consider a conductance-based

interaction and we write Equation 7:

Isyn = Ge
syn(Ee − Vm)+ Gi

syn(Ei − Vm), (7)

where Ee = 0mV (Ei = −80mV) is the excitatory (inhibitory)

reversal potential and Ge
syn (Gi

syn) the excitatory (inhibitory)

synaptic conductance. When a presynaptic spike of neuron of type

j occurs at time tspk, the conductance is modified according an

alpha-function (Equation 8):

G
j
syn(t) = Qj

t − tspk

τsyn
e
1−

t−tspk
τsyn , (8)

where Qj is the quantal conductance of type j (maximum

conductance change per spike) and τsyn is the synaptic

characteristic time. We adopt QPyr = 1.5 nS, QFS = 8.0 nS

and τsyn = 5 ms, respectively.

2.2 CA1 microcircuit and mean-field
formalism

The second scale of our modeling framework is at the

microcircuit level. For simplicity we will assume that the circuit
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TABLE 1 Neuronal parameters for the EGLIF model.

Pyramidal cells (Pyr) Interneurons (FS)

Cm (pF) 2,877.83 2,939.66

τm (ms) 10,955.36 2,169.40

Erev (mV) -70.07 -74.01

kadap (MH−1) 0.0084 0.0616

k1 (kHz) 0.0007 0.0021

k2 (kHz) 0.0042 0.0098

A1 (pA) 26.0 92.0

A2 (pA) 170.0 5.0

Ie 0 0

We consider two cell types, pyramidal neurons (Pyr) and fast spiking inteneurons (FS).

is made of two cell-types, pyramidal excitatory cells (Pyr) and

fast spiking inhibitory interneurons (FS), where each cell will

be modeled with an E-GLIF model presented in the previous

section. For the initial construction of the model we will consider

a network of 5,000 Pyr-cells and 500 FS-cells (Aika et al., 1994;

Bezaire and Soltesz, 2013; Ramirez-Villegas et al., 2018). Neurons

in the circuit are interconnected with probability pPyr−Pyr = 0.01,

pFS−Pyr = 0.3, pPyr−FS = 0.2, pFS−FS = 0.3 (Ramirez-Villegas et al.,

2018; Tecuatl et al., 2021). The local microcircuit receives external

excitatory input from the CA3 area, which will be modeled as an

external poissonian input representing 5,000 excitatory neurons.

The external input targets both Pyr and FS cells with probability of

pext−Pyr = 0.15 and pext−FS = 0.3, respectively (Ramirez-Villegas

et al., 2018).

Next, we introduce the mean-field model of the CA1

microcircuit dynamics. To develop this mean-field model we

will adopt a recent formalism adapted for EGLIF neurons. The

formalism is based on a bottom-up approach, starting at single-

cell level, which allows the construction of mean-field models with

cellular-type specificity. The second-order mean-field equations

for the E-GLIF network are given by Lorenzi et al. (2023)

(Equations 9, 10):

T
dνµ

dt
= (Fµ − νµ)+

1

2
cλη

∂2Fµ

∂νλ∂νη

(9)

T
dcλη

dt
= δλη

Fλ(1/T − Fη)

Nλ

+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ

cηµ +
∂Fη

∂νµ

cλµ − 2cλη , (10)

where νj is the mean neuronal firing rate of the population j, F is

the neuron transfer function (i.e., output firing rate of a neuron

when receiving the corresponding excitatory and inhibitory inputs

with mean rates ν′j s), and T is a characteristic time for neuronal

response (we adopt T = 5 ms ). In this equation µ, ν, λ =
{Pyr, FS} and the Einstein index notation was used, where repeated

indices imply a summation over all the values of the index. Finally,

cλ,ν represents the covariance between the activity of neuronal

populations λ, ν. The value used for the characteristic time T is

linked to the autocorrelation time of the system (see El Boustani

and Destexhe, 2009 for details).

Following Zerlaut et al. (2018) we write the transfer function for

each neuronal type as Equation 11:

Fν =
1

2τV
erfc

(

Veff
thre

− µV√
2σV

)

, (11)

where erfc is the error function, Veff
thre

is an effective neuronal

threshold, µV , σV and τV are the mean, standard deviation and

correlation decay time of the neuronal membrane potential. The

effective threshold can be written as a second order polynomial

expansion (Equation 12):

Veff
thre(µV , σV , τ

N
V ) = P0 +

∑

x∈{µV ,σV ,τ
N
V }

Px ·
(x− x0

δx0

)

+PµG ln(
µG

gL
)

(12)

where x0, δx0 are constants, the coefficients Px are to be determined

by a fit over the numerical transfer function obtained from single-

cell spiking simulations for each specific cell-type, and where µG is

given by Equation 13:

µG =
∑

j

(QjτjνjKj)+ gL (13)

with Kj = pi−jNj the mean synaptic convergence of type j, being Nj

the number of cells of this type.

We can write the mean membrane potential and standard

deviation as (Lorenzi et al., 2023) (Equation 14):

µV = e

∑

j µGjEj + gLEL

µG
(14)

Finally, the standard deviation and correlation decay

time of the neuronal membrane potential can be written as

Equations 15, 16:

σV =

√

√

√

√

∑

j

Kjνj(2τ
eff
m + τj)(

eUjτj

2(τ
eff
m + τj)

)2 (15)

τV =
∑

j Kjνj(eUjτj)
2

2
∑

j Kjνj(2τ
eff
m + τj)(

eUjτj

2(τ
eff
m +τj)

)2
(16)

with τ
eff
m = Cm

∑

j µGj+gL
andUj =

Qj
∑

j µGj+gL
(Ej−µV ), whereQj is the

quantal conductance of type j andCm is the membrane capacitance.

The details of the derivation of the mean field equations can be

found in Di Volo et al. (2019) and Lorenzi et al. (2023).

3 Results

We start the construction and validation of our multiscale

modeling framework with the estimation of the transfer function

parameters, needed for the implementation of our mean-field

model of CA1. Then we validate this model by comparison
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with spiking network simulations, for different situations, and we

terminate by showing the simulation of mesoscale phenomena such

as traveling waves in large-scale systems.

3.1 Mean-field model of CA1 microcircuit

A key component of our multiscale framework is the

incorporation of the mean-field model of the CA1 dynamics. As

explained in the previous section, in the center of the mean-field

formalism is the utilization of a semi-analytical transfer function.

Thus, to build the mean-field model for CA1 the first step is to

calculate the corresponding transfer function for each cell type.

This is done by fitting the numerical transfer function obtained

from single-cell simulations to the semi-analytical expression of the

transfer function (Equation 12). In Figure 2 we show the results of

the numerical transfer function together with the corresponding fit

for each cell-type (pyramidal cells and interneurons). We can see

that our semi-analytical transfer function can correctly captured

the one obtained numerically. Once the parameters of the semi-

analytical transfer functions are obtained, together with the cellular

and network parameters (as described in the presentation of the

formalism in the previous section), the mean-field model is fully

defined.

3.2 Activity patterns and time varying
inputs

To validate the multiscale model of the hippocampus we test

the response of the model to some of the main activity patterns

observed in CA1. It is well established that three main patterns

of activity are present in the hippocampus and can be observed

during specific brain states: theta oscillations (4-10Hz) are normally

associated with exploratory behavior, sharp-wave/ripple complexes

(140–200 Hz) are associated with immobility, and gamma

oscillations (40-140 Hz) are normally present in combination

and modulated by the other two rhythms. In Figures 3A, B we

show results of the simulation for stimulations on the theta and

gamma ranges. We show the results obtained with mean-field

superimposed to the results from the spiking neural network

(SNN). As we can see the mean-field can correctly reproduce the

response of the system for the different input patterns.

In addition, in Figures 3C, D we show the response of the

system to low and fast Gaussian-shaped inputs. The fast input can

be seen as similar to the activity of sharp-waves in CA1, while

the slow input can be seen as a typical response curve of place

cells in CA1 for space-field selectivity. The mean-field is capable

of capturing the response of the system for both cases. For fast

or high-frequency inputs the accuracy of mean-field is slightly

reduced as the typical time of variation in activity gets closer to the

characteristic times of the mean-field.

3.3 Synaptic plasticity

The occurrence of long term synaptic depression (LTD) and

potentiation (LTP) in the hippocampus was among the first

experimental studies presented on long term synaptic plasticity

and is believed to be related with the role of hippocampus in

learning and memory formation, one of the main known functions

of this region (Bear and Malenka, 1994; Malenka and Bear, 2004).

Thus, the capacity of reproducing the effects of synaptic changes

in neuronal activity is a key feature to be captured by a model of

this region. To perform this study we analyze the response of our

mean-field model under variations in the synaptic convergence (K,

see Section 2). In particular we consider variations in the synaptic

convergence of the simulated CA3 afferent input to the local

Pyramidal cells in CA1 (see diagram in Figure 4A). We introduce

the parameter We which quantifies the changes in the weight of

the synaptic convergence, being We = 100% the baseline level (as

considered in the previous sections), and we analyze the response

of the system for a variation in the range of 50% in the strength of

the synaptic convergence for a constant input and a time varying

input. In Figure 4A we show the evolution of the response of

pyramidal cells as a function of We and its comparison with the

results from the spiking neural network. We can see that, although

there is a small overestimation of the activity for certain values

of We, the mean-field model can correctly capture the evolution

of the response obtained in the spiking network. In Figure 4B we

show the response of the mean-field and spiking network under a

time-varying input of Gaussian shape for two different levels ofWe

(We = 80 and 120%). As we can see the mean-field can correctly

reproduce the response of the network for the different values of

We. We note how the response of the neuronal populations to the

changes in We is different for each cell-type, which becomes more

evident for the lower values of We. This is a direct consequence of

the non-linear response characterizing each neuronal type, which

is in particular captured by each corresponding transfer function.

This aspect further shows the importance of incorporating the

cellular specificities within the mesoscale description for accurately

modeling different phenomena, as done within our approach.

Finally, we note that, as a first approach, we only considered

variations in the synaptic convergence, which allowed us to analyze

in a general way the impact of the change of synaptic properties in

the neuronal activity in our model. However, further analysis can

be done around other synaptic parameters with our approach, such

as the quantal conductance (Qj) or the synaptic decay times, and

the modeling of specific receptors as it has been recently shown

(Lorenzi et al., 2023; Tesler et al., 2023b).

3.4 Detailed connectivity structure and
macro-scale simulations of the CA1
network

In this section we show an example of the passage from

the mesoscale to the macroscale with the use of the mean-

field model. As discussed before, one of the main goals of our

approach is to build a model of a specific area with realistic

connectivities based on available physiological, morphological and

anatomical data. In this section we will present the results of

simulations of a network representing a slice of hippocampal CA1

area. To this end we will adopt a recently developed method

to incorporate realistic morpho-anatomical connectivities based

on the geometrical probability volumes associated with pre- and
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FIGURE 2

Numerical transfer function (A, B) and the corresponding semi-analytical approximation fitted from Equation 11 (C, D) for each cell-type. Solid lines

in (C, D) correspond to the firing rates obtained from Equation 11 while filled-squares correspond to the single-cell numerical results. The input firing

rates (νe, νi) in the single-cell case correspond to the mean rates of a poissonian process simulating the excitatory and inhibitory neuronal inputs,

respectively.

postsynaptic neurites (Gandolfi et al., 2022). The method has been

benchmarked for the mouse hippocampus CA1 area, and the

results show that this approach is able to generate full-scale brain

networks that are in good agreement with experimental findings.

Following Gandolfi et al. (2022), we will focus on a particular

case where only excitatory connections are taken into account, a

case which has been previously compared to experimental results.

In Figures 5A, B we show a diagram of the geometric probability

volume associated with pyramidal cells and the distribution of

Pyr cells in CA1, adapted from Gandolfi et al. (2022). We will

assume that the Pyr cells are homogeneously distributed over the

Pyr and SO layers. The geometric probability volumes associated

with the basal, apical dendrites and axon are indicated in green,

pink, and gray, respectively. Axonal volumes can be represented by

a combination of two elliptical volumes, while dendritic volumes

can be represented by conical volumes. The most relevant region

for Pyr-to-Pyr connectivity lies within the Pyr-SO region, we

will therefore concentrate our attention on this area to build

our network. We will consider a slice covering a surface of 1.5

x 1.5 mm2 along the Pyr-SO layer. We will divide this area in

compartments of 100µmx100µm containing about 200 neurons

each and we will describe each of this compartment with a single

mean-model as described in the previous sections. To build the

connectivity between compartments we will make use of the

geometric probability volumes. In Figure 5C we show a diagram

of the compartmentalization and the corresponding single-cell

probability volumes. The connectivity between compartments

(given by the parameter K in Equation 13) will be defined as

proportional to the normalized probability of connections given by

the probability volumes. Here we assume that the dendritic volumes

extend through the entire transverse length of the Pyr-SO layer, for

which we assume that the main constraint for the connectivity is

given by the axonal volume (see Figure 5).

It has been shown experimentally that in the absence of synaptic

inhibition CA1 activity shows strong directionality from the CA3

side to the subiculum side. This has been also reproduced by

spiking network simulations of CA1 following the same geometric

connectivity volume approach. To validate our network we show in

Figure 6 the results from the mean-field network slice together with

the results from the corresponding spiking network simulation. In

this simulations a short stimulus is applied to a single compartment

in the case of the mean-field and to∼ 200 neurons close to the CA3

region. As we can see the connectivity profile induces a strongly

directed propagation from the CA3 to the Subiculum direction.

In addition, the propagation evolves with an increase in neuronal

recruitment which in turns leads to the appearance of a lateral

propagation as the activity gets closer to the CA1-Subiculum edge.

These two features can be well captured by the mean-field network.
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FIGURE 3

Response of the systems to θ (A) and γ (B) rhythms. Results from the mean-field (bold solid lines) are superimposed to the firing rates obtained from

the spiking-network (SNN) simulations of the hippocampus (light solid lines). (C, D) Response of the system to slow and fast Gaussian inputs. We see

that the mean-field can capture the response of the SNN in large frequency-range (from 6 Hz in θ waves to ∼140 Hz for the fast Gaussian input),

relevant to simulate the di�erent activity patterns observed in the hippocampus. For high frequency the accuracy of mean-field is reduced as the

typical time of variation in activity gets closer to the characteristic times of the mean-field.

FIGURE 4

Synaptic potentiation and depression in the mean-field model. (A) Evolution of the response of pyramidal and fast spiking cells as a function of the

strength of synaptic convergence (We). We show the results obtained for the mean-field model (dark green and dark red respectively circles) and the

spiking neural network (light green and light red) for a constant external input of νe = 5Hz. A level of We = 100% correspond to the baseline level

(described in the Section 2). Inset: diagram of the network and indication of the change in convergence. (B) Time varying inputs for two levels of We.

We show the firing rates of the FS and Pyr cells obtained from the mean-field and the spiking network together with the applied input (νe).

4 Discussion

In this paper we have introduced a multiscale modeling

framework of the CA1 microcircuit, which goes from the single-

cell to the macroscale level. This framework incorporates a

newly developed mean-field model that allow us to perform an

efficient passage between the different scales. The mean-field model

was built using a recently introduced formalism that follows a

bottom-up approach, starting at the single-cell level, which made

possible to incorporate cellular and synaptic specificities of CA1

within the mean-field formulation. The single-cell parameters were

based on previous detailed data-based modeling of CA1 pyramidal

neurons and fast-spiking interneurons (Marasco et al., 2023), and

synaptic connectivity information was based on experimental data

(Ramirez-Villegas et al., 2018; Tecuatl et al., 2021). We have tested

the model by analyzing its response under different oscillatory

rhythms found in CA1 and we have validated the results by

comparison with the corresponding spiking network model. We

have shown in Section 3.2 that the mean-field is capable of

capturing the results of the spiking-network for activity patterns
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FIGURE 5

(A) Realistic morphology of a superficial pyramidal cell (PC) with basal dendrites in green, apical in pink, and axon in gray, oriented within a region of

a transversal CA1 hippocampal slice. Red triangles correspond to PC soma location within the stratum pyramidalis whereas orange triangles

represent the scattered distribution of deep PCs within the SO. (B) Probability clouds of connectivity represented as two triangles (2D of a cone) and

an ellipse (2D of an ellipsoid). Color code respects the realistic morphology. The dashed rectangle in dark-orange corresponds to the area covered

by a single mean-field compartment described in (C). (C) Top-view of (A, B) and diagram of the compartmentalization for the mean-field description

of the hippocampal network with the corresponding single-cell probability clouds. Color code follows (A, B). Axonal probability clouds are shown for

five pyramidal cells (with somas indicated in red-circles) located at the border of a compartment (indicated in dark-orange). Neighboring

compartments are shown in dashed blue lines. Probability cloud for basal dendrites of single PC cell is shown at the bottom right with the soma

located at the center of the compartment (red circle). (A, B) are adapted from Gandolfi et al. (2022).

FIGURE 6

Simulation of a local stimulation in a CA1 network. Activity is evoked near the CA3 side in area of 1e4 µ2 containing ∼200 pyramidal neurons,

represented by a single mean-field model. The stimulation induces a rapid propagation of the activity in the transversal direction (antero-posterior) of

the network (4.10 ms) with a gradual increase in neuronal recruitment and a subsequent propagation in the longitudinal direction (medio-lateral).

The network correspond to a slice of 1.5 x 1.5 mm. Firing rates are indicated on the colorbar. Scale bar 300 µm. (B) Stimulation protocol equivalent

to (A) performed in a full CA1 spiking network, adapted from Gandolfi et al. (2022). Scale bar 1 mm. Activity is color coded from blue (rest) to white

(spike), to visualize action potentials, with a fixed 2 ms transition time.

related with some of the main patterns observed in CA1 (theta

oscillations, sharp-waves and gamma oscillations).

In addition, we have explored how variations at the synaptic

level can be captured by our model, which is a key aspect to

incorporate in a model of this region. Although this represents a

simple illustration of the use of our model for studying synaptic

changes, we note that the analysis can be extended to other synaptic

parameters within our approach, such as the quantal conductance
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(Qj) or the synaptic decay times, and the modeling of specific

receptors as it has been recently shown (Lorenzi et al., 2023; Tesler

et al., 2023b).

Finally we have shown an example of the implementation of a

macroscale simulation within our framework. In particular we built

a simulation of a slice of CA1 with specific connectivity structure,

based on a recently developed data-driven method (Gandolfi et al.,

2022). Furthermore, we compared the results of our simulations

with an equivalent simulations of a spiking-network model of CA1,

showing that our model can capture some of the main features of

the spiking simulations, which further validates our model.

Among the limitations of our approach we notice that the

connectivity between local populations is assumed to be random

within the mean-field formalism. A possible solution to build

systems with specific connectivity structures consists in the

combination of multiple mean-field models (with random local

connectivity, but structured longer range connectivity), as done

in Section 3.4 of our paper. In addition, the introduction of

heterogeneity within this mean-field formalism has been studied in

a recent paper (Di Volo and Destexhe, 2021).

The modeling framework presented in this work is a step

forward to the development of region-specificmultiscalemodels. In

addition, the framework developed here is suitable to be included

in whole-brain simulation platforms (Sanz Leon et al., 2013), which

extends the importance and utility of our study. Furthermore,

methods to estimate brain signals (LFP, EEG, MEG, and fMRI)

from the type of mean-field used here have already been developed

(Tesler et al., 2022, 2023b), which will also allow the comparison

with experimental results on whole-brain activity. In combination,

these developments provide an efficient solution to the complicated

task of modeling the brain at different scales and open new

perspectives for future studies.
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