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Purkinje cell models: past,
present and future

Elías Mateo Fernández Santoro1, Arun Karim1, Pascal Warnaar1,2,
Chris I. De Zeeuw1,2, Aleksandra Badura1* and Mario Negrello1*
1Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands, 2Netherlands Institute for
Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands

The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel
the role of the cerebellum in motor control, learning and cognitive processes.
Within the cerebellar cortex (CC), these neurons receive all the incoming sensory
and motor information, transform it and generate the entire cerebellar output.
The relatively homogenous and repetitive structure of the CC, common to all
vertebrate species, suggests a single computation mechanism shared across all
PCs. While PC models have been developed since the 70′s, a comprehensive
review of contemporary models is currently lacking. Here, we provide an
overview of PCmodels, ranging from the ones focused on single cell intracellular
PC dynamics, through complexmodels which include synaptic and extrasynaptic
inputs. We review how PC models can reproduce physiological activity of the
neuron, including firing patterns, current and multistable dynamics, plateau
potentials, calcium signaling, intrinsic and synaptic plasticity and input/output
computations. We consider models focusing both on somatic and on dendritic
computations. Our review provides a critical performance analysis of PC models
with respect to known physiological data. We expect our synthesis to be useful
in guiding future development of computational models that capture real-life PC
dynamics in the context of cerebellar computations.
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Purkinje cell, neuron model, climbing fibers, cerebellum, synaptic plasticity,
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1 Introduction

The cerebellum plays a central role in motor learning and cognitive processes as it

crucially contributes to motor coordination, precision and timing. Purkinje cells (PC)

receive all incoming sensory and motor information and generate the sole output of the

cerebellar cortex (CC) (Figure 1). PCs serve as pivotal mediators, receiving and processing

diverse and rich sensory and motor information. For example, it has been shown that

during the eyeblink conditioning task—a classical associative learning paradigm where a

previously inert stimulus, such as light, is paired with a salient air puff to evoke eyelid

closure—PCs adaptively adjust their firing rates based on the timing of the stimulus by

integrating input from the inferior olive (IO), eliciting blinks (Gilbert and Thach, 1977; ten

Brinke et al., 2015; Cook et al., 2021). In fact, there are several examples of sensorimotor

behavior where a timely adaptation of PC activity is crucial for the correct execution of

movement (Gao et al., 2012). There is consensus in the field of neuroscience that the

investigation of PC’s responses and plasticity is essential for understanding the cerebellar

circuit and motor learning.
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The high degree of morphological homogeneity of the

CC across vertebrate species hints at a shared computational

framework. Physiologically, PCs seem to produce a wide spectrum

of spiking activity involving tonic firing, different types of bursts

and wide distribution of pauses. Part of this spectrum can be

related to differences in excitability in connection with Aldolase

C, a glycolytic enzyme related to energetic metabolism of the

cell (Voogd and Ruigrok, 2004; Zhou et al., 2014). The fact that

cells can be categorized in two classes—Zebrin positive (Z+) and

Zebrin negative (Z-)—invites a deeper exploration of the nuanced

intricacies of PC dynamics, via computational models. Notably,

experimental studies have pointed to other regional differences in

the cerebellum such as: differences in the connectivity patterns

between PCs and GrCs across anterior and posterior lobules (Guo

et al., 2016) and different PC morphologies (Busch and Hansel,

2023). For all of these divergent properties, the biophysical models

can help identify the crucial parameters that distinguish these PC

populations, and potentially relate them to the morphological and

molecular differences.

In the mammalian nervous system, the PC stands out among

the most complex and largest of neurons (Sugimori and Llinás,

1990; Miyakawa et al., 1992). Discovered in the 19th century

by Jan Evangelista Purkinje (Zárský, 2012), its unique structure

was later described by Golgi and Cajal. The dendritic arbor of

the PC is highly elaborate, consisting of numerous branching

dendrites that have a surface area 100x the size of the cell body.

The PC membrane has a complex set of ion channels and gating

mechanisms that regulate its activity (Raman and Bean, 1999). It

emits two distinct kinds of action potentials (AP): simple spikes

(SS), triggered by mossy fiber signals (MF) which are relayed via

granule cells (GrC) and reach PCs via the parallel fibers (PFs),

and complex spikes (CS) which are triggered by the CF input

from the IO (Schmolesky et al., 2002) (Figure 1). The SS activity

is also modulated by the inhibitory MLI input (Wulff et al.,

2009). Experimental studies have demonstrated substantial voltage-

dependent dendritic conductances in the PC, emphasizing the

independent contribution of the soma and the dendritic arbors to

PC activity (Llinás and Sugimori, 1980b; Davie et al., 2008).

These unique features have drawn significant attention to

the PC, establishing it as one of the most frequently modeled

neurons in the brain. Over the years multiple PC models

have been developed, ranging from highly detailed morphologies

with hundreds of compartments to more simplified models.

Understanding the intricate dynamics of PC—spiking patterns,

trimodal firing patterns, current x frequency behavior, multistable

dynamics, plateau potentials, plasticity dynamics, and input/output

computations—is crucial for unraveling the complexities of

cerebellar function and advancing our knowledge ofmotor learning

and cognitive processes. It is imperative to conduct a thorough

examination of modern models to foster the future development

of computational PC models. This review aims to fill this need by

providing an overview of contemporary PC models. Our objective

is to facilitate the critical analysis of existing proposals and ideas,

enabling researchers to adapt and redesignmodels based on current

neurophysiological and molecular data. The ultimate goal is to

offer a comprehensive understanding of the relationship between

PCs’ dynamics and functions, allowing for the contextualization of

future models and providing an overview of the current state of

thought in the field.

2 Purkinje cell models

Several types of PC models exist, which we will group

into a few categories. First, we distinguish between detailed

(>10 compartments) and simplified (<10 compartments) models

(Tables 1, 2). As is the case for any type of model, the choice of

level of detail depends on the research question(s) being tackled.

Detailed models attempt to capture the rich phenomenology of

PCs, while simplifiedmodels of reduced complexity capture either a

specific part of behavior or explain a given phenomenon in abstract

terms, often resorting to dynamical systems theory. At least two

more levels of analysis are crucial to understand the role of the CC

in motor control, the plasticity of the PC in response to the GrC

input and the activity of PCs across cerebellar networks at large.

These levels give rise to the categories of synaptic and network

models (Tables 3, 4). Importantly, experimental data has shown

that connections with molecular layer interneurons (MLIs) are also

plastic (Bao et al., 2010; Brown et al., 2019; Arlt and Häusser, 2020),

but these properties have not yet been included in most of the

PC models. Finally, we give an overview of a category of more

traditional, abstract models based on the perceptron analogy, or

what is now called a feed forward neural network. Perceptron-like

models are useful to quantify metrics like the information capacity

(in bits) of the PC to encode patterns (Table 5).

2.1 Detailed models

In the 1970s, the increasing understanding of the composition,

dynamics and cellular structure of the PC led to models

incorporating high levels of biological detail. This development was

largely possible thanks to the detailed Purkinje cell morphologies

revealed by Golgi (Pellionisz and Llinás, 1977; Shelton, 1985)

and horseradish peroxidase stainings (Rapp et al., 1994) as well

as the advancements in the electrophysiological recordings. The

integration of information in the complex dendritic tree of the

PC was a focus of the early models, which incorporated passive

electrical properties and detailed information about active ion

channels kinetics. Some of the earlier models studying these

properties with a realistic full scale morphology were based

on the frog PC anatomy (Pellionisz and Llinás, 1977), or that

of a guinea pig PC (Shelton, 1985). The Shelton model used

Hodgkin-Huxley (HH) equations for channel kinetics, which at

that time were gaining popularity among their contemporaries

but still lacked experimentally verified parameters and were

very computationally demanding. Bush and Sejnowski (1991)

introduced Markov schemes to model channel kinetics, while

using the same morphology as Shelton. Following these two, a

landmark PC model was developed by De Schutter and Bower—

the DB model (De Schutter and Bower, 1994a,b) comprising

1,600 compartments—this large detailed model was reconstructed

from earlier morphological observations (Rall, 1964). Ten different

ion channels were differentially distributed over the soma, the
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FIGURE 1

Schematic representation of the excitatory inputs to the Purkinje cell (PC). The PC receives excitatory inputs from: (1) parallel fibers (PF), axonal
extension of granule cells (GrC) which receive excitatory signals from the mossy fibers (MF), and (2) climbing fibers (CF) from the inferior olive (IO); as
well as inhibitory inputs from stellate cells (SC) and basket cells (BC) which are collectively referred to as molecular layer interneurons (MLIs). The
only output of the cerebellar cortex (CC) is the PC axon which converges onto the deep cerebellar nuclei (DCN). Figure generated with BioRender.

smooth dendrites and the spiny dendrites. Channel kinetics were

computed using HH equations, using parameters observed in

different in vitro voltage-clamp studies done in different animal

species and different neuronal cell types. One of the model’s

breakthrough accomplishments was an accurate reproduction of

spiking frequency to current injection amplitude. The model

started to fire abruptly with a minimum firing frequency around

30–40Hz, after which it produced linear firing rate increases up

to saturation. This very closely reproduced data recorded in vitro

from acute cerebellar slices (Raman and Bean, 1999). Dendritic

and somatic spiking features were effectively captured by the model

explaining the dynamics of increase of Ca2+ concentration over the

dendritic arbor upon CF input, which had previously been shown

experimentally (Miyakawa et al., 1992).

Miyasho took the DB model as their starting point and

implemented new experimental insights into PC physiology,

resulting in a 1,088 compartmental model (Miyasho et al., 2001).

Several ion channel kinematic equations were modified, such

as the P-type Ca2+ channels and delayed rectifier potassium

(K+) channels. Furthermore, two low threshold channels, class-

E Ca2+ and D-type K+ channels, were added to the model.

Sensitivity of Ca2+ activated K+ channels was lowered compared

to the DB model, allowing repetitive Ca2+ spiking. These

updates made the PC replicate in vitro behavior, where,

upon blocking voltage dependent sodium (Na+) channels with

tetrodotoxin (TTX), the cell showed repetitive Ca2+ firing

(Miyasho et al., 2001). The Miyasho model especially reliably

mimicked the dynamics around the generation of Ca2+ spikes

in the dendrites, replicating pharmacologically induced changes

of channel dynamics seen in vitro (Llinás and Sugimori, 1980b).

However, despite the updates, clear differences still remained with

respect to experimentally measured PC physiology. Specifically,

(1) the intracellular Ca2+ concentrations were not realistically

estimated, and (2) the sensitivity to calcium of Ca2+ activated K+

channels was incorrectly estimated, and the channel distributions

were considered uniform over dendrites. Furthermore, the

complexities of axial and radial calcium diffusion were not

incorporated in this model. Those were later shown to account

for CS waveform variability, and non-linear dendritic spiking and

signal amplification in another detailed PC model published in

2013 (Anwar et al., 2012).

The dendritic model of Miyasho was updated in 2012 to

simulate 21 gated ion channels using the morphology earlier

published by Shelton (Forrest et al., 2012). Forrest combined

two models to make a 1,089 compartmental model: Miyasho’s

dendritic channels with a highly detailed dendritic model, and

the somatic model from Khaliq (Khaliq et al., 2003). The latter

simulated TEA-sensitive, TEA-moderately sensitive and TEA-

insensitive voltage-gated K+ currents, BK voltage-gated Ca2+-

gated K+ channels, hyperpolarization-activated mixed cation

current (Ih), I-leak, resurgent Na+ current, P-type Ca2+ currents

as well as intracellular Ca2+ dynamics. Moreover, the authors

added the SK Ca2+-gated K channels to the soma, previously

modeled in the midbrain neurons (Komendantov et al., 2004).

Forrest also incorporated the Ih currents (Saraga et al., 2003),

as well as the IKv1 channels (Akemann and Knöpfel, 2006), to

the dendritic channels of the Miyasho model. Further additions

by Forrest were: the inclusion of the Na+/K+ pumps (both

Na+ and voltage dependent), with slight dynamical differences

between the pumps located in the soma and the dendrites; a
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TABLE 1 Summary of selected detailed models.

References Dynamics Main characteristics

Morphology Experimental data Description

Pellionisz and Llinás (1977) HH type Frog

62 compartments

Na+ and K+ conductances from

Hodgkin and Huxley (1952) HH

parameters based on data from

Llinas et al. (1969) and Hardy

(1973)

Demonstrates simple passive

dendritic integration

Shelton (1985) HH type Guinea-pig and rat

1089 compartments

Parameters based on in vitro

intracellular recordings from

Pellionisz and Llinás (1977),

Scholfield (1978), Glantz and

Viancour (1983), and Lev-Tov et al.

(1983)

Calculated membrane resistivity in

a passive multi-compartmental

model

Bush and Sejnowski (1991) Markov type Rat from (Shelton, 1985)

1089 compartments

Conductance for Na+ channels

based on patch clamp data from

mammalian PCs [neuroblastoma

cell line, rat myotubes and a

pituitary cell line (Aldrich et al.,

1983)] Passive membrane

parameters from Shelton (1985)

Voltage-dependent conductances,

significantly simpler than HH

kinetics

De Schutter and Bower (1994a) HH type Ca2+

dynamics

Guinea-pig from (Rapp et al.,

1992, 1994)

1600 compartments

Passive membrane parameters

from Rapp et al. (1992)

Voltage-dependent ionic

conductances based on: in vitro

studies (Llinás and Sugimori,

1980a,b; Hounsgaard and

Midtgaard, 1988); voltage-clamp

studies (Vandenberg, 1987; Kaneda

et al., 1990; Regan, 1991; Wang

et al., 1991), and single-channel

studies (Gähwiler and Llano, 1989;

Gruol et al., 1991) Channel kinetics

based on (Connor and Stevens,

1971; Llinás and Sugimori, 1980a;

De Schutter, 1986; Spain et al.,

1987; Hirano and Hagiwara, 1989;

Yamada et al., 1989; Kaneda et al.,

1990; Regan, 1991)

Ten different ion channels

differentially placed in soma,

smooth and spiny dendrites

Somatic spiking relation to current

injection (no spontaneous spiking)

Different role for the arbor and the

soma

Miyasho et al. (2001) HH type Ca2+

dynamics

Guinea-pig from (Shelton,

1985)

1088 compartments

Based on data presented in DB

model (De Schutter and Bower,

1994b)

Modified DB model

Added low threshold channel types

Sensitivity to Ca2+ lowered

Replicates in vitro behavior of Ca2+

spikes in dendrites

Forrest (2014) HH type Ca2+

dynamics

TTX-sensitive

current using

Ohm’s law

Rat from Shelton (1985)

Guinea-pig from Rapp et al.

(1994)

1089/41/5 compartments

Somatic PC channel dynamics

obtained from voltage-clamp

current measurements from Khaliq

et al. (2003) Dendritic PC channel

dynamics obtained fromMiyasho

et al. (2001)

Soma model from Khaliq et al.

(2003), added SK Ca2+ channel

Dendritic model from Miyasho

et al. (2001), added Ih and Ihvk

channels

Na/Ca2+ exchanger with

extracellular K concentration and

intracellular Ca2+ concentration

Shows trimodal firing pattern when

input is compromised

Replicates results when blocking

Kv1.2 channels

Reduction algorithm from Bush

and Sejnowski (1991)

Anwar et al. (2013) Stochastic ion

channels

100 compartments P-type Ca2+ from Usowicz et al.

(1992), Swensen and Bean (2005),

and Anwar et al. (2012) Other

parameters from Bhalla and

Iyengar (1999), Kuroda et al.

(2001), and Tanaka et al. (2007)

Dendritic compartment model

with optimized Ca2+ diffusion

Stochastic intracellular Ca2+

Forrest (2014) HH type Ca2+

dynamics

Rat from Shelton (1985)

41 compartments

Simultaneous somatic and

dendritic whole-cell patch-clamp

data fromMiyasho et al. (2001),

Khaliq et al. (2003), and Forrest

et al. (2012)

Reduced model from Forrest et al.

(2012)

(Continued)
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TABLE 1 (Continued)

References Dynamics Main characteristics

Morphology Experimental data Description

Masoli et al. (2015) HH type Ca2+

dynamics

Guinea-pig from Rapp et al.

(1992, 1994)

1,600 compartments (1

somatic and 1,599 dendritic)

Passive properties from De

Schutter and Bower (1994b); Na+

channels dynamics based on

Raman and Bean (2001); K+

channels from Courtemanche et al.

(1998), Raman and Bean (2001),

Khaliq et al. (2003), Akemann and

Knöpfel (2006), Diwakar et al.

(2009); Calcium dependent K+

channels (Rubin and Cleland, 2006;

Solinas et al., 2007; Anwar et al.,

2012); Ca2+ channels (Huguenard

and McCormick, 1992; Swensen

and Bean, 2005; Xu and Clancy,

2008; Anwar et al., 2012); H

channel (Angelo et al., 2007;

Larkum et al., 2009); Ca2+ buffer

(Anwar et al., 2012)

Modified DB model, Extensive

channel dynamics from Khaliq

et al. (2003), Akemann and

Knöpfel (2006), and Anwar et al.

(2012), among others.

Current transfer between axon and

dendrite allowed for spontaneous

SS and CS

Zang et al. (2018) HH type Ca2+

dynamics

Wistar rat from Roth and

Häusser (2001)

4 compartments

Channel dynamics were based on

many studies: Na+ (Khaliq et al.,

2003); H (Angelo et al., 2007);

T-type Ca2+ (Otsu et al., 2014);

P-type Ca2+ (Benton and Raman,

2009); Ca2+ (Anwar et al., 2012,

2014; Indriati et al., 2013); BK

(Anwar et al., 2012; Benton et al.,

2013); SK2 (Hirschberg et al.,

1998); Kv3 (Martina et al., 2007);

Kv4 [experimental data of

Dieudonné and (Otsu et al., 2014)];

Kv1 (Otsu et al., 2014)

Designed as a modern update to

the original DB model.

Calculable ATP cost of spiking due

to energy input associated with

dynamics

Na+/Ca2+ exchanger; an abstract representation of intracellular

Na+ and extracellular K+ concentrations. Notably, Forrest’s model

was constructed to explain activity of isolated PC’s from in vitro

studies, in which synaptic inputs were compromised. PCs in

this disembodied state show a repeating trimodal firing pattern,

alternating between tonic firing, bursty firing and quiescence

(Womack and Khodakhah, 2002b, 2003, 2004). Furthermore,

this model incorporated Na+ spikes in the soma and Ca2+

spikes in dendrites and replicated experimental results in which

pharmacological block of Kv1.2 channels increased the Ca2+

spike frequency in the dendrites and lowered the number of

somatic spike bursts in the trimodal pattern. Forrest’s results

uncovered the intracellular PC dynamics governing the trimodal

spiking phases, showing the impact of the Na+/K+ pump in

trimodal firing and replicated in vitro results in which the pump

was pharmacologically blocked. In the same paper, Forrest also

reduced the 1089 compartmental model to two simpler models-

−41 and 5 compartments respectively—being able to show the

same spontaneous firing in the trimodal pattern activity. Forrest

further expanded the 41 compartmental model in 2014, where he

described a PC model with modifications to the implementation

of the tonic to burst transition in the trimodal pattern by removal

of one Na+/K+ pump and of the SK channel, as well as adding

other HH dynamics (Forrest, 2014). This model reproduced the

quiescent periods as observed in vivo (Loewenstein et al., 2005), and

showed that CF input could dictate both the timing and duration of

these periods.

Another model based on a detailed reconstruction of the

PC morphology was proposed in 2015 (Masoli et al., 2015). It

presented an extensive multicompartmental PC model with an

intricate axonal compartment. The authors added Axonal Initial

Segments (AIS), the site of action potential (AP) initiation located

at the base of axons (Somogyi and Hámori, 1976). Moreover,

the Masoli model also included three nodes of Ranvier (RN)

separated bymyelinated sections. This detailed axon representation

was modeled with a set of 15 different subtypes of Na+, Ca2+

and K+ ionic channels, combined with internal Ca2+ dynamics.

The authors showed that the firing of the PC is intrinsic, and

relies on Na+ channel dynamics in the AIS, and P-type Ca2+

channels in the dendrites. Absence of either one of these channel

types caused the model to become bistable, resulting in the

possibility of the PC to switch to a quiescent state, as had

been observed in anesthetized mice (Loewenstein et al., 2005).

Masoli’s model also exhibited a switch from tonic firing to complex

bursting at higher input frequencies in response to high current

injections, corroborating experimental findings (Kim et al., 2012).

Intriguingly, in Masoli’s model the APs could be triggered during

complex bursts by dendritic depolarization currents. This could

imply secondary spike generation in RNs, though it currently lacks

experimental verification.

In 2018, Zang et al. (2018) published a substantially modified

model based on the DB model. Here, the authors extensively

updated the model and tuned it to recent experimental data,

integrating new knowledge about ionic channels distributions and
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TABLE 2 Summary of selected simplified models.

References Dynamics Main characteristics

Experimental Data Description

Raman and Bean (2001) Markov scheme Voltage-clamp recording of Na+ channels in mice

(original data)

Resurgent Na+ dynamics model

Genet and Delord (2002) HH type circuit model PC dynamics based on Gähwiler and Llano (1989),

Gruol et al. (1991), Yuen et al. (1995), and Jacquin

and Gruol (1999)

Simplified dendrite model Replicates

transition from Ca2+ plateaus to valleys

Khaliq et al. (2003) HH type TTX-sensitive

current using Ohm’s law

Voltage-clamped current measurements from

heterozygous Scn8amed mice (original data)

21 ion channels, added tetrodotoxin-sensitive

Na+ channel kinetics (mainly NaV1.6

channel that has two transition routes

between inactivated and recovery of

the channel) Simulates Ca2+ concentration in

a 100 nm shell under the membrane

Loewenstein et al. (2005) 3 ionic currents dynamical

systems model

Cell-attached and whole-cell patch-clamp from

Sprague-Dawley rats and Dunkin-Hartley guinea

pigs

(original data)

An instantaneous, non-inactivating inward

current (Na+ current) A slow h-like current

and a voltage-independent outward current

Akemann and Knöpfel (2006) Molecularly defined channel

entities

Single-unit recordings, whole-cell patch- and

dynamic-clamp recording from Kv3.3 KO mice

and wild types raised on a mixed 129/Sv, C57BL,

and ICR genetic background

(original data)

Resurgent and non-resurgent Na+ channels

Molecular defined K+

hyperpolarization current

Fernandez et al. (2007) HH type Channel dynamical

system model

Whole-cell current- and voltage-clamp recordings

from Sprague-Dawley rats

(original data)

Bistable model of 5 equations (3 channels)

that can reproduce tonic firing Simplified

model with 2 channels

Genet et al. (2010) Complex nonlinear

membrane PDEs

Current- and voltage-clamp recordings from mice,

rats and guinea pigs (Shelton, 1985; Barbour, 1993;

Vincent and Marty, 1996; Etzion and Grossman,

1998, 2001; Xia et al., 1998; Jaeger and Bower,

1999; Bushell et al., 2002; Womack and

Khodakhah, 2002a; Angelo et al., 2007)

Full morphology model based on the

GD model Simplified dendrite model

(Raman and Bean, 2001; Khaliq et al., 2003)

Anwar et al. (2012) HH type PC channel dynamics obtained with patch-clamp

experiments from Cox et al. (1997), Hirschberg

et al. (1998), Maeda et al. (1999), Swensen and

Bean (2005), and Iftinca et al. (2006)

Dendritic single-compartmental model with

Diffusion compensating mechanism to

replace Ca2+ radial diffusion Ca2+ channels

of P- and T-type and Ca2+-activated K+

channels of BK- and SK-type

Buchin et al. (2016) IF type Whole-cell current-clamp and single patch-clamp

recordings from Sprague-Dawley rats

(original data)

Bistable adaptive exponential

integrate-and-fire model (aEIF) SS can be

inhibited through inverse

stochastic resonance

Burroughs et al. (2020) HH type Markov schemes (for

channel dynamics)

Na+ channels from Raman and Bean (1997, 2001),

Khaliq et al. (2003), Khaliq and Raman (2006)

K+ channels based on Stuart and Häusser (1994)

CS rate from Davie et al. (2008)

2 models: 5/3 ion channels CF input

simulated as 2 decaying exponentials as

found in Llinás and Sugimori (1980b) and

Davie et al. (2008)

Ca2+ diffusion. Among other predictions, this allowed the authors

to calculate the metabolic cost of PC activity. In the Zang model,

CS consumed more adenosine triphosphate (ATP), resulting in the

energy equivalent of∼40 SS. This high energetic cost of CS activity

might help explain the negative correlation found experimentally

between the firing rates of SS and those of CS (Cerminara and

Rawson, 2004). This fact could reflect a homeostatic, protective

mechanism inside the cerebellum to abide by its limited energy

supply. The model also showcased that voltage-dependent K+

currents in the PC dendrites were essential in gating the spatial

range of dendritic responses evoked by CFs. According to the Zang

model, all synaptic inputs to the PC and the SS firing rate contribute

to learning occurring inside the PC. Furthermore, the time interval

between SSs and the CF input modulated the amplitudes of

the spikelets after CF input, indicating that the response to

CF input depends on the SS activity. According to this model,

the dendritic arbors exhibit heterogeneous excitability, implying

the existence of computational units at the level of individual

branches. The question of PC dendritic compartmentalization was

recently examined in more detail by the same authors (Zang

and De Schutter, 2021). With slight changes to spiny dendrite

conductances, this updatedmodel was able to reproduce PF-evoked

dendritic spike pauses similar to the experimental data (Rancz and

Häusser, 2010), without affecting the findings of the 2018 version of

the model. Individual dendritic branches could either exhibit linear

or burst-pause coding behavior, showcasing the computational unit

of the individual branch. According to the updated model, the PF-

evoked dendritic spikes trigger Ca2+ influx in the branch, leading

to long and/or short term depression (STD) at the PF-PC synapse.

The modeled dendritic dynamics were context dependent, which
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TABLE 3 Summary of selected synaptic models.

References Dynamics Main characteristics

Experimental data Description

Fiala et al. (1996) Mathematical

model

mGluR1, G-protein, PLC, IP3 , DAG and PIP2 from

Sprague-Dawley rats (Blackstone et al., 1989)

Ca2+-dependent K+ conductance from rats

(Khodakhah and Ogden, 1993)

Membrane and reversal potentials from De Schutter

and Bower (1994a)

Dynamics of glutamate-activated mGluRs activation

Eye-blink learning shown only in PCs where the Ca2+

response coincides with the production of cGMP in the

cytoplasm, triggered by US evoked CF input

Doi et al. (2005) Kinetic Ca2+

dynamics

Parameters from in vivo experiments from

Bezprozvanny et al. (1991), Khodakhah and Ogden

(1995), Marchant and Taylor (1997) and Fujiwara et al.

(2001)

Dendritic spine model with 3 compartments: cytosol,

postsynaptic density (PSD), and endoplasmic

reticulum (ER) Showed regenerative Ca2+ release via

IP3 receptors (IP3r)

Steuber et al. (2006) Mathematical

model 2 ODEs

From Fiala et al. (1996) Simplified from Fiala et al. (1996) Glutamate increase

triggers Ca2+

Tanaka et al. (2007) IF type Ca2+

dynamics

Whole-cell patch-clamp recordings rats or mice

(original data)

Leaky integrate-and- fire (LIF) model LTD of single

synapse based on (Bhalla and Iyengar, 1999)

Brown et al. (2011) HH type

Biomechanical

Leak current from Rapp et al. (1994)

Ion channel kinetics from Miyasho et al. (2001)

Combination of Brown et al. (2008), Bhalla and Iyengar

(1999), and Miyasho et al. (2001) Second model has a

reduced arbor for computational efficiency Biochemical

PIP2 and IP3 pathways lead to LTD

Antunes and De

Schutter, 2012

Stochastic model

Ca2+ dynamics

Experimental results from Schmidt et al. (2003), Doi

et al. (2005), Kyriakis (2007), Tanaka et al. (2007)

Stochastic signaling network with positive Ca2+

feedback loop Positive feedback loop with

AMPA receptors Different LTD for different parameters

Anwar et al. (2014) Ca2+ dynamics Ca2+ dynamic parameters from Anwar et al. (2012) Dendritic simulation model analysis (different

diameters of dendritic models) Intracellular

Ca2+ diffusion

Hepburn et al. (2017) Stochastic model

Ca2+ dynamics

PC whole-cell patch-clamp recordings from mice

(original data)

Cerebellar model based on Antunes and De Schutter

(2012) and Bhalla and Iyengar (1999) Updated Ca2+

dynamics that are closer to experimental data

Additional dynamics for rapidly accelerated

fibrosarcoma (Raf) kinase and Raf kinase inhibitor

protein (RIPK)

Narain et al. (2018) Probabilistic model GrC data from Giovannucci et al. (2017) and Wagner

et al. (2017)

Eyeblink conditioning data (Siegel et al., 2012; ten

Brinke et al., 2015)

Used a type of learning which approaches a Bayesian

least squares estimator LTD when GrCs and CFs are

active and LTP when GrCs are active and no CF activity

Zamora Chimal and De

Schutter (2018)

Stochastic model

Ca2+ dynamics

Parameters from Hepburn et al. (2017)

CaMKII characteristics from Kubota and Bower (2001)

Extension of Hepburn et al. (2017) and Bhalla and

Iyengar (1999) with Ca2+/calmodulin-dependent

protein kinase II (αCaMKII) dynamics Mechanistic

CaMKII activation and phosphorylation. Stochastic PC

model (bistable)

Majoral et al. (2020) Molecular interactions

Protein dynamics

Ca2+ dynamics

Ca2+ oscillations from Somogyi and Stucki (1991)

PKA pathway dynamics from Violin et al. (2008)

Ca2+ oscillations combined with concentration

equations of mGluR7, G-protein coupled receptors

(GPCRs), G protein signaling (RGS), G alpha

stimulatory protein (Gs), inhibitory G protein (Gi),

protein kinase A (PKA), adenylyl cyclase (AC)

Molecular interactions: Ca2+ , IP3 and IP3r

Mandwal et al. (2021) HH type

Biomechanical

equations

All values except GIRK from Fernandez et al. (2007)

GIRK from Bichet et al. (2003)

Biochemical mechanistic model based on Fernandez

et al. (2007) and Bhalla and Iyengar (1999) Inward

rectifier K+ (GIRK) ion channel added Time interval

learning based on biomechanical principles of

G-protein receptors

allowed the PC to encode a wide range of behavioral properties by

generating somatic SS burst-pause sequences when dendritic spikes

occurred. When paired with CF input, Zang’s 2021 model initiated

cerebellar LTD in line with recent experimental findings (Rowan

et al., 2018; Silva et al., 2024).

While detailed models are able to capture many aspects of

PC dynamics, they are computationally expensive even today,

a fact that limits their applicability to small- to medium-scale

simulations and leads many researchers to focus on simplified

modeling approaches.

2.2 Simplified models

The goal of the simplified models is to reduce complexity so as

to capture either a specific part of PC spiking behavior or explain
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TABLE 4 Summary of selected network models.

Reference Dynamics Main characteristics

Network Experimental data Description

Jaeger (2003) HH type Ca2+

dynamics

PC and∼175,000 PFs PC properties from De Schutter

and Bower (1994b)

PC DB model

Santamaria and Bower (2005) HH type Ca2+

dynamics

PC, 1600 GrCs and PFs and

MLIs

PC properties from De Schutter

and Bower (1994b)

PC DB model

MLIs are only SC

Maex and Steuber, 2013 HH type Ca2+

dynamics

50 PCs, 500 MLIs and 7100

PFs

PC Properties from De Schutter

and Bower (1994b); Synaptic

parameters from Solinas et al.

(2006)

PC DB with axon for spike

threshold attenuation (Maex and

De Schutter, 2007)

Adapted channel densities give

model spontaneous activity

Clopath and Brunel (2013) Rates Waveforms PCs, MFs, GrCs, MLIs and

MVN cells

In vivo recordings from VOR

experiments in C57BL/6 mice and

PC-1γ2, GC-1KCC2 and

PC-1KCC2 mice (Badura et al.,

2016) (original data)

Plasticity at PF-PC and MF-MVN

Grangeray-Vilmint et al. (2018) IF type PCs, GrCs and MLIs Heterozygous

Thy1-ChR2-eYFP mice PC

whole-cell voltage-clamp (original

data)

PC (LIF model)

PC with synapse transient STD

mechanisms from Tsodyks and

Markram (1997) and Bhalla and

Iyengar (1999)

STD alters how the PC responds to

GrC input, from it being inhibitory

to excitatory

Allows for the same input to

differentially affect groups of PCs

Luque et al. (2019) HH type Ca2+

dynamics IF type

20 PCs, 2 IOs (CFs), 100 MFs,

2,000 GrCs, and 2 MVN cells

PC parameters from field potential

recordings on C57B/6 mice

(Middleton et al., 2008)

Reduced PC model based on

Miyasho et al. (2001) and all other

neurons are LIFs

LTD/LTP at PF-PC, MF-MVN and

PC-MVN

Tang et al. (2021) IF type 50 PCs, 1,000 GrCs, 500 MLIs

and 500 MFs

All cell parameters from whole-cell

patch-clamp experiments (de

Solages et al., 2008; Jelitai et al.,

2016; Zampini et al., 2016;

Grangeray-Vilmint et al., 2018)

Each PC receives from 100 GrCs

and 8 MLIs and each MLI receives

from 4 GrCs

Luque et al. (2022) HH type Ca2+

dynamics IF type

200 PCs, 2,000 GrCs, 100

MFs, 200 IO/CF and 200

MVN cells

Parameters from Luque et al.

(2019)

PC fromMiyasho et al. (2001) and

Luque et al. (2019)

All other neurons are LIFs

Binda et al. (2023) IF type PCs, GrCs and MLIs Whole-cell patch-clamp and loose

cell-attached recordings

Photostimulation (original data)

Network from Grangeray-Vilmint

et al. (2018)

Geminiani et al. (2024) IF type PCs, GrCs, PFs, Golgi cells

(GCs), BCs, SCs, MF, DCN

and IO cells

Based on eyeblink conditioning

data from ten Brinke et al. (2015),

Ten Brinke et al. (2017), and Boele

et al. (2018)

All neurons are

extended-generalized LIFs

(EGLIFs)

Downbound (Z- PCs) and

upbound (Z+ PCs) zones

Plasticity at PF-PC and PF-MLI

the phenomena in abstract terms. Usually this implies a heavily

simplified morphology and/or ion channel make-up. This renders

the models less biologically accurate but better suited to dynamical

systems analysis of spike generation mechanisms, and in addition,

due to reduced computational costs, usable in larger scale networks.

Khaliq, Gouwens and Raman constructed a single-

compartment model of the soma to study the high-frequency

SS firing observed in the PCs [(Khaliq et al., 2003); the KGR

model]. This model is based on experimental results and

previous modeling efforts from the same group that showed that

resurgent Na+ currents were associated with a rapid recovery

from inactivation and were thus important in sustaining high SS

firing frequencies (Raman and Bean, 1997, 2001). The resurgent

dynamics were incorporated in the model with TTX-sensitive

Na+ channel kinetics, mainly the NaV1.6 channels. The authors

decided to leave several ion channels out of their model. T-type

and A-type currents were not incorporated due to the fact that

their voltage-based activation and inactivation kinetics were

unlikely to play a major role in spontaneous and current evoked

firing of isolated PCs. This simplified model encompassed in

total 8 ionic currents. The TTX-sensitive Na+ currents (of which

the NaV1.6 channel was the main contributor) were calculated

using Ohm’s law, multiplying the ratio of open channels by the

driving force and the maximal conductance observed (Raman
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TABLE 5 Summary of selected Perceptron-like models.

Model Dynamics Main characteristics

Experimental data Description

Steuber and Schutter (2001) HH type PC properties from De Schutter and

Bower (1994b)

DB PC model and artificial neural network (ANN) model ANN

outperformed DB by an order of magnitude

Brunel et al. (2004) Perceptron type — Abstract single layer learning perceptron model Feedforward neural

network with excitatory synapses (50% silent synapses)

Steuber et al. (2007) HH type PC properties from De Schutter and

Bower (1994b)

Modified DB model taking ANN input for synaptic weights. Learns

hyperpolarizing Ca2+ causes pause

Walter and Khodakhah (2009) Perceptron type PC whole-cell recording and GrC

electrical stimulation fromWistar rats

(original data)

Artificial neural network based on experimental data

Clopath et al. (2012) Perceptron type — Abstract single layer learning perceptron model Binary feedforward neural

network model (bistability occurs)

Clopath and Brunel (2013) Perceptron type — Feedforward neural network reaches maximal decoding capacity at 50%+

silent synapses Allows for more physiological output patterns

(frequency trains)

and Bean, 1997). All other channels were modeled using HH

simulations with parameters obtained from experimental data; the

P-type Ca2+ current dynamics were modeled based on an older

experimental dataset (Raman and Bean, 1999). The KGR model

simulated the Ca2+ concentration in a 100 nm shell underneath

the cell membrane. Resulting spontaneous SS firing was ∼27Hz,

and the Na+ currents with a resurgent component contributed to

PC excitability. Finally, the KGR model was used to simulate PC

activity in an ataxic knockout mouse line lacking the expression of

the NaV1.6 channels PCs. To simulate these mutant PC cells, the

Na+ channels were tweaked to have faster inactivation rates and

slower transition to a blocked state, so that they closely mimicked

the recorded currents in mutant cells. This altered model indeed

showed that a reduction in SS firing frequency depends on

the Na+ current with a resurgent component, mediated by the

NaV1.6 channels.

An adjusted version of the KGR model was later used to

study the effect of a K+ channel, Kv3.3, on spontaneous firing

in PCs (Akemann and Knöpfel, 2006). The authors updated the

three voltage-gated K+ channels, used in the KGR model, to

molecularly identified K+ channels. Furthermore, they included

both the resurgent and non resurgent Na+ channels, which

were simulated separately in the KGR model. The Akemann

model also included a P-type Ca2+ current, a Ca2+-activated

K+ current, and an Ih current, with conductances based on

kinetics previously established by the KGR model. The K+

channels of the Kv1 and Kv4 type were simulated using HH

equations. The Kv3.3 currents—characterized by high activation

threshold, fast activation and deactivation—recapitulated findings

from the dynamic patch clamp experiments. Among several

important findings of this model, the simulations revealed

that Kv3.3 currents could only substantiate the higher firing

frequencies by cooperation with resurgent Na+ currents, inducing

a tonic inward Na+ current which drove the intrinsic firing

of PCs.

Simplified models were also developed to explore

computational principles in the PC dendrites. Genet and

Delord used a single-compartment model to simulate nonlinear

dynamics underlying plateau potentials and Ca2+ spikes in the

PCs dendrites [(Genet and Delord, 2002); GD model]. Plateaus

are depolarizations that outlast the end of their triggering stimulus

and last from tens of milliseconds to seconds (Llinás and Sugimori,

1980b). These plateaus, as well as dendritic spiking, rely on

voltage dependent P/Q-Ca2+ channels. The GD compartmental

model further included a simplified calculation of internal Ca2+

regulation and three ionic currents: P-type Ca2+ current, delayed-

rectifier K+ current and a generic class of K+ channels activating

sharply in the sub-threshold voltage range. It successfully replicated

experimentally observed spontaneous transitions between Ca2+

plateaus and Ca2+ valleys, which for example the DB model failed

to show (De Schutter and Bower, 1994a,b). Using a dynamical

systems approach the GD model explained how the plateau and

valley states in the dendrites were correlated to the input currents.

Interestingly, the model’s only Ca2+ channel was the P-type Ca2+

channel, in agreement with experimental data showing that indeed

the P-type Ca2+ channels constitute the major part of the Ca2+

currents (Usowicz et al., 1992). In comparison, the detailed model

of Miyasho discussed above, also included E and D type Ca2+

currents. The GD model showed that brief depolarizing currents

could trigger long after-depolarizations that resemble experimental

plateaus in the absence of the ‘long’ inactivating time constants

provided by the E and D type Ca2+ channels. Explorations of

the model showed that slow intracellular Ca2+ increases in the

sub-threshold voltage range decreased the Ca2+ Nernst potential,

thereby reducing the magnitude of Ca2+ current on a time scale

of hundreds of milliseconds. Notably the K+ channels in the

GD model were generic, as the authors argued that the dendritic

function of distinct K+ channel subclasses was not understood well

enough to be modeled separately.

Interest in the Ca2+ channel dynamics in the dendritic arbor led

to the development of a new single dendritic compartment model

(Anwar et al., 2012), which was later computationally optimized to

simulate realistic Ca2+ diffusion (Anwar et al., 2013). This updated

model incorporated stochastic spatially arranged ion channels,

and stochastic intracellular Ca2+ dynamics. Most full-scale models

assume voltage-gated computations that represent average kinetics
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over many channels. For whole-cell models this is justified

because fluctuations resulting from stochastic gating kinetics in

small systems tend to become negligible. However, the stochastic

behavior of channels in the PC dendrites, together with the complex

morphology of the PC dendritic arbor led to high variability in

dendritic spikes triggered by CF-mimicking input (Anwar et al.,

2013). This high temporal and spatial variability in Ca2+ levels

observed in dendritic arbor simulations could have great functional

significance on e.g. short-term plasticity mechanisms.

As mentioned above in the description of the detailed models,

the 2012 Forest model, also reduced the full 1089 compartment

model to 2 simplified models of smaller morphological complexity

to decrease the computational demand (Forrest et al., 2012). Both

reduced models were able to conserve reproducibility of the full

model with simpler channel compositions. The simplified models

were used to study CF input-dependent changes in the stable-

to-bistable PC activity state, as observed in experimental studies

(Loewenstein et al., 2005). The reduced models explored the

Ca2+ dynamics, in which intracellular Ca2+ concentration prior

to the CF input determined the balance between excitation or

hyperpolarization upon CF input. Forrest’s simulations assumed

a CF-specific activation of Ca2+ responsive SK K+ channels by

means of channel co-localization, resulting in a hyperpolarizing

current. If prior to the CF input, the neuron was tonically

firing there was a high dendritic internal Ca2+ concentration.

The CF input, opening Ca2+ channels, resulted in high Ca2+

concentrations leading to a large Ca2+ activated K+ current

hyperpolarizing the PC, which then entered the quiescent state. In

the quiescent state the Ca2+ concentration receded, and therefore

the Ca2+ concentration in the dendrites upon CF input in this state

is relatively smaller. This results in subsequent hyperpolarizing

current through Ca2+ activated SK potassium channels being

smaller than in the Akemann 2006 model (Akemann and Knöpfel,

2006).

More recently, two single-compartmental models were

developed to examine if essential aspects of the PC CS-waveform

can be generated by a limited number of somatic channels

(Burroughs et al., 2020). The models examined were (1) a 5-current

model which contained Ca2+, Na+ and K+dynamics; and (2)

a reduced 3-current model, which only contained Na+ and K+

dynamics. The Na+ current was modeled after the Markovian

scheme of Raman and Bean (1997) while the K+ current was

modeled after the previously discussed Masoli model (Masoli et al.,

2015). The Ca2+ dynamics in the 5-current model were based

on the Miyasho model (Miyasho et al., 2001) with an addition

of an SK channel implemented with dynamics from Gillies and

Willshaw (2006). The final addition was a base input current

combined with a CF input current. This CF current was modeled

as a combination of two exponentially decaying inputs in line

with experimental data on CF synaptic input (Davie et al., 2008).

Both the 3- and 5-current models were able to simulate general

CS behavior, causing a high amplitude of the initial spike followed

by spikelets. Additionally, the 5-current model allowed for the

CF input to influence the SS rate, causing depression after a CS

and suggesting that the SK and Ca2+ dynamics are essential for

CS induced depression as observed in vivo (Schmolesky et al.,

2002).

2.2.1 Bistability
In vitro experimental data show that the passive firing of PCs

can follow a trimodal firing pattern of tonic firing, burst firing and

quiescence (Llinás and Sugimori, 1980b; Raman and Bean, 1997).

Bistable patterns toggling between tonic firing and quiescence

have also been observed in anesthetized mice (Loewenstein et al.,

2005) as well as awake cats (Yartsev et al., 2009). However, despite

sparking interest guided by these initial observations, bistability—

switching between prolonged depolarized (up) state, and periods

of hyperpolarization (down state)—has never been reported as a

correlate of behavior, nor has it been observed in awake behaving

mice (Schonewille et al., 2006) as it seems to be modulated by

anesthesia (Engbers et al., 2013). Nevertheless, in vitro experiments

show that bistability is within the scope of PC dynamics, and gives

clues to its dynamical responses.

A few reduced dynamical models have been used to explain

bistability by using slow state variables such as Ih or Ca2+ currents

(Loewenstein et al., 2005). Fernandez produced a model with

only four voltage-gated conductances (Fernandez et al., 2007), and

electrically coupled dendrites and soma, to reproduce the relative

depolarized state of the dendrites during the AP measured in the

soma (Stuart and Häusser, 1994; McKay and Turner, 2004). The

Fernandezmodel depended on a saddle node bifurcation to account

for transitions between rest and firing state (such as the low firing

range <40Hz in the bistable range, expected from the dynamical

system). This model displayed tonic activity with frequencies up to

150Hz and replicated dynamical system characteristics underlying

spike behavior as observed experimentally in PCs, such as a highly

nonlinear I-V relationship near threshold and the generation of

long delays to first spike compared to the average ISI time

To study the dynamical states of the PC, Fernandez

and colleagues constructed a simplified two-channel model to

investigate if the CF input could trigger state transitions in a

bistable region (Engbers et al., 2013). This resulted in transitions

from rest to firing, and vice-versa, together with a long delay for the

first spike. The commanding factors underlying bistability in this

model were: (1) the (large) membrane time constant, and (2) spike

refractory dynamics that generated large enough depolarizing after

potentials that triggered the following spikes leading to a persistent

activity. The positive current flowing from dendrites into the soma

was also found to contribute to bistability. The Ih current was not

directly involved in establishing bistability dynamics, but rather

limited the range of bistability in the phase plane. This somewhat

contradicts model simulations by Loewenstein et al. (2005) that

assumed I h to be a main player in establishing bistability.

In 2010 Genet expanded on the 2002 GD single-compartment

simplified model adding a full dendritic morphology (Genet et al.,

2010). Analysis performed with the 2010 Genet model suggests

that the dendritic Ca2+ plateaus and valleys, triggered upon PF

stimulation, respectively, causes periods of firing and silencing of

PCs (bistable state).

An altered and reduced version of the original 2012 Forrest

model also implemented bistable PC behavior (Forrest, 2014). Here,

the authors altered the mechanisms of the tonic to burst transition

using a D-Type K+ current, called ID with an added inactivation

rate modulation parameter (k), as well as additional mechanics

for plasticity in the baseline intracellular Ca2+ concentrations.

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1426653
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fernández Santoro et al. 10.3389/fncom.2024.1426653

The updated Forrest model showed that PF inputs could alter the

frequency of PC SS firing, but not the pattern of firing. Moreover,

the updated internal Ca2+ dynamics allowed the simulated PCs to

toggle between up and down states.

The most recent model of bistability was proposed by Buchin

et al. using an experimentally tuned adaptive exponential integrate-

and-fire model (aEIF) with type II excitability and nonlinear

voltage dynamics (Buchin et al., 2016). In contrast to Forrest’s

models, Buchin’s model relied upon an inverse stochastic resonance

depending on noise variability for bistability rather than an internal

Ca2+ dynamics. Whether these mechanisms best explain PC

bistability remains an open question.

2.3 Synaptic models

Due to its imputed role in learning, plasticity at the PF synapses

(Figure 2) has been the focus of multiple modeling forays. Whereas

some models focused solely on the integration mechanisms in the

PC dendritic arbor, others simulated the dynamics of the molecular

pathways underlying the plasticity rules in dendritic spines. One

of the first synaptic models examined how glutamate activates

metabolic glutamate receptors (mGluRs), leading to cytoplasmic

Ca2+ fluctuations, which vary greatly in timing across different

PCs and potentially encode the timing for stimuli in classical

eyeblink conditioning (Fiala et al., 1996). This model suggested that

effective eyeblink learning occurred in PCs when Ca2+ response

and cyclic guanosine monophosphate (cGMP) production were

simultaneous, a result of cerebellar input. It also showed that

the response delay—ranging from 100ms to several seconds—is

due to the sequential activation of phospholipase C (PLC), the

generation of inositol (1,4,5)-trisphosphate (IP3), and the release of

IP3-induced Ca2+. Steuber later simplified this model, identifying

critical elements like Ca2+ dependent feedback and autocatalysis

that influence these delays, which also vary with mGluR density

(Steuber et al., 2006). In parallel, efforts were made to refine the

dendritic model to explore the synaptic detection input coincidence

and the role of the IP3-induced Ca2+ release in synaptic plasticity

(Doi et al., 2005).

A highly detailed biochemical dynamical model of long-term

depression (LTD) at the PF-PC synapse was introduced in 2012

(Antunes and De Schutter, 2012). It was based on an earlier model

by Tanaka et al., which highlighted a feedback loop involving

protein kinase C (PKC), extracellular signal-regulated kinase (ERK)

and cytosolic phospholipase A2 (cPLA2), critical for LTD (Tanaka

et al., 2007). The Tanaka model underscored the probabilistic

nature of LTD induction, as demonstrated in experimental Ca2+

uncaging experiments performed by the same research group. The

critical modification of the Antunes model was the inclusion of

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)

receptor trafficking and the prediction that the induction of

LTD is all or none. A competing LTD model that combined in

a single model the biochemical pathways leading to LTD and

the active ion conductances—described in a previously published

detailed model (Miyasho et al., 2001)—was described a year earlier

(Brown et al., 2011). The Brown model explored the dynamics

of phosphatidylinositol-4,5-bisphosphate (PIP2) signaling in PCs,

which is a molecular pathway element needed for the production

of IP3 (Brown et al., 2008). However, in contrast to the previously

described models (Tanaka et al., 2007; Antunes and De Schutter,

2012), it did not include the positive forward loop in the

LTD induction.

Next to models that focused on LTD-relevant molecular

pathways, attention was also given to the morphology of the

individual dendrite diameters and their impact on the Ca2+

diffusion (Anwar et al., 2014). Notably, earlier work from the

same research group did not account for the variability of the

diameter of the compartment. In the 2014 Anwar et al. paper,

the De Schutter laboratory re-examined their earlier work (De

Schutter and Bower, 1994b; Anwar et al., 2012), comparing the

diffusion errors of 3D and 1D models. They found that the errors

from incorrect 3D morphology were higher than the errors caused

by the 1D simplification. They also concluded that 3D diffusion

is essential for synaptic plasticity and proper modeling of Ca2+

signaling pathways.

Multiple synaptic models focused on the mechanisms with

which the PCs adapt to external stimuli. Hepburn updated the

2012 synaptic model from De Schutter (Hepburn et al., 2017),

to include the Raf kinase inhibitory protein (RKIP) to align with

experimental findings (Yamamoto et al., 2012). It also updated the

Ca2+ dynamics with a fitted rate response to correspond better

to existing experimental data. The Hepburn model showed that

AMPA receptor (AMPAR) interactions increased robustness of the

LTD at the PF-PC synapse, and that LTD probability depended on

the amount of PKC. In 2018, the Hepburn model was updated by

adding the activation and regulation of the α-calcium/calmodulin-

dependent protein kinase II (αCaMKII) (Zamora Chimal and De

Schutter, 2018). In accordance with the experimental data (Hansel

et al., 2006), LTD in this model was abolished when αCaMKII

was not present. Moreover, because ERK, PKC and αCaMKII

responded differently to stimuli with varying frequencies, the

modeled molecular dynamics of these proteins caused cerebellar

LTD to be frequency sensitive.

The TRACE model (Narain et al., 2018), which is based on

experimental findings, indicates that interval learning in eyeblink

conditioning results in Bayesian-like estimation computed in

the cerebellum. The model by Narain has two components: the

commonly described LTD, and the less frequently considered

long-term potentiation (LTP). The LTD and LTP changes at the

GrC-PC synapse changed the PC’s SS activity, resulting in a

Bayesian Least Squares like estimation through integration of the

PC input downstream at the deep cerebellar nuclei (DCN) level.

While the Narain model successfully reproduced experimental

eyeblink conditioning results, several experimental investigations

had shown that the LTD at the PF-PC synapse is not required for

cerebellar learning (Schonewille et al., 2011; Johansson et al., 2018).

The extent to which LTD is required for cerebellar learning remains

the subject of a debate in the cerebellar field.

The experimental data questioning the role of PC-LTD in

cerebellar learning led to the development of models which rely

on intrinsic plasticity. Majoral and colleagues designed a model

in which the Adenylyl cyclase (AC) functioned as a coincidence

detector between Ca2+ generated from PF input and the G-protein

mechanisms triggered by the CF input (Majoral et al., 2020). This

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2024.1426653
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fernández Santoro et al. 10.3389/fncom.2024.1426653

FIGURE 2

Schematic representation of (A) branch-dependent bimodal computations, (B) membrane potentials and ionic channels of PC models and (C)

simplified molecular pathway involved in LTD and the PF-PC synapse. (A) (TOP) Multiple encoding mechanisms have been proposed for the PC: a
linear firing rate response to increasing current and a pause duration mechanism. (BOTTOM) EPSCs in spiny dendrites are nonlinear and may or may
not produce spikelets (adapted from Zang and De Schutter, 2021). (B) Dendritic (Vd), Somatic (Vs) and Axonic (Va) membrane potentials and their
various ionic channels: leak current (L), hyperpolarization-activated current (H), persistent Na+ current (NaP), fast Na+ current (NaF), P Ca2+ current
(CaP), T Ca2+ current (CaT), persistent K+ current (KM), A K+ current (KA), delayed K+ rectifier (Kdr), anomalous K+ rectifier (Kh), BK calcium-activated
K+ current (KC), K2 calcium-activated K+ current (K2). (C) Starting from PF: mGluR activates the PLC enzyme which yields two products, IP3 and
diacylglycerol (DAG). IP3 activates the opening of IP3r which liberates Ca2+. DAG and Ca2+ activate PKC. Ca2+ from CF and from IP3r stimulate AC
which activates PKA, opening more IP3r through positive feedback. PKC and signals from GPCR or AMPAR from the CF activate voltage-gated Ca2+

channels (VGCa2+). Figure generated with BioRender.

coincidence detector functions as a positive feedback loop for low

Ca2+concentrations, while the higher Ca2+ concentrations inhibit

the G-protein preventing further activation. The combination

of positive and negative feedback loops allows for successful

modeling of time intervals. However, the Majoral model simplified

the connection between the CF and the dendritic arbor to

just the G-protein connection and currently still lacks in vivo

experimental verification.

The PC has been observed to produce pauses of different

durations during eyeblink conditioning, in the absence of

MLI inhibition (Johansson et al., 2016). This led Johansson

and colleagues to propose intrinsic PC molecular mechanisms

as the source of learning. A biochemical pathway that could

regulate intrinsic plasticity capable of simulating timing

intervals was related to the activation of mGluR7 channels

(Mandwal et al., 2021). In this Mandwal’s model, response

time could be encoded in the rate constants arising from

mGluR7 mechanisms. Unique to this model is the description

and implementation of the G-protein inward rectifier K+

(GIRK) ion channels, whose role in PC-dependent learning

also is supported by experimental data (Johansson et al.,

2016).

2.4 Network models

Purkinje cells’ responses vary widely in terms of firing rate

modulation, pause duration and morphology. As populations of

PCs converge on DCN cells, it becomes relevant to examine

collective PC behavior in network models. It is likely that

neighboring PCs aligned to PF beams have the highly shared input,

which was shown to lead to correlated PC activity in vivo (Heck

et al., 2007; Cao et al., 2017). Simulations of PC activation over PF

beams with the unchanged detailed DB model were used to see if

volleys traveling along the beams leads to synchronous active PCs

(Jaeger, 2003). About 3 % (∼4,500 inputs) of all PFs being active

would be sufficient to trigger time-locked PC firing along the PF

beam, a fact somewhat aligned with experimental data (Isope and

Barbour, 2002). Notably, experimental work presented in the article

by Jaeger showed a lack of synchronicity and no narrow cross-

correlation peaks between PCs at distances >0.1mm along the

PFs. This discrepancy likely reflects the influence of experimental

parameters, notably the PF’s feedforward inhibition provided by

MLIs (Santamaria et al., 2007). Recent experimental data suggest

that even though the PF input might be sparse it can still support

very rich stimulus representations (Lanore et al., 2021).
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The DB model was also used in a spatial integration study,

which analyzed spiking behavior of a single PC receiving different

input patterns from PFs and MLIs (Santamaria and Bower, 2005).

This study into network dynamics showed that the baseline somatic

firing rate of PC is independent from the response to the synaptic

inputs. The modulatory effects of the inputs on the SS activity were

found to be dominated by dendritic Ca2+ and calcium-activated

K+ currents.

A network model consisting of 50 PCs inhibited by parasagittal

projecting MLIs and excited by PFs, yielded PC responses to

PF outlasting its input for up to 10 s (Maex and Steuber, 2013).

Within this network, PFs delivered transient activity to ‘on-beam’

PCs upon a continuous background input over all PFs. Single

PCs were based on a trimmed version of the DB model with

196 compartments, enhanced with a modeled axon (Maex and

De Schutter, 2007) and an Ih-current (Roth and Häusser, 2001)

introduced to all compartments. The trimmed PC model further

lacked the resurgent Na+ current (Khaliq et al., 2003), and non-

inactivating persistent Na+ channel. It did however increase the

conductance of several channels: (1) the peak conductance of fast

Na+ channel (NaF) was amplified by 20%; (2) delayed rectifier K+

current was doubled; (3) P-type Ca2+ and Ca2+-dependent K+

channels were increased by 40% and 20%, respectively.

The spontaneous firing rate of the 2013 Maex model was set to

71Hz, but negative current injections would result in very low firing

rates. Simulations showed that the PC response only outlasted its

stimulus if the PC basic firing rate was in a low frequency range

(<30Hz). The prolonged excitable states resulted in an increase

in membrane voltage compared to simulation runs lacking these

excitable states. Further investigation into the observed increased

excitability of the PC in this model, revealed that the fast Na+

channels (NaF) were responsible for this more depolarised PC state.

The level of prolonged excitability was dependent on the PCs basal

SS firing rate controlled by PF background activity. Interestingly,

the PCs in the 2013 Maex network model showed bistability but

only in the sub-millivolt range, which is in stark contrast to the large

membrane voltage differences reported by the “classic bistability”

PC models (Loewenstein et al., 2005; Fernandez et al., 2007).

Remarkably, other detailed PC models have also been used

to study network effects. For example, simulations using the

previously described 2012 Forrest model showed that MLI-like

GABAergic inputs can switch the PC from a trimodal firing mode

into a bimodal firing mode, a finding consistent with experimental

observations. Specifically, the GABAergic MLI-like network input

was found to be able to block dendritic Ca2+ spikes, which would

trigger the quiescence.

While the focus of this review is on the PC synapses, other sites

of cerebellar plasticity are likely to contribute to motor adaptation.

A network model from Clopath et al. (2014) with LTD/LTP

plasticity at the PF-PC and plasticity at MF-medial vestibular

nuclei (MVN) synapse, simulated vestibular ocular reflex (VOR)

adaptation experiments, reliably reproducing experimental data

fromwildtypemice (Clopath et al., 2014). This model was later used

to study learning impairments in six cerebellar mutant mice with

impaired motor learning (Badura et al., 2016). The 2014 Clopath

model reliably reproduced behavioral deficits as well as PC SS

activity abnormalities observed experimentally. Importantly, lack

of LTP at the PF-PC broke the Clopath model —where the model

does not show any activity— suggesting that it plays an important

role in cerebellar-dependent motor learning. This is in line with

other experimental evidence showing that LTP is required for

procedural learning (Schonewille et al., 2010; Gutierrez-Castellanos

et al., 2017).

Electrophysiological measurements of the excitatory (GrC-

driven) and inhibitory (MLI- driven) inputs onto the PC were

incorporated into a model that explored pre- and postsynaptic

plasticity dynamics at the PC synapse (Grangeray-Vilmint et al.,

2018). It demonstrated that SS PC firing rate was sensitive to the

duration of the GrC burst activity, and that different PCs could

either decrease or increase the SS firing upon a similar GrC input,

based on the state of the PC synapse. Interestingly, these features

were also observed in vivo in rhesus macaque PCs during saccadic

eye movements (Herzfeld et al., 2015).

In 2019 a spiking cerebellar network model was introduced,

where the PCs were based on a modified 2001 Miyasho model,

simplified to allow for fast spiking neural network simulations

(Luque et al., 2019). This simulated cerebellar network consisted

of 100 MFs, 2 CFs, 1,000 GrCs, 20 PCs and 2 MVN cells. It

was used to examine how the spike-burst mechanisms can cause

LTP blockades during rapid eye movement sleep. This finding

was highly relevant to the experimental cerebellar researchers

as it offered an explanation for the consolidation of the VOR

phase reversal learning, which had been shown to occur overnight

(Clopath et al., 2014; Badura et al., 2016). The Luque model also

suggested that the pauses following CS bursts in PCs gate the

vestibular signals, which accounts for early stages of VOR learning.

Altogether, these results predicted that PC SS burst-pause dynamics

are instrumental to VOR learning and reversal adaptation. In

2022, a network model for a VOR experiment was performed

by Luque and colleagues using Luque’s 2019 model. Here, they

studied VOR during aging and found that LTP is likely acting as a

global homeostatic mechanism that counters age-related vestibular

neuroanatomical losses. The 2022 analysis also suggested that VOR

is sustained at older ages because the intrinsic plasticity of the PC

synapses can operate as a local homeostatic mechanism (Luque

et al., 2022).

A different approach to simulating large-scale cerebellar

dynamics used modified integrate-and-fire neurons (Fourcaud-

Trocmé et al., 2003) to model a network of 50 PCs, 500 MLIs, 500

MFs and 1,000 GrCs (Tang et al., 2021). In this model, each PC

received excitatory synaptic input from 100 GrCs and inhibitory

input from 8MLIs. The PCs firing rate and pausing was modulated

through a mixture of short term potentiation (STP) on the GrC-

PC synaptic connection combined with feedforward inhibition

through theMLIs. Extensive simulations showed that the nonlinear

characteristics of excitatory STP dynamics significantly modulated

PC spiking, mediated by inhibition. In fact, the feedforward

inhibition was essential to the PCmodulation as the pause response

shown in the PC network can only emerge with the interaction

of both pathways. This is in line with experimental findings that

underscore the essential role of the interaction between excitation

and inhibition in the cerebellar cortex (Kim and Augustine, 2021).

In 2023, a networkmodel based on the 2018 Grangeray-Vilmint

model was used to investigate a temporal organization of the

feedforward inhibitory microcircuit between GrCs, MLIs and PCs

(Binda et al., 2023). Using ex vivo patch-clamp recordings of PCs
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and the Grangeray-Vilmint model, it was shown that the encoding

of specific MF inputs by PCs can be aided by specific excitatory and

inhibitory delays.

The PF-PC synapses undergo both LTP and LTD (though

not simultaneously), and these plasticity mechanisms in

general counterbalance each other. It has been demonstrated

experimentally that different cerebellar zones undergo different

opposite directions of plasticity (De Zeeuw, 2021). A recently

published olivocerebellar network model incorporated

bidirectional plasticity in cerebellar learning by embedding

upbound (mainly Z+ PCs) and downbound (mainly Z- PCs) zones

that have different plasticity rules (Geminiani et al., 2024). This

model showed that plasticity can regulate the cascade of precise

spiking patterns spread throughout the CC and DCN.

2.5 Perceptron-like models

The earliest neural network that could be trained to distinguish

patterns was the perceptron, described in 1958 (Rosenblatt, 1958),

building on the earlier work by McCulloch and Pitts (1943).

Essentially, a perceptron is a feedforward neural network with

threshold units, trained weights and a binary transfer function. The

perceptron linearly separates patterns on the basis of supervised

learning, and it was taken as the departure point for a tremendously

influential Marr-Albus-Ito (MAI) theory of the cerebellum. In

short, MAI-based models are based on the premise that the PF-

PC synapse undergoes LTP (Eccles et al., 1967) and/or LTD (Albus,

1971) plasticity during learning, which is guided by the CF activity.

Within the perceptron framework, the MAI models assume that

the modulation of the PF-PC synapse is guided by ‘supervised

learning’ (CF input), where the weights of each individual synapse

are summated and subsequently translated into a PC response.

Remarkably, the MAI-type models can also be viewed through the

lens of adaptive filter theory (Dean et al., 2010).

When considering the PC as a perceptron, it becomes possible

to study the capacity of the cell to encode patterns (Brunel et al.,

2004; Clopath et al., 2012; Clopath and Brunel, 2013). An early

analysis of the PC as a perceptron model with binary inputs

and outputs demonstrated that such a PC can distinguish up to

40,000 patterns, equivalent to 50KB of storage (Brunel et al., 2004).

Furthermore, this model also suggested that in order for the PC

to have such a high capacity, many PF-PC synapses would have

to be nearly silent (∼80% of synapses), in line with experimental

data (Isope and Barbour, 2002). Later models improved the

estimation of encoding capacity by relaxing the assumption about

binary output, allowing firing rate modulation (Clopath et al.,

2012; Clopath and Brunel, 2013). Both binary and non-binary

models achieved maximum PC storage capacity with up to 80%

of the PF-PC synapses being silent. The 2012 model of Clopath

also quantified the capacity for pattern separation afforded by

bistable firing. The CF signal not only affected supervised learning

triggering the weight changes, but could also switch the PCs from

up to down states. Bistability enhanced the PC storage capacity

and predicted that for maximal storage capacity the bistable range

must increase when correlation between input patterns decreases.

Clopath and Brunel updated the perceptron model one more time

in their 2013 paper to incorporate more physiologically relevant

input and output patterns represented by frequency trains (analog

signals) rather than binary on/off signals. Interestingly, the learning

capacity of the 2013 model was highest when the input variance

was the largest. This type of variance can be found experimentally

in GrC firing behavior—low mean firing rate with high frequency

bursts (Chadderton et al., 2004; Jörntell and Hansel, 2006; Rancz

et al., 2007).

It is also possible to study PC encoding capacity in highly

detailed compartmental PC models (Steuber and Schutter, 2001;

Steuber et al., 2007). The Steuber models relied on the standard

MAI-based LTD induction principle, where the PF input pattern

was ‘trained’ under the CF supervision. These studies were

based on the morphologically and biophysically detailed PC

model discussed previously (De Schutter and Bower, 1994a,b).

Continuous excitatory background input to the DB model resulted

in biologically realistic PC firing rates of 48Hz. Novel input

patterns were found to trigger higher responses than learned input

patterns, and active membrane conductances in the dendrites

were found to increase the discrimination between novel and

learned input patterns (Steuber and Schutter, 2001). Whereas,

both novel and learned stimuli triggered an initial SS burst, the

pause length following the burst was predictive of the type of the

stimulus. Analysis of PC responses in the 2007 Steuber model

found that a hyperpolarizing Ca2+ triggered K+ efflux underlied

the SS pause. Thus, LTD would encode patterns by shortening

pauses, a prediction that has not yet been experimentally verified.

Pattern recognition based on pause length showed that PF patterns

between 750 to 8,000 active PFs allowed reliable discrimination.

Patterns with PF activity levels outside of this range failed to reliably

differentiate between input based on the pause length.

There are also other encoding schemes available to the PC

beyond the duration of pause modulation. In 2009Walter analyzed

firing frequency as coding strategy of the PC to differentiate learned

from novel input patterns (Walter and Khodakhah, 2009). The

perceptron-like networkmodel fromwhich the coding capacity was

deduced was based on the 2007 Steuber model. The Walter model

simulated a PC innervated by 150,000 independent GrC synapses.

A number of 650 synapses in a specific pattern was calculated to

be able to trigger the maximal firing rate increase in PCs. In other

words, increasing input from 0 to 650 PF’s would take a PC from

50 to 250Hz, revealing the large and linear dynamic range of the

PC response. The authors convincingly argued that the firing rate

frequency output gave the PC with a better coding capacity than

pause duration. Moreover, asynchronous activation of synaptic

input patterns over 10–25ms windows showed a significantly better

coding capacity if the PC used the firing rate coding strategy as

compared to pause induction. A firing rate strategy also showed

increased performance if a base level firing was introduced, which

was not present in the 2007 Steuber model.

3 Discussion

Models of the PC capturemuch of the complex phenomenology

of this cerebellar cell, though not all at the same time. Modeling

is the art of selecting what and how to explain. In the context of

the PC, as with many other biological systems, there are many
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FIGURE 3

Timeline of selected Purkinje cell (PC) models. Each color represents a di�erent category: detailed (black), simplified (orange), synaptic (purple),
network (light blue) and perceptron-like (dark blue) models. Initial models were all detailed models. The Zang et al. (2018) model was designed as a
modern update to the original 1994 De Schutter and Bower (DB) model. The DB model was the basis not only for the first network (Jaeger, 2003;
Santamaria and Bower, 2005; Maex and Steuber, 2013) and perceptron-like (Steuber and Schutter, 2001; Steuber et al., 2007) models, but as well
directly or indirectly for the majority of the next detailed models—except for the Anwar model. The Miyasho et al. (2001) model (based on DB model)
was the basis for further synaptic (Brown et al., 2011; Luque et al., 2019, 2022) network models. The appearance of simplified models such as the
Raman and Bean (2001), Genet and Delord (2002) (GD), Khaliq et al. (2003) (KGR), and Fernandez et al. (2007) models allowed for further
advancement for detailed models such as the Forrest et al. (2012) and Masoli et al. (2015) models, for other simplified models such as the Genet et al.
(2010) model, and for synaptic models such as the Mandwal et al. (2021) model. The Fiala et al. (1996) and Antunes and De Schutter (2012) synaptic
models were used as basis for other synaptic models: the Steuber et al. (2006) and Hepburn et al. (2017) (in turn used for the Zamora Chimal and De
Schutter, 2018 model), respectively. Finally, the Binda et al. (2023) network model was based on the Grangeray-Vilmint et al. (2018) model of the
same type. Figure generated with BioRender.

levels at which a given phenomenon can be elucidated. Sometimes

a simple model is the most effective method to understand the

mechanism underlying a behavior, but in other cases the full

phenomenology can be captured accurately only with added detail.

There is an undeniable tension between the goals of simple vs

accurate (detailed) models, but as we see in this review, their

explanatory powers are often complementary. In a sense, it is this

model “ensemble” (Figure 3) that describes intrinsic PC activity as

well as its function in the context of a network.

A common criticism of biophysically plausible computational

modeling is that much of the modeling work is geared

toward reproducing behavior known from experiment. It is

also often suggested that biophysically plausible modeling

scarcely produces experimentally testable hypotheses. This

criticism is sufficiently prevalent that merits discussion. What

is gained by capturing complex behavior via parameters that

represent specific conductances is a quantitative understanding

of the spectrum of neuronal dynamics, which cannot be

fully captured in one experiment. The goal of modeling is

to generalize to cover a whole class of neurons, and their

potential transitions across modes of activity. All models are

incomplete, in the sense that not all relevant mechanisms that

explain cell activity are incorporated in a single model (i.e.

metabolism, transcription, regulation), and many important

factors are, by necessity, excluded. Nevertheless, modeling

work has also led to a profusion of experimental hypotheses.

All the same, one can argue that one of the principal roles of

biophysically plausible modeling is to produce mechanistic and

computational understanding. Indeed, we argue that many models

discussed in this review offer explanations for specific biologically

observed phenomena.

In terms of the PCs computational role, modeling studies

often converge on three main coding mechanisms: (1) a rather

linear firing rate response to current input, (2) a complex set of

intracellular Ca2+ dynamics that induce plasticity, and (3) tuneable

SS pause durations. The fact that a relatively small number of

active PF synapses can drive the PC response from minimum to

maximum means that PCs exhibit a relatively narrow dynamical

range, in the sense of signal analysis. It is still unknown whether

silent synapses are a transient condition, or if they can be rapidly

enlisted in short timeframes (Barbour, 1993). In any case, the small

proportion of active PF synapses is still a befuddling fact of PC

physiology and function.

One important point about levels of analysis is that the

computational properties of the cell are not equal to its dynamics

and mechanisms. Regardless of the functional roles of a PC in a

network, their models may not need to capture the entire repertoire

of biological detail. It is conceivable that adding specific detail may

actually be detrimental to its computational role in the circuit,

even if it reproduces experiment with exquisite precision. On the

one hand, exploring the parameter space in which a model can

no longer produce meaningful data is important to understanding

its limitations. On the other hand, it is important to be aware

of the bias contained in the statement that “because something

exists in biology, it must play a functional role”, what Gould and

Lewontin called “adaptationism” (S. J. Gould and Lewontin, 1979).

Nevertheless, the value of an accurate description of a neuron

cannot be understated, as it gives insight into healthy cellular

dynamics and gives us confidence that the mechanisms we observe

contribute to the overall electrophysiological behavior of the cell.

There are several potential caveats to the PC models

presented in this review. First, most PC models are based on

electrophysiological data obtained from ex-vivo slice recordings

or in-vivo recordings under anesthesia. As discussed briefly in

section 2.2.1 “Bistability”, anesthesia affects neuronal channel

conductances, most often leading to reduced firing. The most
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commonly used method is isoflurane inhalation anesthesia,

which at clinically relevant concentrations, leads to membrane

hyperpolarization via its effects on the Na+ voltage-dependent

channels (Qiu et al., 2023). Notably, isoflurane replaced an older

method of urethane inhalation anesthesia, which acted on K+

voltage-dependent channels, and was shown to lead to cycling

between up and down states (Yagishita et al., 2020). The second

most commonly used sedation method is a ketamine/xylazine

cocktail injected intraperitoneally, which is a mixture on an

NMDA receptor antagonist (ketamine) and an α2-adrenergic

receptor agonist (xylazine). On the one hand, all these methods

affect neuronal electrophysiological properties, which in turn

might lead to improper inputs to the PC models. On the other

hand the very same models could be used to study different

classes of the anesthetics and their effects on cerebellar function.

Nevertheless, anesthesia is a factor that can introduce many

unforeseen variables. Therefore newer models, particularly the

ones that describe network activity during learning, are largely

based on data from in-vivo awake recordings from behaving

animals. Second, our review focuses primarily on models of the

PC itself, and thereby excludes most of the circuit resonances

feeding back into the CC such as: the Golgi cell oscillations, PC

to PC inhibition, DCN feedback to GrCs, the IO dynamics and

the feedforward inhibition of MLIs. Particularly, the significant

impact of the MLI inputs on PC activity and cerebellar learning

has been extensively researched in the last decade (Badura et al.,

2013; Brown et al., 2019; Ma et al., 2020), but has not yet been

investigated in depth in the modeling work, with the notable

exception of network models. Overall, complex network dynamics

make the interpretation of the experimental data, restricted to PC

recordings, difficult. However, a good grasp of the mechanisms

underlying activity of the PC in isolation, is instrumental to

disentangle complex cerebellar network responses. Third, even

when models include large numbers of conductances and other

dynamics, publications often focus on a few mechanisms at a time.

This is partly due to the difficulty of visualizing high dimensional

parameter spaces, and partly due to the fact that adding new

mechanisms exponentially expands parameter space, which is

computationally costly. This is one of the reasons why there is no

‘final model’ of the PC, which includes ‘everything’. Computational

scientists have a preference to study only the mechanisms that

are required for a given behavior of interest. Finally, with the

rise of the new era of big omics, cerebellar sequencing data

has revealed that there might in fact be several categories of

PCs with different characteristics and properties (Kozareva et al.,

2021; Apsley and Becker, 2022). However, at present these new

categories are not yet linked to excitability differences, or other

functional or encoding correlates. One fundamental open question

for computational modeling of the PC is the extent to which

excitability differences found in distinct Zebrin zones can be linked

to specific model parameters. It seems promising that highly

constrained biophysical models can help us express the different

categories of cells as they relate to parameter ranges. We foresee

a future in which complex neuron models will be able to help

us link results from the genomics and proteomics studies with

neuronal dynamics.

As computational neuroscience moves forward, the key issue

for upcoming research is the development of accurate models that

give us insight into necessary homeostatic mechanisms of complex

neurons such as the PC. Tuning accurate models reproducing

specific behaviors at the level of cells and organisms, with plausible

models of cellular dynamics, gives researchers a handle on how

to interpret neuronal activity in health and disease. Future models

must tackle the question of how to extrapolate from single detailed

models to entire populations close to the biological constraints,

particularly across different brain regions. As neurons need to

“change to stay the same” (Abadia et al., 2021), the inclusion of

homeostatic mechanisms in the current models is a promising

research direction, so that we better understand how a cell changes

within functional constraints.

Finally, the question should be addressed of whether abstract

PC models are sufficient to represent motor learning. Though

robotics applications have been using the Perceptron analogy for

a long time (Vijayan et al., 2017), there is no “full spectrum” theory

of motor learning on the basis of PCs as Perceptrons. It seems

that the ways in which PCs are used in biological brains will still

be providing ample insight to develop computational models and

potential future AI applications to represent biological learning.
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