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In clinical research, it is crucial to segment the magnetic resonance (MR) brain 
image for studying the internal tissues of the brain. To address this challenge in a 
sustainable manner, a novel approach has been proposed leveraging the power 
of unsupervised clustering while integrating conditional spatial properties of 
the image into intuitionistic clustering technique for segmenting MRI images 
of brain scans. In the proposed technique, an Intuitionistic-based clustering 
approach incorporates a nuanced understanding of uncertainty inherent in 
the image data. The measure of uncertainty is achieved through calculation 
of hesitation degree. The approach introduces a conditional spatial function 
alongside the intuitionistic membership matrix, enabling the consideration of 
spatial relationships within the image. Furthermore, by calculating weighted 
intuitionistic membership matrix, the algorithm gains the ability to adapt its 
smoothing behavior based on the local context. The main advantages are 
enhanced robustness with homogenous segments, lower sensitivity to noise, 
intensity inhomogeneity and accommodation of degree of hesitation or 
uncertainty that may exist in the real-world datasets. A comparative analysis 
of synthetic and real datasets of MR brain images proves the efficiency of the 
suggested approach over different algorithms. The paper investigates how the 
suggested research methodology performs in medical industry under different 
circumstances including both qualitative and quantitative parameters such 
as segmentation accuracy, similarity index, true positive ratio, false positive 
ratio. The experimental outcomes demonstrate that the suggested algorithm 
outperforms in retaining image details and achieving segmentation accuracy.
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1 Introduction

One of the core issues in clinical research methods is to segment the MRI image of human 
brain. The segmented image helps to detect different diseases related to the brain. Due to the 
intricate structure of MRI brain images and use of the inherent imaging mechanism includes 
the presence of noise, delineation of the image boundaries and many other challenges in the 
segmentation of these MRI images. In literature, several image segmentation methods can 
be categorized as thresholding (Suzuki and Toriwaki, 1991), region growing, level set methods 
(Li et al., 2011), model-based methods (Blahova et al., 2023) and unsupervised clustering. 
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Clustering, a primary technique in unsupervised learning, involves 
grouping a set of patterns into clusters, which can take the form of 
hard or soft clustering. Soft clustering is preferred over hard clustering 
due to its ability to assign each pixel varying degrees of membership 
across all clusters (Li et al., 2022). Fuzzy C-means (FCM), initially 
given by Dunn (1973) and refined by Bezdek (1981), is a prominent 
algorithm. The FCM method proves less effective in handling noisy 
images, primarily because of its vulnerability to noise. The absence of 
spatial membership matrix in FCM leads to unreliable out-comes in 
its results.

To address the noise issue, several improved versions of FCM have 
been proposed (Chen and Zhang, 2004; Wang et al., 2004; Krindis and 
Chatzis, 2010), which use the image’s local spatial and grayscale 
information and prove to give better results in segmentation of MRI 
images. The FCM was altered by Ahmed et  al. (2002) adding 
neighborhood information in the membership matrix. The refinement 
of similarity metrics incorporates information from all pixels closer to 
the cluster center, provided they lie within the spatial window and 
homogeneous region. However, this algorithm exhibits sensitivity to 
randomly defined initial cluster centers and an associated increase in 
computational complexity. Pedrycz (1996) proposed modified FCM 
algorithm by integrating an auxiliary variable and data attributes into 
the clustering process. By taking into account the domain in a feature 
space and the values deduced from a particular conditional variable, 
this method uncovers unique patterns within a set of patterns.

A conditional or auxiliary factor-guided conditional spatial fuzzy 
C-means (csFCM) methodology was given by Adhikari et al. (2015). 
This method introduces local spatial interactions among neighboring 
pixels through a fuzzy weighted membership function. Its advantages 
include defining more homogenous segments compared to other 
methods, robust to noise and the elimination of spurious blobs. But 
the Fuzzy clustering technique does not incorporate measure of the 
uncertainty degree that are inherent in the image datasets.

A rapid generalized FCM for image segmentation given by Cai 
et al. (2007), wherein the similarity metric integrates spatial and gray-
level details to generate an image with a sum of weights that operates 
non-linearly. In a similar way, Yang and Zhang (2011) presented a 
novel penalized FCM, where the penalty term functions as a 
reconfigure within the algorithm, drawing inspiration from 
neighborhood maximization. In the literature, number of Fuzzy based 
segmentation algorithms are proposed for understanding of the 
anatomical and the functional aspects of the MRI brain images. The 
segmentation of these MRI images provides a crucial theoretical basis 
for the analysis and treatment of various brain ailments (Ren et al., 
2019). Conventional clustering algorithms such as FCM failed to give 
the accurate results (Ahmed et al., 2002). To over-come these issues, 
Yang et al. introduced kernel-based clustering approach embedded 
with spatial information to violate the effect of noise for the task of 
segmentation of images (Yang and Tsai, 2008). Chaira (2011) 
introduced the Intuitionistic based fuzzy approach, which integrates 
entropy function along with intuitionistic theory for the segmentation 
of medical images. Notably, IFCM (Intuitionistic Fuzzy C-means) 
exhibits reduced sensitivity to outliers compared to fuzzy clustering 
methods. Integrated approaches of clustering were proposed to 
improve the accuracy of MRI image segmentation. Caldairou et al. 
(2011) have proposed integrated approach of FCM with the non-local 
information related to image with the aim of image restoration. Dubey 
and Mushrif (2016) have investigated different approaches of 

unsupervised clustering techniques for this purpose. Singh et  al. 
(2024) proposed kernel based FCM clustering approach with bias 
correction for segmenting of MRI brain images. In this approach 
image is pre-processed using LZM based filtering and further 
segmented using kernelized approach of clustering.

The problem with different clustering approaches is the overhead of 
defining different parameters which is not an easy task. Since medical 
images are not linearly separable, these clustering techniques are not able 
to achieve high segmentation accuracy. The majority of these techniques 
performs severely due to the imperfection of the devices through which 
image is acquired, poor magnetic field, and other image artifacts.

Besides being susceptible to noise, another significant challenge 
in MRI image segmentation involves addressing the ambiguity 
inherent in pixel values. To handle this type of problem, intuitionistic-
based clustering algorithms are used, which consist of intuitionistic 
membership degree characterized by a hesitation degree. Furthermore, 
by integrating conditional spatial functions into the segmentation 
framework, the algorithm gains the ability to adapt its smoothing 
behavior based on the local context of the image with the intuitionistic 
membership matrix giving more weight to the pixels with more 
similarity. The intuitionistic based clustering algorithms have been 
proved to lead novel perspectives in computer vision and therefore, 
various domains of image segmentation (Vlachos and Sergiadis, 2005; 
Arora and Tushir, 2019; Thao et al., 2019; Chen et al., 2021) have 
witnessed the application of clustering algorithms grounded in 
Intuitionistic metrics.

In this research paper, we introduce an intuitionistic based clustering 
method integrated with the spatial properties of the image which is 
guided by the weighted conditional factor termed as Conditional Spatial 
Intuitionistic Fuzzy C-means (csIFCM) for segmenting MRI brain 
images. Furthermore, the proposed approach makes noticeable 
advancements by presenting more adaptable solution toward the 
segmentation of MRI images. Accurate segmentation of medical image 
plays a pivotal role in different fields of medical applications, ranging 
from diagnosis of disease to planning of treatment. Accurate MRI brain 
image segmentation facilitates in-depth examination of anatomical 
features and pathological anomalies in clinical research. Therefore, 
highlighting the wide practical utility of the proposed approach is crucial 
for facilitating its adoption and integration into existing medical 
workflows. The primary contributions of this research are outlined below:

 • The images are pre-processed using the process of normalization 
in order to bring the values of the pixels into more conventional 
form (Internet Brain Segmentation Repository, 2024).

 • The proposed approach integrates spatial properties of the image 
guided by the weighted conditional factor into the membership 
matrix of the intuitionistic approach of the clustering.

 • This algorithm demonstrates its effectiveness by producing 
robust results with better segmentation accuracy even when 
faced with challenges such as noise and intensity inhomogeneity.

 • The proposed model’s performance was evaluated using a range 
of standard metrics and the results obtained confirms the 
outstanding performance over the existing techniques.

The subsequent sections are structured as follows: Section 2 delves 
into the existing literature concerning the FCM algorithm, csFCM, 
and IFCM algorithms. Section 3 provides the detailed methodology 
about the proposed work. The experimental details and the application 
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of the proposed algorithm to diverse synthetic and real MRI images 
are delineated in section 4. Lastly, Section 5 remarks the concluding 
summary of the research (Anand et al., 2023; Uppal et al., 2023).

2 Materials and methods

2.1 Fuzzy C-means

The FCM is a widely used clustering approach that aims to divide 
the data into groups such that each data point has a particular degree 
of membership ikµ , that binds the datapoint with a particular cluster 
with certain percentage. The membership ,ikµ  that each data point 
has with the cluster center is calculated by measuring the ratio of the 
distance between them and others.

The process of FCM is defined by the given equation of the 
objective function as in Eq. (1).
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Here ikµ represents membership function, d x vk i,( ) represents 
the distance metrics between every point of the data xk , center of 
cluster vi  and the variable m∈[1,∞] determines the amount of 
fuzziness. In order to satisfy the imposed probability constraint and 
minimize the objective function of FCM, the degree of membership 
and center are determined. Eq. (2) defines the imposed constraint.
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where number of clusters are defined manually by the variable c.
Here Eqs (3) and (4) defines the membership matrix and cluster 

center as:
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The primary problem with the FCM is that it is susceptible to 
noise and other visual artifacts, and its objective function lacks any 
spatial information.

Generally, the flow of the unsupervised clustering algorithm can 
be given in following steps.

2.2 Conditional spatial fuzzy C-means

In order to remove the drawback of FCM, improved version of 
spatial algorithm known as csFCM was given by Pedrycz (1996). 

csFCM includes the conditioning aspect of the clustering mechanism 
as the spatial properties of an image. This conditioning aspect allows 
smoothening of the pixel within its specified vicinity. In csFCM, firstly 

ikµ  and vi  are calculated as given in Eqs (3) and (4). Furthermore, 
spatial membership function ikµ  is calculated using conditional 
variable hik  as in Eq. (5).
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Here hik , represents an auxiliary conditional variable that 
determines the extent to which a pixel is associated with the specific 
cluster by taking into account its spatial neighborhood and is 
calculated as Eq. (6).

In contrast to the FCM algorithm, the csFCM algorithm 
introduces a conditional element into the clustering process. The 
algorithm factors in conditioning variables, denoted as h1, h2, …, hn 
for all pixels x1, x2, …, xk, respectively.

 
h

Rik
j N x ik

k=
∈ ( )∑ µ

 
(6)

N xk( ) is a fixed size square window having the pixel xk  as its 
center and R denotes the cardinality of pixels in the neighborhood. 
Further the weighted membership zik  of csFCM and new cluster 
center ti is calculated as in Eqs (7, 8).
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where in Eq. (7), local ikµ  and global uik  membership values 
are weighted by constants p and 𝑞. These constants are used to 
regulate the respective importance of both the memberships for 
construction of the final weighted membership function and 
cluster center.

2.3 Intuitionistic fuzzy C-means

The theory of intuitionistic fuzzy sets (IFS) was introduced by 
Atanassov (1986). Unlike regular fuzzy sets (FS), IFS take into 
account a data point’s membership and non-membership values 
while also taking into account the presence of a third parameter, i.e., 
hesitation degree. In IFS, the limitation imposed on the 
non-membership degree is that it is not the complement of the 
membership value (Kang et al., 2018).

The IFS (S f ) for dataset X can be represented as:
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In the Eq. (9), the third parameter known as hesitation degree is 
introduced which differentiates the FS from IFS. Here, 
µ λS ik S ikx x( ) → [ ] ( ) → [ ]01 01, ,,  and πS ikx( ) → [ ]01,  represents the 
membership matrix, non-membership matrix and hesitation degree 
matrix of the data point xik  in an S f  with the following condition as 
in Eq. (10):

 0 1≤ ( ) + ( ) ≤µ λS ik S ikx x  (10)

Chaira (2011) proposed novel Intuitionistic Fuzzy C-means 
(IFCM) approach for segmenting medical images. The IFCM 
introduced third parameter with the presence of membership and 
non-membership degree known as hesitation degree. It is calculated 
with the help of fuzzy membership complements using yagers 
complement and the sugeno complement. Dubey et al. (2016) in his 
research has introduced a new measure of fuzzy complement in the 
presence of uncertainty. The non-membership calculated using these 
set of fuzzy complement does not give non-membership as 
complement of membership. Thus, there is another factor known as 
hesitation degree which is π µ λS ik S ik S ikx x x( ) = − ( ) − ( )1 and 
πS ikx( ) is a measure of hesitation degree.

3 Proposed conditional spatial 
intuitionistic fuzzy C-means

The three drawbacks of FCM algorithm are:

 • The FCM’s objective function does not integrate spatial 
information; it treats each pixel as an individual intensity value. 
Image noise, which emerges during image acquisition, can lead 
to altered pixel intensity values, introducing both noise and 
intensity inhomogeneity (Zijdenbos and Dawant, 1994). 
Consequently, due to FCM’s susceptibility to noise, noisy pixels 
tend to be misclassified in images.

 • The relative distance between value of the pixel of the image and 
the cluster center determines the membership degree of the 
FCM. Pixels in close proximity to the centroid are attributed 
higher membership degrees, while those in distant clusters 
receive lower membership degrees (Hua et  al., 2021). 
Consequently, the values of the membership becomes delicate in 
the presence of noise.

 • Furthermore, FCM neglects to account for the presence of 
uncertainty or hesitation that might be inherent in real-world 
datasets (Ullah et al., 2023).

To some extent, csFCM proved to provide better clustering 
results in image segmentation. However, this algorithm does not 
consider the degree of hesitation or uncertainty that may exist in 
the real-world datasets, so the noisy pixels are not properly 
classified in its neighborhood. To overcome the problem of csFCM 
and other research work, we have proposed conditional spatial 
intuitionistic fuzzy C-means (csIFCM) for generating better 
segmentation results (Dhiman et al., 2022). In conventional FCM, 
the values of the non-membership degree typically complements 

the values of the membership degree. However, within the context 
of an intuitionistic approach, the non-membership degree is 
adjusted using fuzzy generators. This adaptation aims to 
effectively manage the inherent uncertainty (hesitation degree) in 
the dataset.

In the proposed algorithm, first we have normalized every pixel 
value of the image using the process of normalization in order to range 
the pixel value between 0 and 1. Further initial values of the number 
of the clusters (segments), random membership matrix, and random 
values of cluster centers are initialized. Then the value of the 
conditional spatial membership uik∗  is calculated as mentioned in 
Eq. (11) using spatial membership function hik  given by Eq. (12).
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N xk( ) is a fixed size square window having the pixel xk  as its 
center and R denotes the cardinality of pixels in the neighborhood. 
Then, a non-membership matrix is calculated using yager’s fuzzy 
generator (Chaira, 2011) as given in Eq. (13).
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Here α is a hyperparameter that controls the degree of hesitation. 
Further, we calculate the hesitation degree as Eq. (14).

 π λS ik ik ik S ikx u x x( ) = − ( ) − ( )∗1  (14)

Subsequently, an conditional spatial intuitionistic membership 
matrix is computed by adding together the conditional membership 
and hesitation degree, as detailed in the Eq. (15).

 µ π∗ = ( ) + ( )S S ik ikx u x  (15)

Further the weighted intuitionistic membership matrix wik of 
csIFCM and joint cluster center gik  is calculated as
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The Eq. (16), represents the mathematical formulation of weighted 
membership function, where the parameters p and q are utilized to 
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regulate the extent of intuitionistic fuzziness and the level of spatial 
membership. These parameters play a pivotal role in constructing the 
ultimate intuitionistic weighted membership function and updating 
the cluster centers. This wik matrix finally defines the weighted 
membership of the pixel with the segment of an image. In regions 
characterized by homogeneity, the spatial function reinforces the 
original membership function, leaving the clustering 
outcome unaltered.

However, in the case of noisy pixels, which typically do not belong 
to the cluster, classification becomes easier through considerations of 
the neighboring pixels. Consequently, inaccurately classified pixels 
stemming from spurious clusters or noisy regions can be effectively 
rectified. This attribute renders the proposed csIFCM algorithm 
notably robust against noise and other image artifacts, ultimately 
enhancing the accuracy of image segmentation.

The process is repeated till the termination criterion (w wi i+
∗ ∗− ≤1 ε) 

 is met.

Proposed csIFCM Algorithm

Input: Image X  with x x x xk1 2 3, , ………( ) normalized pixel points, number of 

clusters c.

Output: Weighted intuitionistic membership matrix wik , joint cluster centers gik
 1. Initialize Partition Matrix ikµ  and cluster centers vi, initial parameters

 2. Calculate non-membership matrix using yagers compliments, hesitation degree 

and intuitionistic membership matrix.

 3. for i ton=1

 4. for k toc=1

 5. Repeat for j = …1 2 3, ,

 6. Update the conditional spatial membership matrix uik
∗  and 

intuitionistic membership matrix µik
∗ .

 7. Update new weighted membership wik  matrix and joint cluster 

centers gik  using Eqs (16) and (17)

 8. Until (w wi i+
∗ ∗− ≤1 ε)

 9. end

 10. end

 11. Return wikand gik .

In the proposed csIFCM algorithm, steps are executed as per the 
above given algorithm. Figure 1 shows the flow of the methodology.

4 Experiment results and discussion

Within this section, we undertake an evaluation of our proposed 
approach’s performance. This evaluation encompasses both synthetic 
images derived from the phantom dataset and actual MRI images of 
the human brain sourced from The Brain Atlas of Harvard Medical 
School, Harvard University, and the Internet Brain Segmentation 
Repository (Internet Brain Atlas, 2024; Internet Brain Segmentation 
Repository, 2024). This evaluation entails a comprehensive assessment 
encompassing qualitative and quantitative analyses. We evaluate the 
efficiency of the proposed csIFCM in comparison to the other 
algorithms, including FCM, IFCM, and csFCM. Notably, all clustering 
algorithms were implemented utilizing MATLAB (R2015a). 
Additionally, trial and error are used to determine the ideal values for 
the weighted membership function’s exponents (m, p, and q). 
Non-membership matrix and hesitation degree is calculated using the 

self-chosen alpha parameter which are used to calculate the 
intuitionistic membership matrix used in proposed csIFCM method.

4.1 Initialization of parameters

The parameters p and q have a significant influence on the 
weighted membership function w and joint cluster center, thereby 
effecting the accuracy of csIFCM. To fix the values of p and q for 
csIFCM, we have calculated the segmentation accuracy of the MRI 
images by segmenting the image at different values of p and q (Anand 
et al., 2023; Uppal et al., 2023). Figure 2 represents the segmentation 
accuracy attained on different slices (10–20) (Internet Brain Atlas, 
2024) of MRI image with respect to different values of p and q. Table 1. 
represents the average value of segmentation accuracy on different 
slices of MRI images with respect to values of p and q. It is observed 
from Table 1 and Figure 2 that csIFCM is giving optimal results on 
p = 1 and q = 2. The outcomes underscore the necessity for balanced 
emphasis on both local and global membership values during the 
convolution process.

FIGURE 1

Proposed algorithm csIFCM for segmentation of MRI images.
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This equilibrium is vital for generating the ultimate intuitionistic 
weighted membership values and joint cluster centers, wherein equal 
significance is attributed to both the conditional spatial membership 
matrix uik∗  and the intuitionistic membership matrix µik∗ . Therefore, for 
all conducted experiments, the optimal parameter values are set as p = 1 
and q = 2.

4.2 Qualitative and quantitative analysis

The qualitative results provide visual details about the different 
segments in the image. This evaluation demonstrates the algorithm’s 
resilience in the face of noise. To quantitatively validate the quality of 
segmentation, we employed various metrics, including the false negative 
ratio fnr( ), false positive ratio fpr( ) , similarity index (ρ), and overall 
segmentation ratio. The segment’s fpr  indicates the error arising from 
surplus pixels, while the fnr  represents the inaccuracy occurs due to 
omitted pixels. The ρ  refers to the pixels that align between the ground 
truth and the experimental outcomes. The segmentation accuracy 
(Zijdenbos and Dawant, 1994; Hua et al., 2021; Dhiman et al., 2022; Ullah 
et al., 2023) is characterized as the proportion of accurately classified 
pixels in relation to the entire pixel count within the ground truth image.
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where S1 and S2 in Eqs (18)–(20) denote the pixels belonging to 
the ground truth value of the segment and experimental result 
obtained from the respective algorithm. Weighted membership 
function Parameters p and q  have a significant influence on the 
weighted membership function w and joint cluster center g , thereby 
affecting the segmentation accuracy.

4.2.1 Synthetic image of phantom
A synthetic image was produced utilizing the built-in MATLAB 

function, phantom(). This function generates an image of a head 
phantom designed for assessing the numerical precision of various 
algorithms. The resulting grayscale intensity image comprises a 
prominent large ellipse symbolizing the brain, within which 
multiple smaller ellipses are embedded to symbolize distinct 
features within the brain. The quantitative outcomes of the 
segmentation attained by the various methods are displayed in 
Table 2. Table 2 indicates that the clustering method csIFCM, which 
is being proposed, is doing better in terms of overall 
segmentation accuracy.

The overall segmentation ratio should have a value of 1, with a 
greater value being better, for the better outcome. The suggested 
algorithm has a higher overall segmentation ratio (0.9631) than the 
other algorithms.

Figure 3 shows the overall segmentation accuracy achieved after 
segmentation and the proposed algorithm proved to give maximum 
accuracy. Figure 4 shows qualitative results of the phantom image 

FIGURE 2

Results of segmentation accuracy on MRI images for different values of p and q.

TABLE 1 Segmentation accuracy of MRI images by different values of p and q for csIFCM.

p/q 1 2 3

1 0.891 0.8975 0.882

2 0.894 0.8972 0.882

3 0.884 0.895 0.848

Bold values represent the results of the proposed algorithm.
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which has been segmented into four segments representing different 
regions of interest in the image.

To show the effectiveness of the algorithm against noise, 
we  have embedded an image with 0.01% of Gaussian noise. 
Figures 4A,B depict the original and noisy images, respectively. 
The noisy image’s segmented sections, produced by the FCM 
algorithm, are displayed in Figures 4C–F. Figures 4G–J displays 
the IFCM result. The results of csFCM are displayed in 
Figures 4K–N, and the suggested csIFCM algorithm produces 
results with more qualitative accuracy and greater noise resilience 
in Figures 4O–R.

The second experimentation involved the analysis of two real 
MRI brain images sourced from references (Internet Brain Atlas, 
2024; Internet Brain Segmentation Repository, 2024). Specifically, the 
experiments were conducted on T-1 weighted axial slices ranging 
from slide numbers 85–115 (Internet Brain Atlas, 2024), considering 
noise. The primary objective was the segmentation of images into 

four distinct segments. It’s noteworthy that these images are not 
provided with the ground truth value.

4.2.2 Real MR brain image
To quantify the results, a comparative analysis was performed by 

introducing 2% Gaussian noise to the original images and 
subsequently comparing the outcomes. This approach was employed 
as the ground truth values of the given data set was not provided. 
Specifically, the algorithm’s performance was scrutinized by examining 
the variation in results when noise was added to the original images, 
thereby checking its effectiveness in handling noisy scenarios.

Table  3 shows the quantitative results produced by the 
implementation on T-1 weighted MRI axial image by FCM, IFCM, 
csFCM, and proposed csIFCM. Figure  5 shows the overall 
segmentation accuracy over all the segments and thus indicates that 
the proposed csIFCM outperforms all the other algorithms and 
validate the effectiveness of the proposed csIFCM over the other 
techniques under comparison.

Figure 6 shows the qualitative result of segmentation generated by 
FCM, IFCM, csFCM, and proposed csIFCM. A deep investigation 
reveals a better visualization of details in the MRI image in 
Figures 6O–R, where the proposed csIFCM is showing more robust 
results and demonstrates its superiority as compared to other 
algorithms. The csIFCM algorithm exhibits robustness in the presence 
of noise, retaining well-defined image edges and preserving a greater 
amount of image details.

Second, we employed actual MRI brain scans from the Internet 
Brain Segmentation repository (Internet Brain Atlas, 2024), which 
also provides manually segmented (ground truth values) data for 
verifying the outcomes of novel segmentation techniques. We have 
segmented real T1-weighted MRI brain images in 2D axial slices 10 to 
20 using FCM, IFCM, csFCM, and the proposed csIFCM algorithms. 
Figure 7 displays the segments obtained for slice 10. Figure 7A shows 

TABLE 2 Quantitative measures of phantom image.

Algorithm Segment Similarity index False positive 
ratio

True positive 
ratio

Overall segmentation 
accuracy

FCM

1 0.8305 0.0008 0.7106

0.906
2 0.9687 0.0008 0.9324

3 0.9596 0.0097 0.9326

4 0.9598 0.0097 0.9329

IFCM

1 0.4574 2.3729 1

0.8972
2 0.9862 0.0131 1

3 0.9862 0.0131 1

4 0.9561 0.0101 0.9268

csFCM

1 1 0 1

0.9187
2 0.8601 0.0007 0.7544

3 0.9723 0.0018 0.9420

4 0.9651 0.0093 0.9423

csIFCM

1 0.9398 0.0015 0.8877

0.9631
2 0.9865 0.0013 0.9736

3 0.9866 0.0013 0.9737

4 0.9843 0.0047 0.9738

Bold values represent the results of the proposed algorithm.

FIGURE 3

Results of overall segmentation accuracy of different algorithms for 
phantom image.
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the original image, which will be  segmented into 4 clusters. 
Figures  7B–E shows the segmentation results obtained by FCM, 
Figures  7F–I showcases the segmentation results of IFCM, 
Figures  7J–M shows the segmentation results of csFCM and 
Figures  7N–Q shows the segmentation results of proposed 
csIFCM. The outcomes clearly confirm the superior performance of 
the proposed algorithm compared to the other algorithms under 
comparison. The csIFCM algorithm exhibits robustness in the 
presence of noise, retaining well-defined image edges and preserving 
a greater amount of image details.

In quantitative terms, we have computed both the true positive 
rate (TPR) and the false positive rate (FPR) (Adhikari et al., 2015; 

Arora and Tushir, 2019). This calculation facilitates the portrayal of a 
satisfactory balance between these two performance metrics

 
TPR TP

P
=

 
(21)

 
FPR FP

P
=

 
(22)

In this particular context, P symbolizes the count of positive 
instances, while N signifies the count of negative instances. When a 

RQPO

NMLK
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FIGURE 4

Visual results of segmentation on synthetic image of phantom. (A) Phantom image. (B) Noisy images. (C–F) Results of FCM. (G–J) Results of IFCM. 
(K–N) Results of csFCM. (O–R) Results of csIFCM.

https://doi.org/10.3389/fncom.2024.1425008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Arora et al. 10.3389/fncom.2024.1425008

Frontiers in Computational Neuroscience 09 frontiersin.org

prediction yields a positive result and the actual value is likewise 
positive, it falls under the category of true positive. Conversely, when 
a prediction yields a positive result but the actual value is negative, it 
is classified as a false positive. Table 4 shows the average value of the 
results obtained by the different segments for all the algorithms. The 
results indicate that the proposed csIFCM algorithm gives better 
results as compared to the FCM, IFCM, csFCM. The csIFCM gives 
maximum segmentation accuracy.

Figure 8 shows the plot of similarity index achieved from FCM, 
IFCM, csFCM and proposed csIFCM algorithm on image slices (10–20) 
of the T-1 weighted MR brain images. The overall segmentation 
accuracy and similarity index is represented for each slice. These results 
indicate that the proposed csIFCM technique is performing better in 
Figure 8A, with the highest average value of similarity index for each 
slice and in Figure 8B, the value of segmentation accuracy is better in 
each slice as compared to other algorithms and demonstrate its 
superiority over the FCM, IFCM, csFCM.

4.2.2.1 Time complexity analysis
To compute the similarity between each pixel requires O n c d∗ ∗( )

operations, where n is the number of data points, c is the number of 
clusters and d is the dimensionality of the data. To update the membership 
degrees for each data point, this typically requires O n c∗( ) operations. In 
intutiotionistic approach, non-membership is calculated using 
membership matrix in constant time. The overall time complexity of the 
standard IFCM is O n c d I∗ ∗ ∗( )  where I  is the number of iterations 
required for convergence. Incorporating the conditional spatial 
information, includes calculation of spatial information in the time 
complexity of O n2( ).Further, to calculate the weighted spatial 
membership matrix involves constant time. Therefore, the overall time 
complexity of incorporating conditional spatial information in csIFCM 
can be approximated as O n c d I N K∗ ∗ ∗ + ∗( ) where N is the number 
of datapoints in the spatial neighborhood of each point and K is the 
computational cost of processing the conditional spatial information.

4.2.3 Limitation of the conditional spatial 
intuitionistic fuzzy C-means

The limitation of csIFCM is its senstivity to choice of initial 
parameters. The initial parameters are selected randomly which may 
result in the increase of convergence time. The performance of 
csIFCM depends on how the spatial neighborhood is defined and 
selection of the size of neighborhood window along with the pixel 
under consideration which defines spatial relationship criterion. 
Defining a suitable spatial neighborhood enables the accurate capture 
of spatial structure, leading to optimal segmentation results.

Additionally, csIFCM experiences increased computational time 
complexity compared to IFCM due to the incorporation of spatial 
information and the calculation of the weighted membership matrix. 
The computation of spatial relationships or distances between data 
points adds an additional overhead to the clustering process, which can 
be significant, especially for large datasets or complex spatial structures.

TABLE 3 Quantitative measures of T-1 weighted MRI axial image in the presence of noise.

Algorithm Segment Similarity index False positive 
ratio

True positive 
ratio

Overall segmentation 
accuracy

FCM

1 0.9263 0.0045 0.9097

0.9747
2 0.9825 0.0062 0.9919

3 0.9910 0.0078 0.9902

4 0.9902 0.0092 0.9900

IFCM

1 0.9265 0.1389 0.9883

0.9753
2 0.9837 0.0808 0.9488

3 0.9915 0.0643 0.9191

4 0.9907 0.0109 0.9897

csFCM

1 0.9268 0.0829 0.9106

0.9757
2 0.9845 0.1662 0.9320

3 0.9915 0.0682 0.9935

4 0.9907 0.1260 0.9819

csIFCM

1 0.9300 0.0592 0.9206

0.9767
2 0.9880 0.0627 0.9330

3 0.9917 0.0093 0.9927

4 0.9909 0.0108 0.9908

Bold values represent the results of the proposed algorithm.

FIGURE 5

Plot showing overall segmentation accuracy for different algorithms.
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5 Conclusion and future scope

This work introduces a novel algorithm named Conditional 
Spatial Intuitionistic Fuzzy C-means (csIFCM) for the segmentation 
of MRI images. By incoporating both local gray-level and spatial 
information through the introduction of a conditional spatial 

variable, csIFCM addresses the limitations of existing methods, 
particularly in scenarios involving noise and intensity 
inhomogeneity. Our experiments encompass synthetic phantom 
images, as well as real and simulated MRI brain images. We can 
explore kernel metrics that will help to segment non-linear data 
with higher accuracy.

J 
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FIGURE 6

Visual results of real T-1 MR axial slice (10) scan. (A) Real image. (B) Noisy images. (C–F) Segmentation results of FCM. (G–J) Segmentation results of 
IFCM. (K–N) Segmentation results of csFCM. (O–R) Segmentation results of csIFCM.
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FIGURE 7

Visual results of real MRI scan. (A) Real images. (B–E) Segmentation results of FCM. (F–I) Segmentation results of IFCM. (J–M) Segmentation results of 
csFCM. (N–Q) Segmentation results of csIFCM.

TABLE 4 Quantitative measures of T-1 weighted MR axial image of slices 10–20.

Algorithm Similarity index True positive ratio False positive ratio Segmentation accuracy

FCM 0.8866 0.8655 0.120 0.8713

IFCM 0.8883 0.8778 0.114 0.8753

csFCM 0.8977 0.8919 0.093 0.8808

csIFCM 0.9100 0.9002 0.083 0.8975

Bold values represent the results of the proposed algorithm.

A B

FIGURE 8

(A) Similarity Index of slices (10–20) of T-1 weighted MR axial image of FCM, IFCM, csFCM, and csIFCM. (B) Segmentation Accuracy of slices (10–20) of 
T-1 weighted MR axial image of FCM, IFCM, csFCM, and csIFCM.

https://doi.org/10.3389/fncom.2024.1425008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Arora et al. 10.3389/fncom.2024.1425008

Frontiers in Computational Neuroscience 12 frontiersin.org

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: http://www.med.harvard.edu/aanlib/cases/caseNA/
pb9.htm; http://www.cma.mgh.harvard.edu/ibsr/.

Ethics statement

Written informed consent was not required from the 
individual(s) for the publication of any potentially identifiable 
images or data included in this article as the dataset is taken from a 
public repository.

Author contributions

JA: Conceptualization, Writing – original draft. GA: Writing – 
review & editing, Software, Project administration, Funding 
acquisition, Supervision, Methodology. AN: Writing – review & 
editing, Methodology, Investigation, Data curation, 
Conceptualization. MT: Writing – review & editing, Project 
administration, Formal analysis. TS: Writing – review & editing, 
Validation, Resources, Project administration. DG: Writing – 
review & editing, Supervision, Methodology, Investigation. SK: 
Writing – review & editing, Validation, Project administration, 
Formal analysis.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank the Deanship of Scientific 
Research at Majmaah University for supporting this work under 
Project Number: R-2024-1149.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Adhikari, S. K., Singh, J. K., Basu, D. K., and Nasipuri, M. (2015). Conditional spatial 

fuzzy C-means clustering algorithm for segmentation of MRI images. App. Soft Compt. 
34, 758–769. doi: 10.1016/j.asoc.2015.05.038

Ahmed, M., Yamany, S., Mohamed, N., Farag, A., and Moriarty, T. A. (2002). Modified 
fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE 
Trans. Med. Imag. 21, 193–199. doi: 10.1109/42.996338

Anand, V., Gupta, S., Gupta, D., Gulzar, Y., Xin, Q., Juneja, S., et al. (2023). Weighted 
average ensemble deep learning model for stratification of brain tumor in MRI images. 
Diagnostics 13:1320. doi: 10.3390/diagnostics13071320

Arora, J., and Tushir, M. (2019). A new semi-supervised intuitionistic fuzzy C-means 
clustering. EAI Endorsed Scal. Inf. Syst. 7:e1. doi: 10.4108/eai.13-7-2018.159622

Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Sys. 20, 87–96. doi: 10.1016/
S0165-0114(86)80034-3

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New 
York, NY: Plenum.

Blahova, L., Horecny, J., and Kostolny, J., Segmentation of MRI images using clustering 
algorithms. 2023 International Conference on Information and Digital Technologies 
(IDT), Zilina, (2023), 169–178.

Cai, W., Chen, S., and Zhang, D. (2007). Fast and robust fuzzy C-means clustering 
algorithm incorporating local information for image segmentation. Pattern Recogn. 40, 
825–838. doi: 10.1016/j.patcog.2006.07.011

Caldairou, B., Passat, N., Habas, P. A., Studholme, C., and Rousseau, F. (2011). A non-
local fuzzy segmentation method: application to brain MRI. Patt. Recgn. 44, 1916–1927. 
doi: 10.1016/j.patcog.2010.06.006

Chaira, T. (2011). A novel intuitionistic fuzzy c means clustering algorithm and its 
application to medical images. Appl. Soft Compt. 11, 1711–1717. doi: 10.1016/j.
asoc.2010.05.005

Chen, H., Xie, Z., Huang, Y., and Gai, D. (2021). Intuitionistic fuzzy C-means 
algorithm based on membership information transfer-ring and similarity measurement. 
Sensors 21:696. doi: 10.3390/s21030696

Chen, S., and Zhang, D. (2004). Robust image segmentation using FCM with spatial 
constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man 
Cybern. 34, 1907–1916. doi: 10.1109/TSMCB.2004.831165

Dhiman, G., Juneja, S., Viriyasitavat, W., Mohafez, H., Hadizadeh, M., Islam, M. A., 
et al. (2022). A novel machine-learning-based hybrid CNN model for tumor 
identification in medical image processing. Sustain. For. 14:1447. doi: 10.3390/
su14031447

Dubey, Y. K., and Mushrif, M. M. (2016). FCM clustering algorithms for segmentation 
of brain MR images. Adv. Fuzzy Syst. 2016, 1–14. doi: 10.1155/2016/3406406

Dubey, Y. K., Mushrif, M. M., and Mitra, K. (2016). Segmentation of brain MR images 
using rough set based intuitionistic fuzzy clustering. Biocybernet. Biomed. Eng. 36, 
413–426. doi: 10.1016/j.bbe.2016.01.001

Dunn, J. C. (1973). A fuzzy relative or the ISODATA process and its use in detecting 
compact and well-separated clusters. J. Cyben. 3, 32–57. doi: 10.1080/01969727308546046

Hua, L., Gu, Y., Gu, X., Xue, J., and Ni, T. (2021). A novel brain MRI image 
segmentation method using an improved multi-view fuzzy c-means clustering 
algorithm. Front. Neur. 15:662674. doi: 10.3389/fnins.2021.662674

Internet Brain Atlas. (2024). Available at: http://www.med.harvard.edu/aanlib/cases/
caseNA/pb9.htm.

Internet Brain Segmentation Repository. (2024). Available at: http://www.cma.mgh.
harvard.edu/ibsr/.

Kang, Y., Wu, S., Cao, D., and Weng, W. (2018). New hesitation-based distance and 
similarity measures on intuitionistic fuzzy sets and their applications. Int. J. Syst. Sci. 49, 
783–799. doi: 10.1080/00207721.2018.1424965

Krindis, S., and Chatzis, V. (2010). A robust fuzzy local information C- means 
clustering algorithm. IEEE Trans. Img. Proc. 19, 1328–1337. doi: 10.1109/
TIP.2010.2040763

Li, C., Huang, R., Ding, Z., Gatenby, J. C., Metaxas, D. N., and Gore, J. C. (2011). A 
level set method for image segmentation in the presence of intensity inhomogeneities 
with application to MRI. IEEE Trans. Image Process. 20, 2007–2016. doi: 10.1109/
TIP.2011.2146190

Li, M., Zhou, J., Wang, D., Peng, P., and Yu, Y. (2022). Application of clustering-based 
analysis in MRI brain tissue segmentation. Compt. Math Methods Med. 2022, 1–16. doi: 
10.1155/2022/7401184

Pedrycz, W. (1996). Conditional fuzzy C-means. Pattern Recogn. Lett. 17, 625–631. 
doi: 10.1016/0167-8655(96)00027-X

https://doi.org/10.3389/fncom.2024.1425008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
http://www.med.harvard.edu/aanlib/cases/caseNA/pb9.htm
http://www.med.harvard.edu/aanlib/cases/caseNA/pb9.htm
http://www.cma.mgh.harvard.edu/ibsr/
https://doi.org/10.1016/j.asoc.2015.05.038
https://doi.org/10.1109/42.996338
https://doi.org/10.3390/diagnostics13071320
https://doi.org/10.4108/eai.13-7-2018.159622
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/j.patcog.2006.07.011
https://doi.org/10.1016/j.patcog.2010.06.006
https://doi.org/10.1016/j.asoc.2010.05.005
https://doi.org/10.1016/j.asoc.2010.05.005
https://doi.org/10.3390/s21030696
https://doi.org/10.1109/TSMCB.2004.831165
https://doi.org/10.3390/su14031447
https://doi.org/10.3390/su14031447
https://doi.org/10.1155/2016/3406406
https://doi.org/10.1016/j.bbe.2016.01.001
https://doi.org/10.1080/01969727308546046
https://doi.org/10.3389/fnins.2021.662674
http://www.med.harvard.edu/aanlib/cases/caseNA/pb9.htm
http://www.med.harvard.edu/aanlib/cases/caseNA/pb9.htm
http://www.cma.mgh.harvard.edu/ibsr/
http://www.cma.mgh.harvard.edu/ibsr/
https://doi.org/10.1080/00207721.2018.1424965
https://doi.org/10.1109/TIP.2010.2040763
https://doi.org/10.1109/TIP.2010.2040763
https://doi.org/10.1109/TIP.2011.2146190
https://doi.org/10.1109/TIP.2011.2146190
https://doi.org/10.1155/2022/7401184
https://doi.org/10.1016/0167-8655(96)00027-X


Arora et al. 10.3389/fncom.2024.1425008

Frontiers in Computational Neuroscience 13 frontiersin.org

Ren, T., Wang, H., Feng, H., Xu, C., Liu, G., and Ding, P. (2019). Study on the improved 
fuzzy clustering algorithm and its application in brain image segmentation. Appl. Soft 
Compt. 81:105503. doi: 10.1016/j.asoc.2019.105503

Singh, C., Ranade, S. K., Kaur, D., and Bala, A. (2024). A kernelized-bias-corrected 
fuzzy C-means approach with moment domain filtering for segmenting brain magnetic 
resonance images. Soft Compt. 28, 1909–1933. doi: 10.1007/s00500-023-09379-z

Suzuki, H., and Toriwaki, J. I. (1991). Automatic segmentation of head MRI images 
by knowledge guided thresholding. Comput. Med. Imaging Graph. 15, 233–240. doi: 
10.1016/0895-6111(91)90081-6

Thao, N. X., Ali, M., and Smarandache, F. (2019). An intuitionistic fuzzy clustering 
algorithm based on a new correlation coefficient with application in medical diagnosis. 
J. Int. Fuzzy Syst. 36, 189–198. doi: 10.3233/JIFS-181084

Ullah, F., Nadeem, M., Abrar, M., Al-Razgan, M., Alfakih, T., Amin, F., et al. (2023). 
Brain tumor segmentation from MRI images using handcrafted convolutional neural 
network. Diagnostics 13:2650. doi: 10.3390/diagnostics13162650

Uppal, M., Gupta, D., Juneja, S., Gadekallu, T. R., el Bayoumy, I., Hussain, J., et al. 
(2023). Enhancing accuracy in brain stroke detection: multi-layer perceptron with 

Adadelta, RMSProp and AdaMax optimizers. Front. Bioeng. Biotechnol. 11:1257591. doi: 
10.3389/fbioe.2023.1257591

Vlachos, K., and Sergiadis, G. D., Towards intuitionistic fuzzy image processing. 
International Conference on Computational Intelligence for Modelling: Control and 
Automation and International Conference on Intelligent Agents, Web Technologies and 
Internet Commerce (CIMCA-IAWTIC'06), Vienna. (2005), 2–7.

Wang, X., Wang, Y., and Wang, L. (2004). Improving fuzzy c-means clustering based 
on feature-weight learning. Patt. Recog. Lett. 25, 1123–1132. doi: 10.1016/j.
patrec.2004.03.008

Yang, M.-S., and Tsai, H.-S. (2008). A Gaussian kernel-based fuzzy c-means algorithm 
with a spatial bias correction. Patt. Recgn. Lett. 29, 1713–1725. doi: 10.1016/j.
patrec.2008.04.016

Yang, X., and Zhang, G. (2011). A kernel fuzzy C-means clustering-based fuzzy 
support vector machine algorithm for classification problems with outliers or noises. 
IEEE Trans. Fuzzy Syst. 19, 105–115. doi: 10.1109/TFUZZ.2010.2087382

Zijdenbos, P., and Dawant, B. M. (1994). Brain segmentation and white matter lesion 
detection in MR images. Crit. Rev. Biomed. Eng. 22, 401–465.

https://doi.org/10.3389/fncom.2024.1425008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.asoc.2019.105503
https://doi.org/10.1007/s00500-023-09379-z
https://doi.org/10.1016/0895-6111(91)90081-6
https://doi.org/10.3233/JIFS-181084
https://doi.org/10.3390/diagnostics13162650
https://doi.org/10.3389/fbioe.2023.1257591
https://doi.org/10.1016/j.patrec.2004.03.008
https://doi.org/10.1016/j.patrec.2004.03.008
https://doi.org/10.1016/j.patrec.2008.04.016
https://doi.org/10.1016/j.patrec.2008.04.016
https://doi.org/10.1109/TFUZZ.2010.2087382

	Conditional spatial biased intuitionistic clustering technique for brain MRI image segmentation
	1 Introduction
	2 Materials and methods
	2.1 Fuzzy C-means
	2.2 Conditional spatial fuzzy C-means
	2.3 Intuitionistic fuzzy C-means

	3 Proposed conditional spatial intuitionistic fuzzy C-means
	4 Experiment results and discussion
	4.1 Initialization of parameters
	4.2 Qualitative and quantitative analysis
	4.2.1 Synthetic image of phantom
	4.2.2 Real MR brain image
	4.2.2.1 Time complexity analysis
	4.2.3 Limitation of the conditional spatial intuitionistic fuzzy C-means

	5 Conclusion and future scope
	Data availability statement
	Ethics statement
	Author contributions

	References

