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Bursting gamma oscillations in
neural mass models

Manoj Kumar Nandi1,2, Michele Valla1,2 and Matteo di Volo1,2*
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Gamma oscillations (30–120 Hz) in the brain are not periodic cycles, but

they typically appear in short-time windows, often called oscillatory bursts.

While the origin of this bursting phenomenon is still unclear, some recent

studies hypothesize its origin in the external or endogenous noise of neural

networks. We demonstrate that an exact neural mass model of excitatory and

inhibitory quadratic-integrate and fire-spiking neurons theoretically predicts

the emergence of a di�erent regime of intrinsic bursting gamma (IBG)

oscillations without any noise source, a phenomenon due to collective chaos.

This regime is indeed observed in the direct simulation of spiking neurons,

characterized by highly irregular spiking activity. IBGoscillations are distinguished

by higher phase-amplitude coupling to slower theta oscillations concerning

noise-induced bursting oscillations, thus indicating an increased capacity

for information transfer between brain regions. We demonstrate that this

phenomenon is present in both globally coupled and sparse networks of spiking

neurons. These results propose a newmechanism for gamma oscillatory activity,

suggesting deterministic collective chaos as a good candidate for the origin of

gamma bursts.

KEYWORDS

gamma oscillations, neural mass model, phase amplitude coupling, spiking neural

network (SNN), synchronization, bursting

1 Introduction

Oscillations are a hallmark of brain activity at the mesoscopic scale, thought to reflect
the coherent dynamics of the underlying neural populations (Buzsaki, 2006). Oscillations
have been recorded with different experimental techniques, such as Local Field Potentials,
and are typically grouped in frequency bands, from slower delta and theta up to faster beta
and gamma oscillations. Gamma oscillations (30–150 Hz) have received much attention
because they have been associated with to cognitive functions and dysfunctions (Wang,
2010) and because they are thought to play a central role in the transfer of information
between brain regions (Fries, 2015). In particular, narrow-band gamma oscillations, which
typically cover the range of 30–80 Hz, have been found prominent during sensory
stimulation (Ray andMaunsell, 2010) and cognitive processes such as attention (Fries et al.,
2001; Bosman et al., 2012) and working memory (Pesaran and Shin, 2002). Moreover,
gamma oscillations are particularly relevant in the Hippocampus, a brain region that
plays a critical role in memory (Bird and Burgess, 2008). They are modulated by slower
theta rhythms, an emergent interaction between frequency bands usually called Cross-
Frequency Coupling (CFC) (Belluscio et al., 2012; Colgin, 2015; Bott et al., 2016). Such CFC
is supposed to reflect an efficient transfer of information across spatial and temporal scales
from an external source, responsible for slower theta oscillations, to the local computing
circuit responding with gamma oscillations (Lisman and Jensen, 2013). In this study,
we focus on the circuit mechanisms regulating such narrow-band gamma oscillations
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and their CFC with slower theta rhythms. This research study
has been the subject of intense research in the last few decades.
It has been exhibited that gamma oscillations can emerge in
solely inhibitory networks thanks to synaptic delay or synaptic
time scales (Brunel and Hakim, 1999) or in balanced sparse
networks due to the constructive role of endogenous fluctuations
(Di Volo and Torcini, 2018). Gamma oscillations are found in
excitatory-inhibitory networks through the well-known Pyramidal
Interneuronal Network Gamma (PING) mechanism (Tiesinga and
Sejnowski, 2009). Here, the ping pong between an excitatory and
inhibitory population is responsible for the emergence of gamma
oscillations. These oscillations typically display a delay of a few
milliseconds between excitatory population firing and the following
inhibitory avalanche (Buzsáki and Wang, 2012).

A powerful method to investigate the emergence of oscillations
is by employing neural mass or mean-field models. Neural
mass models are low-dimensional descriptions of the population
dynamics of spiking neural networks. They can be heuristic,
like in the case of the pioneering study by Wilson and Cowan
(1972) as well as derived directly from the details of the network
model by di Volo et al. (2019) and Carlu et al. (2020). In the
specific case of globally coupled quadratic integrate and fire-
spiking neurons, an exact neural mass model has been obtained by
Montbrió et al. (2015) based on the Ott-Antonsen ansatz (Ott and
Antonsen, 2008). PING and Interneuronal Network Gamma (ING)
oscillations have been observed in these models, reproducing with
very good accuracy the population dynamics of the corresponding
spiking neural network (Devalle et al., 2017, 2018; Segneri et al.,
2020). In particular, PING oscillations are typically emerging
because of a difference in the time scale regulating excitatory
and inhibitory populations, which is responsible for the well-
known delay between excitatory and inhibitory populations’
spiking activity.

While these models allow us to determine basic mechanisms
for the emergence of gamma oscillations, the features of these
oscillations are quite different from what is usually observed in
experimental recordings. In fact, recent studies depict that gamma
oscillations appear in bursts, i.e., short high-amplitude oscillatory
events separated by periods of low-amplitude oscillatory activity
(Douchamps et al., 2024). The circuit origin and the function of
these bursts are still unknown. It has been recently suggested that
visually induced gamma bursts can be modeled through the noise
on top of a damped harmonic oscillator (Spyropoulos et al., 2022).
In the context of neural mass models, bursting oscillations (more
specifically beta oscillations) have been modeled by settling the
system close to a bifurcation from asynchronous to oscillatory
activity and by adding external noise (Byrne et al., 2020; Kang et al.,
2023). Similar study on gamma oscillations conveys the emergence
of gamma bursts thanks to the presence of noise in the model
(Tahvili and Destexhe, 2023). In this framework, oscillatory bursts’
timing and features are random events related to external noise and
are not an emergent property of the only neural network.

In this manuscript, we first consider globally coupled networks
of excitatory and inhibitory quadratic integrate and fire neurons
(Ermentrout and Kopell, 1986). The network includes variability
in the inputs received by neurons (i.e., excitability), reflecting
the natural heterogeneity observed in biological neural networks.
We consider a Cauchy distribution for neuron excitabilities (i.e.,

the constant external current of neurons setting their isolated
spontaneous activity), which allows us to derive the corresponding
exact neural mass model (Montbrió et al., 2015). We first take
advantage of the exact neural mass model to show that the network
exhibits a very rich behavior when scanning the mean external
drive to pyramidal neurons and the amount of heterogeneity in
pyramidal neurons’ excitability. By looking at network simulations,
we observe asynchronous irregular regimes, the classic PING
oscillatory regime (including a bistable regime of PING and
asynchronous activity), as well as a different type of bursting
gamma oscillations, emerging without the need for ad-hoc external
noise. We found that gamma bursts in this region are due to
deterministic chaos in the neural mass model. We called this type
of burst intrinsic bursting gamma (IBG), to stress the difference
with the classically used Noise-induced Bursts of Gamma (NiBG)
oscillations. NiBG oscillations are observed in our model only by
including the effect of finite-size fluctuations in the neural mass.
Accordingly, they are not a deterministic emergent property of
the neural mass model. Moreover, in direct network simulations
of finite-size networks, the features of these oscillations strongly
change with the number of neurons considered in the network,
while the IBG oscillations are robust to changes in network sizes. In
order to compare these two oscillations’ types, we have estimated
the PAC of the network to slower theta oscillations (10 Hz)
in the two different regimes (IBG vs. NiBG). Interestingly, we
found that the networks set in the vicinity of the IBG regime are
characterized by higher CFC with theta oscillations than those
networks demonstrating classical NiBG oscillations. This result
demonstrates that deterministic IBG oscillations boost information
transfer between regions and call for a reconsideration of the
mechanisms at the basis of bursting gamma oscillations.

Finally, we confirm that these results can be generalized to
sparse networks of excitatory and inhibitory neurons, as long as the
number of connections is sufficiently large.

The manuscript is organized as follows: Methods are presented
in Section 2, detailing the network model and its corresponding
neural mass model. Additionally, we outline the methods employed
to characterize model dynamics and analyze PAC. Section 3
presents the results of our study. Conclusion and discussions on
our findings are presented in Section 4.

2 Methods

2.1 Network model

We consider a network consisting of N globally connected
quadratic integrate-and-fire (QIF) neurons, with NE being
excitatory (E) and NI being inhibitory (I) neurons. The membrane
potential vEj (v

I
j ) of each excitatory (inhibitory) neuron j follows the

subsequent differential equations:

τEmv̇
E
j (t) = (vEj (t))

2 + IEj + ξEj (t)+ 2τEmS
E(t)+ Iθ0 (t)

τ Imv̇
I
j (t) = (vIj (t))

2 + IIj + ξ Ij (t)+ 2τ ImS
I(t), (1)

where, in Equation 1, τXm with X = E (I) represents the excitatory
(inhibitory) membrane time constant, and Iθ0 (t) = Asin(2π fθ t)
represents an additional time-dependent external input. We fixed
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fθ = 10 Hz and the amplitude A = 0 if not stated otherwise. IEj
(IIj ) denotes quenched heterogeneity, which represents a constant
input current that varies from neuron to neuron according to a
Cauchy probability density function P(IX) centered at IX0 and with
half-width at half-maximum (HWHM)1X as shown in Equation 2.

P(IX) = 1X

(IX − IX0 )
2 + 12

X

× 1

π
. (2)

Additionally, neurons receive independent noisy inputs.
Specifically, the random variables ξX(t) represent zero-centered
Cauchy noise with a HWHM of ŴX . The choice of a Cauchy
probability distribution allows us to exactly solve the equation
for the neural mass model (Montbrió et al., 2015); see next
section. The parameter ŴX represents the amount of heterogeneity
in neurons’ external drive IXj , which can be seen as neurons’
excitability, i.e., the distance from the threshold of firing. When
ŴX = 0, neurons are identical and follow the same differential
equation with the same parameters. The external drive IXj can
change depending on the external input coming from other
areas, but it is intrinsically heterogeneous between neurons.
Such heterogeneity can be quantified by measuring the resting
potential of cortical neurons (Di Volo and Destexhe, 2021), proving
that the distribution of resting potential across neurons can be
approximated to a Gaussian distribution with a standard deviation
(SD) smaller than 1 (i.e., the corresponding ŴX).

Finally, if not stated otherwise, neurons interact with each other
in an all-to-all manner through the mean post-synaptic activity.
SX(t),

SE(t) = 1

NE

NE
∑

j=1

JEE
∑

j : t
(n)
j <t

δ(t − t
(n)
j )

− 1

NI

NI
∑

j=1

JEI
∑

j : t
(m)
j <t

δ(t − t
(m)
j )

SI(t) = 1

NE

NE
∑

j=1

JIE
∑

j : t
(n)
j <t

δ(t − t
(n)
j )

− 1

NI

NI
∑

j=1

JII
∑

j : t
(m)
j <t

δ(t − t
(m)
j ), (3)

where Jαβ in Equation 3, is the synaptic coupling strength between
post-synaptic neurons in population α and pre-synaptic neurons
in population β . The post-synaptic potentials are δ-pulses, and the
transmissions are instantaneous: t(n)j denotes the n-th spike time
emitted by the neuron j. When the membrane potential of the
neuron reaches the threshold vp, it emits a spike, following which
it is reset to vr . In the QIF model, vp = −vr = ∞. In numerical
simulations, following a similar approach as outlined in Montbrió
et al. (2015), the threshold and reset values have been approximated
to vp = −vr = 100, and when neuron j reaches vj ≥ 100, its voltage
is reset to vj = −100. Subsequently, the voltage remains constant at
the reset value for a duration of 2τXm/100. This accounts for the time
required to transition from vj = 100 to vj = ∞ and from vj = −∞
to vj = −100. The spike emission of neuron j is recorded halfway
through this period. If not stated otherwise, the system parameters

are JEE = 10.8, JIE = 2.0, JEI = 9.6286, JII = 9.53939, and τXm = 5
ms. We have used the fixed external current II0 = 2.0 and the
fixed population heterogeneity 1I = 0.10 and varied the excitatory
external current IE0 and the population heterogeneity 1E (or noise
amplitude ŴE). In the case of sparse networks, we randomly cut
PC = 80% of connections from each type of synaptic connectivity
and rescale the synaptic strength by the following way: Jαβ =
Jαβ/(1.0−PC) to keep the system equivalent (in its mean interaction
strength) with the all-to-all network. The network dynamics are
simulated using an Euler scheme with a time step of 1t = 0.00015
ms. We discarded the initial transients lasting approximately Tt ≈
10s. Time averages and fluctuations are typically calculated over
time intervals of approximately Ts ≈ 100s. Our simulation involves
networks consisting of N = 16000 with NE = 8000 excitatory and
NI = 8000 inhibitory neurons. Notice that in the cortex, typically
NE ∼ 4NI , but for the neural mass model, this does not change the
emergent dynamics apart from finite-size fluctuations.

2.2 Neural mass model

If the network size is N → ∞, the spiking network
dynamics for globally coupled neurons can be exactly reduced
to a neural mass model (Montbrió et al., 2015; Clusella and
Montbrió, 2022) using the reduction method initially developed
for phase-coupled oscillators (Ott and Antonsen, 2008). This
reduced model captures the system’s behavior with only four
collective variables: the mean membrane potential VX(t) and the
instantaneous population rate RX(t). The neural mass model is
described by the following equations:

ṘE(t) = 2RE(t)VE(t)

τEm
+ 1

eff
E

(τEm)
2π

(4a)

V̇E(t) = (VE(t))2 + IE0 + Iθ0 (t)

τEm
− τEm(πR

E(t))2

+ [JEERE(t)− JEIRI(t)] (4b)

ṘI(t) = 2RI(t)vI(t)

τ Im
+ 1

eff
I

(τ Im)
2π

(4c)

V̇I(t) = (VI(t))2 + II0
τ Im

− τ Im(πR
I(t))2 + [JIERE(t)− JIIRI(t)].

(4d)

Here, 1
eff
X = 1X + ŴX is the effective level of disorder in the

network, defined as the linear sum of noise amplitude ŴX and the
amount of heterogeneity 1X . RX(t) is the mean firing rate, and
VX(t) is the mean membrane potential of population X = E (I).

In order to account for finite-size fluctuations due to a finite
number of neurons N, we have included in the neural mass model
a Gaussian white noise ζ in the external current with the following
properties:< ζαβ (t)ζα′β ′

(t′) >= δ(t−t′), when α = α′ and β = β ′

and the noise correlation is zero otherwise (Vinci et al., 2023).
Then the external current in Equations 4b, d becomes: Iα0 (t) =
Iα0 + τα

m

∑

β=E,I J
αβ

√

Rβ

Nβdt
ζαβ (t) with α = E or I. Here dt is

the integration step of the Euler scheme. and ζαβ (t) is a random
number between –0.5 and +0.5, taken from a normal distribution.
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2.3 Measures of model dynamics and PAC

Coefficient of variation (CV): To characterize the network
dynamics, we measure the average membrane potential VX(t) =
∑NX

i vXi (t)/N
X , the instantaneous firing rate RX(t), as well as the

coefficient of variation (cvi) for each neuron i, calculated as the
ratio of the SD σi to the mean (µi) of the inter-spike intervals
(ISIs) associated with the train of spikes emitted by the neuron i,
cvi = σi

µi
. The average CV of the population is defined as CV =

∑

i cvi/N. Furthermore, to quantify the amplitude of oscillations
in population activity, we have calculated the SD 6V of the mean
membrane potential, 6V =

√

< (VE)2 > − < VE >2.
Power spectrogram: we employed signal processing techniques

to compute the frequency power spectrogram of the population
activity. We consider the temporal sequence of the mean
voltage VE(t), and we define the power spectrum as S(t, f ) =
[V̂E(f )][V̂E(f )]∗, where V̂E(f ) is the Fourier transform ofVE(t).We
use the short-time Fourier transform (STFT) subroutine from the
signal package of the SciPy library (Virtanen et al., 2020) to obtain
the Fourier transform of VE(t) within a running time window
of length 1Twin at time t. Throughout this study, we perform
STFT using 90% overlap, and the window length is 1Twin =
0.05s. The spectrogram was visualized using a colormap, where
the color code represents the normalized power spectral density
S(t, f )/max(S(t, f )) obtained from the mean voltage VE(t) from the
excitatory population. For better visualization, we use the log base
10 scale.

Lyapunov exponent (LE): We estimate the LE {λk} (Pikovsky
and Politi, 2016) of the neural mass model described by Equation 4.
The LE measures the average growth rates of small perturbations
along the orthogonal manifolds. This is computed by linearizing
the neural mass model as follows:

τEmδṘE = 2
[

VEδRE + REδVE
]

τEmδV̇E = 2VEδVE − 2(πτEm)
2REδRE + τEm[J

EEδRE − JEIδRI]

τ ImδṘI = 2
[

VIδRI + RIδVI
]

τ ImδV̇I = 2VIδVI − 2(πτ Im)
2RIδRI + τ Im[J

IEδRE − JIIδRI]. (5)

The four LEs {λk} with k = 1, ..., 4 can be obtained using the
standard technique introduced by Benettin et al. (1980). A positive
LE indicates chaotic behavior, while a negative exponent signifies
stability. Using the Runge-Kutta 4th-order integration scheme with
a time step of dt = 0.01ms, we calculate the LEs for the neural mass
model. The integration was conducted for a duration of 100 s, after
discarding a transient period of 10 s.

Phase-amplitude coupling: To understand how network
dynamics is modulated by the phase of an external theta oscillatory
signal, we introduce an external oscillatory input Iθ0 to both the
neural mass model and the network simulation. This input is a
periodic sinusoidal signal at a frequency of fθ = 10 Hz. We use the
PAC method to quantify the modulation of VE(t). PAC is defined
as the modulation of the amplitude of the gamma component
of the signal, Afg (t), by the phase, φfθ (t), of the theta-frequency
component. The initial step involves extracting the envelope of
the gamma-frequency amplitude signal and the phase of the theta
frequency signal. To do so, we use the Hilbert subroutine from the
signal package of the SciPy library (Virtanen et al., 2020). Once

we estimated the amplitude and the phase, we used the mean
vector length (MVL) (Canolty et al., 2006) to compute PAC. This
method estimates PAC from a signal of length M by associating
the phase time series φfθ (t) and amplitude time series Afg (t) with a
complex-valued vector at each time point t. To assess the coupling
between gamma fg and theta fθ frequencies, the MVL method
calculates the magnitude of the average vector and determines PAC
as follows (Canolty et al., 2006):

PAC = MVL(fg , fθ ) =
∣

∣

∣

1

M

M
∑

t=1

Afg (t)e
jφfθ

(t)
∣

∣

∣
. (6)

3 Results

3.1 Phase diagram and PING oscillations

In order to investigate the dynamical regimes displayed by the
spiking network, we performed an exploration of the phase space
by employing the neural mass model and varying neurons’ mean

excitability IE0 and heterogeneity 1
eff
E . Results can be observed in

Figure 1A. At low IE0 we observe a stable fixed point in the neural
mass model. This regime corresponds to asynchronous irregular
dynamics in the spiking neural network. Neurons’ irregularity can
be measured by their (CV; see Section 2), reported in Figure 1D,
close to CV = 0.7 in this regime. We have verified that the
amplitude of oscillations 6V goes to zero as

√
N in direct network

simulations. We now focus on sufficiently large 1
eff
E , say 1

eff
E >

1.5. As we can observe in Figure 1C, obtained for 1
eff
E = 2,

by increasing IE0 we encounter a supercritical Hopf bifurcation
(blue line in Figure 1A). This gives rise to a region of oscillations
in population activity characterized by irregular neural activity
(neurons’ CV greater than zero), as can be observed in Figure 1D.
In Figure 1B, we have reported the results of a numerical simulation
for this regime. First, we observe a good agreement between
numerical simulations of spiking neural networks and neural mass
models. Then, we observe a delay D between the rise of excitatory
neurons and inhibitory neurons activity of D ∼ 2 ms, as in the
classical PING-type oscillations. It is interesting to notice that the
membrane time constant of excitatory neurons is here identical to
that of inhibitory neurons. Our model thus suggests that a delay
between pyramidal and interneuron bursts is a consequence of
the structure of the model and not of neurons’ or synaptic time
constants. In order to test which structural parameter regulates
such delay D, we have performed a numerical simulation by
modifying the strength of synaptic coupling from excitatory to
inhibitory neurons, namely JIE. In Figure 1E, we observe a decrease
in D by increasing JIE, suggesting that the nature of the delay
present in PING-type oscillations is due to the intensity of the
network’s connections.

More increasing IE0 (see Figures 1A, C), we encounter a
subcritical Hopf bifurcation, giving rise to the coexistence
of asynchronous irregular dynamics and PING oscillations.
Eventually, a saddle-node of limit cycles is observed (black line in
Figure 1A), and the PING oscillations become unstable. Above the
black line in Figure 1A, the only stable solution is an asynchronous
state.
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FIGURE 1

(A) Phase diagram for external drive IE0 and heterogeneity 1e�
E

obtained from the deterministic neural mass model. The blue line represents the

supercritical Hopf bifurcation line separating a stable fixed point (asynchronous irregular in the network) from a stable limit cycle (PING oscillations in

the network). The green line separates the stable fixed point and the chaotic region (IBG regime). The red line represents a period-doubling

bifurcation and thus separates the chaotic region from the limit cycle region. The dark-yellow line represents a subcritical Hopf bifurcation, giving

rise to the coexistence of asynchronous irregular dynamics and PING oscillations. Finally, the black line is a saddle-node of limit cycles separating the

bistable region from a stable fixed point (B). Top panel: average membrane potential for excitatory (inhibitory) neurons VE (V I) in blue (red) from

network simulations (continuous line) and neural mass model (line with filled circles) at the point indicated on the phase diagram as red star

(1e�
E

= 2.0, IE0 = 2.0). Bottom panel: the corresponding raster plot for the excitatory and inhibitory neurons. D represents the delay in the

synchronization of spike times between excitatory and inhibitory neurons. (C) The bifurcation diagram obtained with the software X-Windows

PhasePlane plus Auto (XPPAUT) along the dashed line indicated in (A). The red line represents stable fixed points, the green line is a stable limit cycle,

and the blue line is an unstable limit cycle. (D) The CV of spiking neurons from the network simulation with respect to external drive IE0 and

population heterogeneity ŴE (in these simulations 1E = 0, so 1e�
E

= ŴE). Notice that the CV depends on initial conditions (random in these

simulations) in the bistable regime; that is why we observe a higher CV for oscillatory solutions and a lower CV for asynchronous solutions. (E) The

delay D, at the same point indicated by the star in the phase diagram, concerns the variation of the synaptic strength between excitatory and

inhibitory synapses, obtained from the neural mass model.

We have performed hysteretic simulations in the neural
network model to verify the existence of such a bistable regime,
whose results are reported in Figure 2. We have performed this
simulation for a fixed IE0 , modifying the amount of noise amplitude

1
eff
E = ŴE (equivalent to heterogeneity in the neural mass

model). This result affirms that in direct simulation, the network
can oscillate (PING) or not, depending on the initial conditions.

Moreover, the bifurcation point (saddle node of limit cycles)
predicted by the neural mass model (dashed line in Figure 2A)

corresponds very well to the value of 1
eff
E , where the dynamics of

the network become bistable.
Altogether, the richness of these oscillatory and asynchronous

dynamics is somehow surprising given the simplicity of our model,
which does not include synaptic dynamics or delays. Furthermore,
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FIGURE 2

(A) Oscillations’ amplitude 6V , obtained by performing adiabatic simulations by first increasing (right triangles) and then decreasing (left triangles) 1e�
E

at IE0 = 5.0. Here 1E = 0, and we use Cauchy noise of amplitude ŴE = 1e�
E
. Various network sizes N have been employed, as indicated in the legend.

We observe that 6V goes to zero by increasing N in the asynchronous regimes and does not depend on N in the oscillatory regime. The dashed

vertical line represents the saddle-node bifurcation point indicated by the black square in Figure 1A, obtained from the neural mass model. (B, C)

Show the raster plot obtained for ŴE = 2.0, indicating the coexistence of asynchronous and PING oscillations depending on the initial conditions.

we demonstrate that the CV of neurons is always larger than zero
in direct numerical simulations of the spiking neural networks,
indicating irregular spiking activity in the whole parameter space.

3.2 IBG oscillations

The most interesting dynamical regime displayed by this model

is observed for sufficiently low values of heterogeneity 1
eff
E . This

region is characterized by a positive LE (obtained from Equation 5)
of the neural mass model (see Figure 3A), indicating sensitivity
to initial conditions. As a strong indication of chaotic dynamics
in the neural mass model, we indicate this regime as collective
chaos, like in other previous studies (Nakagawa and Kuramoto,
1993; Olmi et al., 2010; Bi et al., 2021). Starting from a very small
IE0 , by increasing IE0 , the real part of the maximum Lyapunov
exponent λ encounters a discontinuous transition from negative
to positive values (see Figure 3A). On the opposite side (for high
drive IE0 ), we observe a transition from positive to zero values, as
expected for a period-doubling cascade. Indeed, by reporting the
Feigenbaum diagram (Figure 3B), we observe that chaos is initiated
at high external drive IE0 , through a period-doubling cascade. On

the other side, for sufficiently small IE0 chaos is initiated through
a discontinuous transition from a fixed point to chaotic dynamics,
covering almost all the firing rate values in the confined range (from
0.1 to 2–3 Hz).

A closer look at the chaotic dynamics observable for low
external drives IE0 reveals the presence of non-periodic bursting
gamma oscillations in the neural mass model (see Figure 3C).
We indeed observe periods of high-amplitude oscillatory activity
(50–70 Hz) and periods of almost asynchronous (low-amplitude)
activity of irregular duration. The bursting oscillatory periods last
for approximately 100 ms. We call this regime intrinsic bursting
gamma oscillations (IBG).

In order to understand the underlying neural mechanisms,
we performed direct numerical simulations of the spiking neural
network. We first consider the case with quenched heterogeneity of

neurons’ excitability (i.e., 1
eff
E = 1E, ŴE = 0). We observe very

similar dynamics to the ones predicted by the neural mass model
(see Figures 3D, E). Furthermore, we observe that gamma bursts
are elicited by a subgroup of bursting neurons. These neurons are
active (almost) only during the gamma burst. This can be observed
by looking at the raster plot of Figure 3F, where we ordered
excitatory neurons according to neurons’ coefficients of variation
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FIGURE 3

(A) The real part of the first Lyapunov exponent in the function of IE0 . (B) Bifurcation diagram of the chaotic region generated by plotting the maximum

value of the instantaneous firing rate RE obtained from mean-field simulations. The blue vertical asymptote on the left is the limit point separating the

asynchronous and the chaotic regions, while the vertical asymptote on the right is the point where the first period-doubling bifurcation appears. (C)

A power spectrogram obtained from the neural mass model. (D) Power spectrogram of the mean voltage [presented in (E)]. (E) Time traces of the

mean voltage of excitatory populations. (F) Raster plot of network simulations. We ordered the neurons according to their coe�cient of variation, cvi.

Blue dots represent the excitatory neurons, and red dots are inhibitory neurons. (G) Histogram of the coe�cient of variation (CV) across neurons for

the simulation of (F). (H) Raster plot of network simulations for the same parameters as (E) but with Cauchy noise instead of heterogeneity. (I) CV for

the simulation of (H). In all panels, IE0 = 0.5 and 1E
e�

= 0.4. (D–G) are for heterogeneous networks (1E
e�

= 1E = 0.4 and ŴE = 0), and (H, I) are for

networks with Cauchy noise (1E
e�

= ŴE = 0.4 and 1E = 0). The values of the power spectrogram < 10−1 are set to 10−1 for (C, D).

(cvi). Excitatory neurons with high cv activate during the burst,
and neurons with lower cv are responsible for the background
activity. We indeed observe a bimodal distribution of neurons’ CV
(Figure 3G). We then considered the case with Cauchy noise (i.e.,

1
eff
E = ŴE, 1E = 0). Interestingly, the population dynamics are

the same (being described by the same neural mass model) as the
model with no noise and heterogeneous excitabilities. Nevertheless,
the temporal structure of the spiking activity of neurons is different.
Now all neurons have similar firing statistics with high CV, and they
all participate in the bursting event (Figures 3H, I).

The emergence of the IBG regime is dependent on the coupling
structure of the model. We have performed numerical simulations
(data not shown) indicating that an intermediate amount of
coupling from excitatory to inhibitory neurons (JIE) is necessary for
the emergence of IBG. For large values of JIE, the network displays
asynchronous activity with low firing rates, while for small values

of JIE the network displays asynchronous activity with large firing
rates. A complete analysis of the role of different parameters can be
an interesting direction for future studies to unveil the role of the
coupling structure in the emergence of IBG.

3.3 Finite-size bursting gammas

Bursting gamma oscillations can be observed in spiking
network simulations and also in the asynchronous region at

large 1
eff
E if we set parameters sufficiently close to the Hopf

bifurcation [see Figures 4A, B (black line in Figure 4A)]. In this
regime, the power and the amount of gamma bursts depend on
the network size, indicating that this is a finite-size effect that is
supposed to vanish in the thermodynamic limit. To understand
the origin of these gamma bursts, we have introduced finite-size
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FIGURE 4

(A) Time traces of the mean voltage of excitatory neurons (IE0 = −3.0,ŴE = 1e�
E

= 3.0) for a network of N = 16, 000 neurons—close to the Hopf

bifurcation line (see Figure 1A). The black line represents the voltage from the network simulation, and the red line represents the same from the

neural mass model with additive Gaussian noise (see Section 2). The spectrogram of the corresponding signal from network simulation and the

neural mass model are plotted in (B, C). The values of the power spectrogram < 10−5 are set to 10−5 for (B, C).

fluctuations in the neural mass model, approximating finite-size
fluctuations as white noise (Mattia and Del Giudice, 2002). With
this approximation, we could reproduce gamma bursts as observed
in network simulations (see the red line in Figure 4A and the
power spectrogram in Figures 4B, C), thus confirming that they
are due to finite-size fluctuations kicking the system up and down
the Hopf bifurcation point. This represents the classical model for
bursting oscillations due to external noise in neural mass models.
We call this regime Noise-induced Bursting Gamma oscillations
(NiBG). This regime is not an emergent property of the neural mass
model, and the appearance of gamma bursts is governed by random
fluctuation, which appears to us as a non-physiological mechanism.
Nevertheless, it is still a possible mechanism in finite-size networks
largely employed in the field. In the next section, we will compare
the features of the NiBG and the deterministic IBG in terms of CFC
with slower oscillations.

3.4 Cross-frequency coupling

What is the difference between the two types of bursting gamma
oscillations (IBG vs. NiBG) shown in previous sections? A natural

way to address this question is by considering the capacity of the
network to respond to external stimulation or to slower oscillations.
PAC between theta and gamma oscillations is known to be a
measure of the capacity of the network to transfer information from
one upstream region, oscillating at a theta frequency (10 Hz), to the
other region, locally oscillating at a faster gamma frequency. PAC
is present when the amplitude of gamma oscillations is modulated
by the phase of the incoming theta oscillatory signal. A stronger
PAC implies more efficient potential information transfer from one
region to the local gamma circuit. In Figure 5A, we report the PAC
(obtained using Equation 6) of the network as a function of IE0
and 1

eff
E . We observe that PAC is very large inside and among

the neighbors of the IBG regime. Notice that PAC is large, also
outside the IBG regime but still close to it. In order to study the
PAC close to the transition point from asynchronous dynamics to
bursting oscillations, we report in Figure 5B the PAC of the network
in function of the distance to the critical point IE0 − I

Ec
0 , where IEc0

represents the transition from asynchronous to IBG regime. For
the sake of comparison, we also report the PAC of the network
close to the bifurcation point for PING oscillations in the NiBG

regime. Choosing these two different values of 1
eff
E allows us to

directly compare the PAC in IBG (observable at low 1
eff
E ) vs.
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FIGURE 5

(A) Phase-amplitude coupling (PAC) to the external θ forcing of amplitude A = 0.04 vs. the external drive IE0 and the heterogeneity 1e�
E
. This is a heat

map of Figure 1A in the parameter space, and the IBG is inside the red circle lines around the orange dot, as in Figure 1A. (B) PAC value vs. the

distance to the critical value of the external drive (IE0 − IEc0 ) at the two di�erent population heterogeneities, 1e�
E

= 0.4 (black line) and 1e�
E

= 6.0 (red

line). For the Hopf bifurcation (1e�
E

= 6.0), IEc0 = −2.88, while for the bifurcation to chaos (1e�
E

= 0.4), IEc0 = 0.47. (C) Time traces of the mean

excitatory voltage (black line) were obtained at the point represented by a dark-yellow circle in (A) (1e�
E

= 0.4, IE0 = 0.35). The red line represents the

external theta drive. (D) The time traces of mean excitatory voltage and external theta drive at the state point are represented by the dark green circle

(1e�
E

= 6.0, IE0 = −3.0). (E) PAC vs. the real part of the maximum of Lyapunov exponent λ for di�erent values of IE0 at two values of 1e�
E

(1e�
E

= 0.4 and

1e�
E

= 8.0). Data were obtained from the neural mass model. The amplitude of the external θ forcing signal is A = 0.04 for (A, E) and the amplitude is

A = 0.2 for (B–D).

NiBG (observable at high 1
eff
E ). We observe that PAC is maximum

at the critical point for both cases, but it is much higher close
to the IBG regime. As we can observe in Figures 5C, D, gamma
oscillations have a much higher amplitude at the theta peak in the
asynchronous regime at the fringe of the IBG regime.

The capacity of the network to couple to a slow theta cycle
can be linked to the ability of the network to respond to external
perturbations. In particular, the increased responsiveness of the
network to external stimuli has been linked to its stability, measured
via the amplitude of the LE λ in the asynchronous regime (Di Volo
andDestexhe, 2021). In Figure 5E, we consider the relation between
PAC and the real part of the maximum LE λ (as in Figure 3A)

for different values of IE0 and two values of 1
eff
E . We observe that

PAC increases with λ, but the increase is much steeper for those

asynchronous regimes in the vicinity of the IBG regime, i.e., close
to the transition to chaos. The asynchronous regimes close to the
Hopf bifurcation and PING oscillations have a much lower PAC.
This result suggests that the stability of the asynchronous regime
is important for responsiveness and the PAC, but that also this
depends on the dynamical regimes in the neighborhood. Indeed,
an optimal PAC appears in the surroundings of the IBG regime.

3.5 Sparse networks

All the results presented in the previous section have been
obtained for globally coupled networks, mainly because this allows
us to obtain the exact neural mass model description. In the
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FIGURE 6

(A) Phase-amplitude coupling (PAC) to the external θ forcing of amplitude A = 0.2 vs. the distance to the critical value of the external drive (IE0 − IEc0 ) at

two di�erent population heterogeneity levels for sparse networks (same values as in Figure 5B, ŴE = 0.4 and ŴE = 6.0). The dashed line with solid

circles represents the PAC values for di�erent in-degree K. (B) Top panel: raster plot from network simulation [see black circle in (A), ŴE = 0.4,

IE0 = 0.35]. Bottom panel: the corresponding time traces for the mean membrane potential for the excitatory population (blue) and the external theta

drive Iθ0 (red). (C) The same as for (B), but at the point indicated by the red circle in (A) (ŴE = 6.0, IE0 = −3.0).

FIGURE 7

(A) Dependence of oscillations’ frequency on external drive IE0 and neural heterogeneity 1e�
E
. The frequency of oscillations is estimated as the mean

of the power spectrum of the mean membrane potential of the excitatory population VE(t). This is a heat map of Figure 1A in the parameter space.

(B) Oscillations’ frequency as a function of the intrinsic membrane time constant of excitatory and inhibitory neurons (τE
m and τ I

m) within the bursting

region [indicated by the solid black circle in (A)].

following, we confirm that our result on the PAC in the IBG (i.e.,
Figure 5B) can be generalized to sparse networks. In order to do
this, we randomly cut a percentage PC of the connections, which

gives a mean in-degree K = (1 − PC)N, where N = 16, 000 is the
network size. Notice that we properly rescale synaptic coupling to
compare with the neural mass; see the Section 2 for details. Results
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are reported in Figure 6A. First, we observe (see dotted lines of
Figure 6A) that for sufficiently large K, the dependence of PAC on
the model’s parameters is very similar to the globally coupled case
(see the black line in Figure 5B). Nevertheless, when the mean in-
degree K is very small (K = 4 in the figure), the shape of the
curve changes, showing that when the network is too sparse, we
do not observe an optimal PAC close to the IBG regime. Second,
for sufficiently large K, we can reproduce the result obtained in
Figure 5B for the neural mass model. In fact, we observe that the
PAC is much larger close to the IBG region (black dotted line) at

low 1
eff
E than the PAC close to the NiBG region (red squared line)

at high 1
eff
E . Gamma oscillations are indeed more or less equally

distributed in the theta phase close to the Hopf bifurcation (see
Figure 6C), while they have a much stronger amplitude at zero
phase in the case of IBG oscillations (see Figure 6B). This result
proves that the neural massmodel can perform valuable predictions
beyond its limits of applicability, as it has been discussed in previous
studies in the context of networks with spike-frequency adaptation
(Gast et al., 2020). It is important to notice at the same time that
the structure of the network can play a crucial role in shaping
the dynamics and the stability of neuronal networks, as previously
shown (Di Volo and Torcini, 2018; Harris et al., 2023).

3.6 Frequency of oscillations vs. the
model’s parameters

As a final result, we report here the dependence of oscillations’
frequency on the model’s parameters. We first estimate the
frequency of oscillations (calculated as the mean of the power
spectrum of the mean membrane potential of the excitatory
population) as a function of the external drive and neural
heterogeneity (see Figure 7A). Notice that a mean frequency of
oscillations is also estimated in the asynchronous irregular region
due to finite-size effects (refer to Figure 1A for the different regimes
in the phase diagram). We observe that oscillations’ frequency
increases by increasing the mean drive to excitatory neurons (IE0 ),
but it remains confined in the gamma range in the whole parameter
space. In Figure 7B, we report instead the oscillations’ frequency
(for a value of IE0 and 1E

0 in the bursting region, see a solid
black circle in Figure 7A) in function of the intrinsic membrane
time constant of excitatory and inhibitory neurons. We observe a
decrease in the oscillations’ frequency for longer membrane time
constants, showing that this model can be employed to study lower
rhythms such as beta oscillations.

4 Conclusion

In this work, we have studied the emergence of bursting
gamma oscillations in networks of spiking excitatory and inhibitory
neurons. By employing an exact neural mass model, we could
point to the different mechanisms responsible for different types
of bursting oscillations. The first mechanism is due to finite-
size fluctuations in spiking neural networks and appears in the
vicinity of a bifurcation to oscillations in the neural mass models.
We can call this mechanism Noise-induced Bursting Gamma

oscillations (NiBG). While NiBG appears as deterministic in the
large-dimensional spiking neural network, we needed to include
explicitly additive noise in the low-dimensional neural mass model
in the form of Gaussian noise to reproduce NiBG. Thanks to
this approach, we could observe a good match between the NiBG
observed in direct network simulations and those predicted by
the neural mass model, with a good agreement in terms of their
oscillations’ frequency and their amplitude. While this approach
was satisfactory for our case, the approximation of white noise
for modeling finite-size fluctuations may be limited. Indeed, recent
studies have confirmed that finite-size fluctuations have a non-
trivial frequency spectrum (Klinshov and Kirillov, 2022). A possible
future direction is to extend the theory by including a more refined
model of finite-size fluctuations.

On top of the classical NiBG oscillations, we have proved the
emergence of a new dynamical regime without noise sources in
the neural mass model, called the IBG regime. Gamma bursts are
deterministic emergent events due to collective chaos in the new
IBG regime. Our model predicts that IBG and NiBG oscillations
have different features in terms of the underlying structure of
neurons’ spiking activity. In the NiBG oscillations, all neurons have
an irregular spiking activity (CV > 0) that does not display a clear
link with the ongoing gamma oscillation cycle. This is expected
from a mechanism based on random fluctuations due to finite-
size effects or external noise. Instead, in the IBG regime, there is
a precise structure of neurons’ spiking activity linked to the gamma
cycle. In particular, the model shows that gamma bursts are related
to a subgroup of bursting neurons in the network with high CV ∼
2. This prediction is consistent with recent experimental studies
showing the crucial impact of bursting neurons on the emergence
of gamma oscillations (Onorato et al., 2020).

Finally, we have demonstrated that the IBG regime is
characterized by a higher capacity to interact with slower brain
rhythms. We find that the network has a larger PAC to slower theta
oscillations in the vicinity of the transition to IBG with respect
to the region close to the transition to classical PING oscillations
(NiBG regime). This depicts that themechanism of IBG oscillations
is a better candidate to optimally transfer information between
brain regions than the classical NiBG oscillations.

Interestingly, we have shown that these results are quite general
and can also be observed in sparse random networks. Guided by
the neural mass model, we have performed numerical simulations
in sparse networks, showing that the IBG can be observed in sparse
networks as well and that it is characterized by a much larger PAC
with theta oscillations with respect to classical PING limit cycles.

In the same direction, recent studies have shown a clear laminar
organization of oscillatory components in Local Field Potentials. In
particular, it is found there is a deep-to-superficial layer gradient of
high-frequency power in cortical layers (Mendoza-Halliday et al.,
2024). Our model demonstrates that it is possible to pass from
gamma to beta bursts, changing inhibitory neurons’ time constants
(see Figure 7B). This is interesting because it is known that
different interneurons have different densities along the laminar
structure. For example, slower somatostatin interneurons are more
prominent in deeper layers in contrast with fast parvalbumin
interneurons (Tremblay et al., 2016). Future studies could employ
the model here presented to test these predictions by specifically
modeling fast and slow interneurons across cortical layers.
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In this study, we have considered narrow-band gamma
oscillations, but it is known that a second type of high-gamma
oscillations (from 60 to 150 Hz) is broadband rather than purely
oscillatory (Brovelli et al., 2005; Crone et al., 2006; Jerbi et al.,
2009). We believe that this type of broadband oscillation could be
emerging via a different mechanism, including spatially extended
regions with gradients of model parameters. Including spatial
structure and heterogeneity of parameters’ values in this model is
an interesting direction to possibly disentangle different types of
gamma oscillations.

While the deterministic neural mass model correctly
reproduces these gamma bursts, several steps should be taken
to improve the model. Indeed, recent studies have shown that
hippocampal gamma bursts appear at different frequencies
(Douchamps et al., 2024). Our model cannot reproduce such
variability completely, even if some variability is present across
bursts. The origin of such a variety of gamma bursts is a very
interesting direction that probably requires including a more
realistic structure of networks’ connections. Moreover, a more
realistic model, e.g., including adaptation in pyramidal cells or
the dynamics of synaptic receptors (Ferrara et al., 2023; Sheheitli
and Jirsa, 2023), could be a good candidate to observe more
complex spatio-temporal patterns as in experimental recordings
(Douchamps et al., 2024).

Limits of the model: Our model relies on several assumptions
that are important to be aware of for the interpretation of the
results. First, the neural mass model is exact only when we
consider a Cauchy distribution of neuron excitabilities. Several
studies have shown that employing a Gaussian distribution of
excitabilities (or of external noise) can lead to different emergent
phenomena (Goldobin et al., 2021; Pyragas and Pyragas, 2022).
While it is promising that the phenomenon of increased PAC for
the IBG are maintained in the sparse network case, future studies
should address the robustness of this phenomenon to different
distributions of heterogeneities. Second, the neural mass model is
exact only in the globally coupled case. While this is an unrealistic
scenario, we have proved that the main results of this study (i.e.,
an increased PAC in the bursting gamma regime) stay valid for
sparse networks with sufficiently large in-degreeK (K > 10). Third,
the neural mass model is valid only for the quadratic-integrate and
fire models; future studies could be developed through numerical
simulations of neural networks to see whether the IBG appears also
in other neural models.
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