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Background: The necessity of prompt and accurate brain tumor diagnosis is 
unquestionable for optimizing treatment strategies and patient prognoses. 
Traditional reliance on Magnetic Resonance Imaging (MRI) analysis, contingent 
upon expert interpretation, grapples with challenges such as time-intensive 
processes and susceptibility to human error.

Objective: This research presents a novel Convolutional Neural Network (CNN) 
architecture designed to enhance the accuracy and efficiency of brain tumor 
detection in MRI scans.

Methods: The dataset used in the study comprises 7,023 brain MRI images 
from figshare, SARTAJ, and Br35H, categorized into glioma, meningioma, no 
tumor, and pituitary classes, with a CNN-based multi-task classification model 
employed for tumor detection, classification, and location identification. Our 
methodology focused on multi-task classification using a single CNN model for 
various brain MRI classification tasks, including tumor detection, classification 
based on grade and type, and tumor location identification.

Results: The proposed CNN model incorporates advanced feature extraction 
capabilities and deep learning optimization techniques, culminating in a 
groundbreaking paradigm shift in automated brain MRI analysis. With an 
exceptional tumor classification accuracy of 99%, our method surpasses current 
methodologies, demonstrating the remarkable potential of deep learning in 
medical applications.

Conclusion: This study represents a significant advancement in the early 
detection and treatment planning of brain tumors, offering a more efficient and 
accurate alternative to traditional MRI analysis methods.
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1 Introduction

The diagnosis of brain tumors represents a critical intersection of 
neurology and oncology, necessitating precise and efficient 
methodologies for accurate identification and characterization. Magnetic 
Resonance Imaging (MRI) stands as a cornerstone in this endeavor, 
offering detailed visualization of brain anatomy crucial for detecting 
abnormal growths or lesions indicative of tumors. However, the manual 
interpretation of MRI scans relies heavily on radiologists’ expertise, 
presenting challenges such as time consumption and susceptibility to 
human error, ultimately affecting diagnosis accuracy and treatment 
planning. In Figure 1, different sample images of different tumor types 
are shown to make it clear why manual interpretation is difficult.

Globally, the incidence rates of brain tumors have been on the rise, 
underscoring the urgency for more effective diagnostic approaches. 
Brain tumors exhibit considerable diversity in type, size, location, and 
malignancy level, further complicating their diagnosis (Zhang and 
Sejdić, 2019). The study of brain tumor segmentation and classification 
through neuroimaging methodologies has gained significant importance 
in recent years due to the potential fatality of undetected tumors (Kumar 
and Kumar, 2023). Proper classification aids clinicians in providing 
appropriate treatment, and deep learning, particularly convolutional 
neural networks (CNN), has achieved notable success in these tasks 
(Kumar and Kumar, 2023). This study utilized a 25-layer CNN model to 
classify brain tumors from public MRI datasets, showing superior 
performance over previous methods, achieving classification accuracies 
of 86.23 and 81.6% using different optimizers, yet the technological gap 
remains in enhancing real-time processing and integration with clinical 
workflows (Sarkar et al., 2023). Another research employed AlexNet 
CNN with various classifiers, achieving up to 100% accuracy, 
highlighting the model’s effectiveness; however, the gap lies in the need 
for more extensive datasets and robustness against diverse MRI quality 
and protocols (Bairagi et al., 2023). The necessity for automatic and 
reliable detection systems is underscored due to the complex and time-
consuming nature of manual tumor detection (Tong and Wang, 2023). 
The proposed CNN-based system achieved 98.67% accuracy using 
AlexNet on a specific dataset, yet a gap exists in validating across larger 
and more varied datasets to ensure generalizability (Tong and Wang, 
2023). Furthermore, a dual tri-path CNN system demonstrated high 
reproducibility and quality in segmentation tasks, crucial for practical 
application, but the challenge remains in reducing computational 
complexity without sacrificing accuracy (Tong and Wang, 2023). Lastly, 
a study on federated learning (FL) combined with CNN ensemble 
architectures showed promising results in privacy-protected brain 
tumor classification, achieving 91.05% accuracy, slightly lower than the 

traditional approach but maintaining data privacy; the technological gap 
here involves improving the FL model’s performance to match 
centralized models while ensuring scalability and efficiency (Islam et al., 
2023). To address these shortcomings, our research introduces a multi-
layer customized CNN architecture designed specifically for the 
nuanced task of brain tumor classification from MRI scans. Our model 
leverages advanced feature extraction techniques and optimization 
algorithms to improve diagnostic accuracy and efficiency significantly. 
Unlike existing models, our approach emphasizes robustness and 
adaptability across different imaging settings, enhancing its practical 
utility in diverse clinical environments.

The dataset used in the study comprises 7,023 human brain MRI 
images sourced from figshare, SARTAJ, and Br35H, categorized into 
four classes: glioma, meningioma, no tumor, and pituitary. The “no 
tumor” images are from the Br35H dataset, and due to classification 
issues in the SARTAJ dataset’s glioma class, these images were replaced 
with those from figshare to ensure accuracy.

1.1 Motivation

The motivation behind this research is to utilize the capabilities of 
CNNs to improve the accuracy and efficiency of diagnosing brain 
tumors from MRI scans. Through the development of a specialized 
CNN architecture, this study aims to tackle the unique challenges of 
analyzing brain tumor MRIs. The goal is to provide a tool that can help 
radiologists make quicker and more precise diagnoses, ultimately 
enhancing patient care. The objectives of this research paper are to:

 • Develop a novel convolutional neural network (CNN) 
architecture that significantly improves the accuracy of brain 
tumor classification from MRI scans.

 • Design the CNN model to effectively generalize across different 
MRI protocols and imaging conditions, ensuring reliable 
performance in diverse clinical settings.

 • Optimize the model to reduce computational demands, enabling 
faster processing times suitable for real-time 
diagnostic applications.

1.2 Contribution of the paper

This research introduces a customized CNN architecture tailored 
for the classification of brain tumors from MRI images. The goal of 
this research paper focus on enhancing the accuracy and efficiency of 

FIGURE 1

Annotated images of different tumors.
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diagnosing brain tumors from MRI scans using a tailored 
Convolutional Neural Network (CNN) architecture. The numerical 
achievements underscore the significance of these objectives: the 
proposed model achieved a remarkable tumor classification accuracy 
of 99%. This level of accuracy is a considerable improvement 
compared to traditional methods, which often suffer from lower 
accuracy due to human error and the time-intensive nature of manual 
interpretations. Such high performance not only validates the efficacy 
of the specialized CNN in medical imaging tasks but also emphasizes 
its potential to significantly improve diagnostic processes, thereby 
enhancing patient care by allowing for quicker and more accurate 
diagnosis and treatment planning. This achievement highlights the 
practical relevance and impact of the research, affirming the objectives 
centered on technical advancement in medical diagnostics.

1.3 Organization of the paper

Following this introduction, the paper is organized into several 
sections: The next section reviews related work, establishing the 
context and justifying the need for optimized CNN. The methodology 
section details the design of custom CNN, the dataset, and training 
procedures. The results section presents a comparative analysis of 
proposed method performance against other models. Finally, the 
discussion and conclusion sections reflect on the findings, their 
implications for clinical practice, and directions for future research.

2 Related work

The use of artificial intelligence (AI) in medical imaging, 
specifically employing convolutional neural networks (CNNs) for 
diagnosing brain tumors from MRI scans, has been a highly 
researched area with notable advancements. This section delves into 
various methodologies developed in recent years, highlighting their 
contributions and limitations, and setting the stage for the 
introduction of proposed method.

Initially, traditional machine learning techniques such as Support 
Vector Machines (SVMs) and Random Forests were used for 
classification, relying on extracted features from MRI scans (Alzubaidi 
et al., 2021). However, these methods lacked dynamic feature-learning 
abilities and relied heavily on expert-driven feature selection, 
potentially overlooking critical details. Early CNN models were 
shallow due to computational constraints, limiting their ability to 
capture complex features (Alzubaidi et al., 2021). Deeper architectures 
like AlexNet and VGG improved feature extraction but faced 
challenges such as overfitting and the need for extensive labeled 
datasets (Zhao, 2023). Transfer learning addressed data scarcity issues 
by fine-tuning models pretrained on large datasets like ImageNet. 
Integrating multimodal MRI data improved analysis accuracy, 
although synchronizing features from different modalities posed 
challenges (Ahmmed et al., 2023). Attention mechanisms enhanced 
interpretability by focusing on relevant regions, while 3D CNNs 
preserved spatial relationships for volumetric analysis but introduced 
computational complexities (Aboussaleh et  al., 2023). Ensemble 
learning improved accuracy but increased computational demands, 
and domain adaptation aimed to generalize models across different 
MRI scanners and protocols (Zhao, 2023). Federated learning 

addressed privacy concerns by training models collaboratively across 
institutions but faced challenges such as data heterogeneity and 
communication overhead (Dufumier et  al., 2021). A summary of 
some studies is presented in Table 1.

Recent studies have focused on various advanced methods for 
brain tumor detection and classification. One study aimed to create a 
metaheuristic-based system using an enhanced seagull optimization 
algorithm for feature selection and classification with a deep belief 
network (Hu and Razmjooy, 2021). Another research developed an 
automated diagnosis system employing evolutionary algorithms, 
reinforcement learning, and transfer learning for multi-classification 
of brain tumors (Sadad et al., 2021). A hybrid deep learning model, 
DeepTumorNet, used a modified GoogLeNet architecture to classify 
glioma, meningioma, and pituitary tumors (Nickparvar, 2021). An 
automated method utilizing morphological-based segmentation was 
proposed for precise tumor detection in MRI images (Albalawi et al., 
2024). Deep learning techniques, specifically a 2D CNN, were 
employed for early detection of various brain tumors (Mahesh et al., 
2024), while an Improved Residual Network (ResNet) aimed to 
enhance segmentation accuracy (Aggarwal et al., 2023). An FPGA-
based accelerator was introduced to improve segmentation speed and 
accuracy (Xiong et al., 2021), and a YOLO2-based transfer learning 
approach achieved high classification accuracy (Kumar Sahoo et al., 
2023). A deep semi-supervised learning framework integrated CNN 
features and GAN-generated synthetic MRIs for glioma classification 
(Ge et al., 2020). Transfer-learning-based models and a CNN called 
BRAIN-TUMOR-net were developed for classifying MRI images, 
achieving high accuracy across different datasets (Taher et al., 2022).

However, despite these advancements, the field continues to 
confront challenges, particularly in the context of brain MRI analysis. 
The unique complexities of brain anatomy and the diverse 
manifestations of tumors demand a tailored approach in AI model 
development. Our study is situated within this specialized domain, 
introducing a custom-designed CNN architecture optimized for the 
intricate task of detecting brain tumors in MRI scans. Our proposed 
model builds on foundational research, integrating state-of-the-art 
feature extraction and deep learning optimization strategies to tackle 
the specific challenges of brain MRI data. By enhancing and advancing 
CNN capabilities in this specialized context, our research contributes 
to the continual evolution of AI in medical imaging, with the aim of 
establishing a new standard in accuracy and efficiency for brain 
tumor diagnosis.

3 Methodology

The proposed method signifies a substantial advancement in 
utilizing convolutional neural networks (CNNs) for analyzing brain 
tumor MRI scans. This innovative network architecture is tailored to 
tackle the complex challenges of brain tumor classification and 
segmentation, harnessing deep learning to improve diagnostic 
accuracy and efficiency. Figure 2 illustrates the basic workflow of the 
model, providing a clearer understanding of the operational 
mechanism of the proposed architecture.

The novelty of proposed methodology lies in its specialized 
architecture, which is meticulously crafted to capture the complex 
patterns and features inherent in brain tumor MRI scans. Unlike 
generic CNN models, custom CNN incorporates advanced layers and 
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TABLE 1 Summary of studies.

Study Objective Remarks

Hu and Razmjooy (2021) The aim is to create a metaheuristic-based system for the early 

detection of brain tumors, utilizing automated procedures. The focus is 

on tumor segmentation, feature extraction, and classification, 

employing a deep belief network.

The proposed method incorporates an enhanced version of the 

seagull optimization algorithm for both feature selection and image 

classification

Sadad et al. (2021) To develop an automated computer-assisted diagnosis system for early 

detection of tumors in brain, with a focus on segmentation, 

classification, and performance enhancement through preprocessing 

and data augmentation.

Evolutionary algorithms and reinforcement learning, along with 

transfer learning, are employed for multi-classification of brain 

tumors, showcasing a comprehensive approach to diagnosis.

Raza et al. (2022) The aim was to introduce DeepTumorNet, a hybrid deep learning 

model designed for precise classification of three types of brain tumors 

(glioma, meningioma, and pituitary tumor). This model utilizes a 

modified GoogLeNet architecture and employs the leaky ReLU 

activation function.

DeepTumorNet utilizes a modified GoogLeNet architecture with 15 

additional layers, enhancing the expressiveness of the model for 

feature extraction.

Gurunathan and Krishnan 

(2021)

The objective was to create an automated computer-aided method for 

detecting and locating brain tumors in MRI images. This method was 

utilizing deep learning algorithms and consist of three sub-modules: 

preprocessing, classification, and segmentation.

Morphological-based segmentation methodology is utilized for 

precise identification of tumor regions.

Methil (2021) To develop a novel method using image preprocessing and a 

convolutional neural network (CNN) to detect brain tumors from 

diverse brain images.

The proposed method, combining histogram equalization and 

CNN, achieved impressive recall rates of 98.55% on the training set 

and 99.73% on the validation set, demonstrating its effectiveness in 

accurately detecting brain tumors across various shapes, sizes, 

textures, and locations.

Aggarwal et al. (2023) The proposal aims to introduce an efficient method for brain tumor 

segmentation utilizing an Improved Residual Network (ResNet). This 

method addresses the gradient diffusion issue in Deep Neural 

Networks (DNN) and aims to enhance segmentation accuracy in MRI 

images.

The study highlights the potential of Improved ResNet in advancing 

brain tumor segmentation, with promising implications for medical 

diagnosis and treatment planning.

Xiong et al. (2021) The goal was to create an FPGA-based accelerator for brain tumor 

segmentation. This aims to enhance segmentation speed, reduce 

computational complexity, and maintain high accuracy.

The FPGA-based accelerator presents a promising approach for 

automatic segmentation and remote diagnosis of brain tumors. This 

contributes to enhancing efficiency and accuracy in medical 

imaging analysis.

Kumar Sahoo et al. (2023) The aim was to develop an intelligent system for automatically 

extracting and identifying brain tumors from 2D contrast-enhanced 

MRI images. This system was addressing challenges related to accurate 

diagnosis and the time-consuming nature of manual examination.

The YOLO2 based transfer learning approach achieves a high 

classification accuracy, further enhancing the diagnostic capability 

of the system.

Ge et al. (2020) The objective was to tackle the challenge of glioma classification from 

MRI scans through a proposed deep semi-supervised learning 

framework. This framework integrates deep CNN features and a novel 

3D-2D consistent constraint. Additionally, it leverages synthetic MRIs 

generated by Generative Adversarial Networks (GANs) to augment the 

training data.

The proposed scheme achieves promising results on two glioma 

datasets, demonstrating good performance in IDH-mutation 

prediction and glioma grading, with accuracies of 86.53 and 90.70% 

on TCGA and MICCAI datasets, respectively.

Taher et al. (2022) The aim was to develop transfer-learning-based models and a 

Convolutional Neural Network (CNN) called BRAIN-TUMOR-net for 

classifying brain MRI images into tumor or normal cases. The 

performance of these models will be compared with pre-trained 

models (InceptionResNetv2, Inceptionv3, and ResNet50) and tested on 

publicly available datasets.

Transfer-learning-based models and BRAIN-TUMOR-net are 

introduced for classification, with BRAIN-TUMOR-net achieving 

the highest accuracy levels across different MRI datasets.

Khan et al. (2022) The aim is to develop a hierarchical deep learning method using a 

convolutional neural network (CNN) to detect and classify brain 

tumors into glioma, meningioma, pituitary, and no-tumor categories.

The proposed HDL2BT system demonstrated high precision 

(92.13%) and a low miss rate (7.87%), outperforming previous 

methods in detecting and segmenting brain tumors, thus providing 

valuable clinical assistance to physicians.

(Continued)

https://doi.org/10.3389/fncom.2024.1418546
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Albalawi et al. 10.3389/fncom.2024.1418546

Frontiers in Computational Neuroscience 05 frontiersin.org

structures optimized for medical imaging, ensuring a deeper and 
more context-aware analysis. Its design considers the specific 
variations and characteristics of brain tumors, enabling the network 
to achieve high accuracy and reliability in tumor identification 
and categorization.

3.1 Dataset description

The dataset used for training and evaluating the proposed method 
consists of a comprehensive collection of brain MRI scans, carefully 
selected to encompass a diverse range of brain tumor types. This 
dataset includes images of glioma, meningioma, pituitary tumors, and 
non-tumorous brain tissue, ensuring that the model is exposed to a 
wide spectrum of tumor characteristics and variations. The dataset 
contained images of 512*512.

Sourced from a freely available medical imaging database, the 
dataset consists of several thousand MRI scans, each labeled with the 
corresponding tumor type or the absence of a tumor. The dataset’s size 
and diversity are instrumental in training proposed method to 

recognize and differentiate between various brain tumor 
manifestations (Nickparvar, 2021).

The dataset utilized in this study comprises 1,621 images of 
gliomas, 1,645 images of meningiomas, 2000 images of pituitary 
tumors, and 1757 images representing non-tumorous tissues, ensuring 
a comprehensive representation of common brain tumor types. To 
address potential class imbalances, we employed stratified sampling 
to maintain a uniform distribution across training and validation sets.

In Table 2 a summary of the dataset has been given.
Alongside normalization, data augmentation techniques are 

employed on the dataset to bolster the robustness and generalizability 
of the proposed method. These techniques include rotations, 
translations, scaling, and flipping of the MRI images, creating 
variations that simulate different imaging conditions and perspectives. 
This augmentation process is crucial for preventing overfitting and 
ensuring that custom CNN maintains high performance across 
diverse and unseen MRI data. In Figure 3 images after resizing and 
applying the basic techniques are being shown.

By meticulously preparing and augmenting the dataset, the 
proposed method is equipped with a rich and varied foundation 

TABLE 1 (Continued)

Study Objective Remarks

Mahmud et al. (2023) To develop a convolutional neural network (CNN) architecture for 

efficient identification and classification of brain tumors using MRI 

images.

The proposed CNN model achieved an accuracy of 93.3%, an AUC 

of 98.43%, a recall of 91.19%, and a loss of 0.25, outperforming 

ResNet-50, VGG16, and Inception V3, indicating its reliability for 

early detection of brain tumors.

Chattopadhyay and Maitra 

(2022)

The proposed model aims to introduce a highly accurate automatic 

method using a convolutional neural network (CNN) to segment brain 

tumors from 2D MRI images.

The proposed CNN-based model achieved an impressive accuracy 

of 99.74%, surpassing existing methods and significantly aiding 

doctors in the accurate and timely detection of brain tumors from 

MRI images.

Bitto et al. (2023) To identify brain tumors in MRI images using convolutional neural 

network designs and data preprocessing techniques to achieve 

competitive performance.

The study combines MRI-based image datasets, employs various 

data preprocessing techniques and image augmentation methods, 

and utilizes five pre-trained models to achieve high accuracy and 

precision in brain tumor identification, with ResNet-50 performing 

the best at 96.76% accuracy.

Gayathri et al. (2023) Assess the effectiveness of the VGG-16 architecture, a Convolutional 

Neural Network (CNN) model, for accurate brain tumor detection 

through deep learning.

The fine-tuned VGG-16 model achieved a high accuracy of 94% 

after hyperparameter optimization, demonstrating strong 

sensitivity, specificity, precision, recall, and F1 scores compared to 

other techniques for brain tumor detection.

FIGURE 2

Workflow of the proposed model.
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of MRI scans, enabling it to learn and generalize effectively, 
thereby demonstrating superior performance in brain tumor  
analysis.

3.2 Proposed architecture

The proposed method embodies a sophisticated convolutional 
neural network architecture meticulously crafted to tackle the 
intricate task of analyzing brain tumor MRI scans. Central to this 
architecture are a series of convolutional layers that progressively 
delve deeper into the MRI images, extracting a wide range of 
features from basic textures and edges to intricate patterns 
associated with various types of brain tumors. These layers play a 
crucial role in enabling the proposed method to discern and 
characterize the nuanced manifestations of brain tumors within the 
MRI scans. Each convolutional layer in the proposed method is 
followed by a non-linear activation function, such as the Rectified 
Linear Unit (ReLU). This function introduces the necessary 

non-linearity into the model, enabling it to capture and model the 
complex, non-linear relationships inherent in the MRI data 
(Albalawi et al., 2024). This capability is crucial for the network’s 
capacity to learn and adapt to the varied presentations of brain 
tumors. To sharpen the model’s focus on salient features and 
alleviate the computational load, pooling layers are incorporated 
into the architecture. These layers reduce the spatial dimensions of 
the feature maps while preserving essential information. 
Mathematically, the convolutional layer can be defined as follow in 
equation 1.

 
Convolution Operation a I Kij

l

m n
m n i m j n

l
 : ·, ,=∑∑ − −

 
(1)

where aijl( ) is the activationat layer l I( ) ( ),  is
the input image,and K( ) is the kernel.
The ReLU activation function can be mathematically defined as 

equation 2 followed by maxpooling in equation 3, batch normalization 
in equation 4, dropout at equation 5, softmax at equation 6 and 
categorical cross entropy loss in equation 7.

 f x x( ) = ( )max 0,  (2)

Where,

 • x: Input value to the ReLU activation function.
 • 𝑓(𝑥): Output value of the ReLU activation function, which is 𝑥x 

if 𝑥x is positive, and 0 otherwise

TABLE 2 Dataset description.

Type Training Testing

Glioma 1,321 300

Meningioma 1,339 306

No Tumor 1,595 405

Pituitary 1,457 300

FIGURE 3

Images after resizing and applying basic pre-processing techniques.
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 aijl = ( )max region from input  (3)

Where,

 • aij
l: The output value of the max pooling operation at position 

(𝑖,𝑗) in the 𝑙-th layer.
 • region from input: A specific region from the input feature map 

over which the max operation is performed. Typically, this region 
is defined by a pooling window.
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Where,

 • xi: Input value to the batch normalization layer.
 • 𝜇𝐵: Mean of the batch.
 • 𝜎𝐵

2: Variance of the batch.
 • 𝜖: Small constant added for numerical stability.
 • 𝛾: Scale parameter learned during training.
 • 𝛽: Shift parameter learned during training.
 • 𝑦𝑖: Output value of the batch normalization.

 y x di i i= ⋅  (5)

Where d pi ∼ ( )( )Bernoulli ,

 • xi: Input value to the dropout layer.
 • 𝑑𝑖: Dropout mask value for the 𝑖i-th input, drawn from a 

Bernoulli distribution with probability 𝑝p.
 • 𝑝: Probability of retaining a unit (i.e., not dropping it out).
 • 𝑦𝑖: Output value after applying the dropout mask.

 

σ z e
e

i
z

j
z

i

j
( ) =

∑  

(6)

Where,

 • zi: Input value to the softmax function for the 𝑖i-th class.
 • 𝜎(𝑧𝑖)): Output probability of the 𝑖i-th class after applying the 

softmax function.
 • ∑𝑗𝑒𝑧𝑗: Sum of exponentials of all input values for normalization.

 
L y p

i
i i= − ( )∑ log

 
(7)

Where,

 • yi: Ground truth binary indicator (0 or 1) if class label 𝑖i is the 
correct classification for the observation.

 • 𝑝𝑖: Predicted probability of the observation belonging to class 𝑖i 
(output from the softmax function).

 • 𝐿: Categorical cross-entropy loss.

The network also integrates batch normalization, a technique that 
normalizes the inputs of each layer to enhance training stability and 
efficiency. This is particularly advantageous in expediting the training 

process and ensuring consistent performance across various training 
batches. To mitigate the risk of overfitting—a prevalent challenge in 
deep learning models, especially when handling complex medical 
imaging data—the custom CNN includes dropout layers. These layers 
randomly exclude a subset of features during training, forcing the 
network to learn more robust and generalized representations of 
the data.

As the network progresses, the extracted features are funneled 
into fully connected layers, which synthesize the high-level 
information gleaned from the MRI scans to facilitate the final 
classification task. The culmination of this architecture is a SoftMax 
output layer, providing a probabilistic interpretation of each tumor 
type, offering a clear and interpretable decision basis for clinicians. 
The proposed method is described further in Algorithm 1.

ALGORITHM 1: MRI brain tumor classification using CNN.

Input: MRI brain images dataset with four categories: glioma, meningioma, no 

tumor, and pituitary tumor.

Output: Classification of MRI images into one of the four categories.

 1. Preprocessing:

• Load the MRI brain images from the dataset.

• Resize the images to 200×200 pixels for standardization.

 2. Model Architecture:

• Initialize a Sequential model.

• Add six convolutional layers with ReLU activation:

• First layer: 64 filters of size 7×7, padding = ‘same’, input shape (200, 200, 1).

• Second layer: 128 filters of size 7×7, padding = ‘same’.

• Third layer: 128 filters of size 7×7, padding = ‘same’.

• Fourth layer: 256 filters of size 7×7, padding = ‘same’.

• Fifth layer: 256 filters of size 7×7, padding = ‘same’.

• Sixth layer: 512 filters of size 7×7, padding = ‘same’.

• After each convolutional layer, add a batch normalization layer and a 

max-pooling layer with pool size (2,2).

• Flatten the output to feed into the fully connected layers.

• Add two fully connected layers with ReLU activation, 1,024 and 512 neurons, 

respectively, each followed by a dropout layer with a dropout rate of 0.25.

• Add an output layer with four neurons (corresponding to the four categories) 

with softmax activation.

 3. Compilation:

• Compile the model using the SGD optimizer with a learning rate of 0.001, 

loss function as ‘categorical_crossentropy’, and metric as 

‘categorical_accuracy’.

 4. Data Augmentation:

• Use ImageDataGenerator for real-time data augmentation, including 

rescaling and horizontal flipping.

 5. Training:

• Train the model on the training dataset using the flow_from_directory 

method with a batch size of 32 and 100 epochs, employing callbacks for early 

stopping and learning rate reduction on plateau.

 6. Evaluation:

• Evaluate the model on a separate test dataset.

• Compute and plot the training and validation accuracy and loss over 

the epochs.

• Generate a confusion matrix to evaluate the model’s classification performance.

Custom CNN’s training is meticulously orchestrated using 
advanced optimization techniques like Adam and SGD (Stochastic 
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Gradient Descent), which fine-tune the network’s weights to 
minimize a carefully chosen loss function, typically categorical 
cross-entropy in multi-class classification scenarios. This loss 
function plays a crucial role in guiding the network’s learning 
process, ensuring that the model’s predictions closely align with the 
actual tumor classifications. The SGD update rule, adam update 
rule, learning rate decay, early stopping criterion, flattening, feature 
map size after convolution, feature map size after pooling and 
gradient computation can be  mathematically represented by 
equations 8–15, respectively.

Equation (8): This represents the standard gradient descent update 
rule, where θ (the model parameters) are updated by subtracting the 
gradient of the loss function J(θ) with respect to θ, scaled by a 
learning rate η.

Equation (9): This is a component of the Adam optimization 
algorithm, where vt and st are exponentially decaying moving averages 
of the gradient and its square, respectively. β₁ is a parameter 
controlling the exponential decay rates.

Equation (10): Another component of Adam, updating the 
squared gradients moving average.

Equation (11): The learning rate decay mechanism in Adam, 
which reduces the learning rate η over time.

Equation (12): A notation indicating flattening of a tensor, 
commonly used when transitioning from convolutional layers to fully 
connected layers in neural networks.

Equations (13) and (14): These formulas calculate the output size 
(Wout) of a convolutional layer given the input size (Win), filter size (F), 
padding (P), and stride (S). They differ depending on whether padding 
is applied.

Equation (15): Simply represents the gradient of the loss function 
J with respect to the model parameters θ.

 
θ θ η θθ= − ⋅∇ ( )J

 (8)

 v v Jt t+ = + −( )∇ ( )1 1 11β β θθ  (9)
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2
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In essence, the proposed method is a meticulously crafted network 
that merges deep learning innovations with domain-specific 
adaptations to excel in the realm of brain tumor MRI analysis. In 

Figure 4 a detailed visual about how different layers of the model 
extract features from the images is given.

Its architecture is not just a series of layers but a well-orchestrated 
symphony of components each playing a critical role in ensuring the 
network’s effectiveness in diagnosing and classifying brain tumors 
with high precision and reliability. Through its advanced feature 
extraction capabilities, adaptability to various MRI modalities, and a 
design conducive to clinical interpretability, the proposed method 
stands as a pioneering tool poised to transform the landscape of 
medical imaging analysis.

3.3 Preprocessing and data augmentation

Prior to being fed into the custom CNN, the MRI images undergo 
a series of preprocessing steps to ensure they are in an optimal format 
for analysis. These steps are crucial for standardizing the input data, 
which helps in reducing model complexity and improving its learning 
efficiency. Initially, the MRI images are resized to a consistent 
dimension, balancing the need for detail retention and computational 
efficiency. This standardization is essential for the network to process 
images uniformly, regardless of their original resolution.

In the preprocessing phase, each MRI scan was resized to a 
uniform dimension of 200×200 pixels to standardize input size for the 
CNN. Pixel intensity values were then normalized to a range of 0 to 1 
to mitigate variations in image brightness and contrast, which are 
prevalent across different MRI machines and scanning parameters. 
Additional steps included applying Gaussian smoothing filters to 
reduce image noise and enhance feature extraction by the CNN layers.

Normalization is another crucial preprocessing step in which the 
pixel intensity values of the MRI images are scaled to a standard 
range, typically between 0 and 1.This scaling is vital for stabilizing 
the network’s training process, as it ensures that the model is not 
biased by variations in image brightness or contrast, which are 
common in medical images due to differences in scan protocols and 
equipment. By normalizing the images, proposed architecture can 
focus on learning the relevant features that indicate the presence and 
type of brain tumors, rather than being influenced by extraneous 
imaging artifacts. Table 3 presents the augmentation technique with 
the values.

Data augmentation is crucial for improving the resilience and 
adaptability of a given architecture. Considering the diverse nature 
of tumor characteristics and the limited availability of labeled MRI 
data, augmentation methods are utilized to effectively broaden the 
scope of the training dataset. These methods entail generating 
altered renditions of the training images by means of operations like 
rotation, scaling, and flipping. For instance, the images might 
be rotated by various angles or flipped horizontally or vertically to 
simulate different perspectives of tumor presentations. Scaling 
adjustments are also made to mimic variations in tumor size across 
different patients.

These augmented images help the network learn to recognize 
tumors from a broader range of angles and appearances, increasing its 
ability to generalize from the training data to new, unseen images. The 
augmentation process introduces a level of diversity to the training set 
that mimics the variability in proposed method which it will encounter 
in real-world clinical settings, thereby preparing it to perform 
accurately and reliably across a wide range of scenarios.
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Through this meticulous preprocessing and data augmentation, 
custom CNN is trained on a dataset that not only represents the 
complexity and variability of brain tumors but also reflects the diverse 
conditions under which clinical MRI scans are performed. This 
preparation is crucial for enabling the proposed method to effectively 

analyze MRI images of brain tumors, rendering it a strong and 
adaptable tool for assisting in the diagnosis and categorization of 
such tumors.

3.4 Training process

The training process of a custom CNN is a crucial phase where the 
network learns to accurately interpret and classify brain tumor MRI 
images. This process begins with a careful division of the available 
dataset into three distinct sets: training, validation, and testing. The 
training set, being the largest portion, is used to train the model and 
adjust the weights of the network. The validation set is utilized to fine-
tune the model’s hyperparameters and prevent overfitting by providing 
an independent evaluation of the model’s performance during 
training. Finally, the testing set is used to assess the model’s 
generalization capabilities on unseen data, ensuring that the 
performance metrics reflect the model’s effectiveness in a real-world 
clinical setting. Table 4 presents the hyperparameter. The optimal 
value of each hyperparameter is chosen based on the continuous 
assessment of the code under different conditions.

During training, a specific loss function is employed to quantify 
the discrepancy between the predicted outputs and the actual labels. 
For a multi-class classification task such as brain tumor categorization, 

FIGURE 4

Filter-wise activation.

TABLE 3 Augmentation technique.

Augmentation technique Value

rescale 1./255

featurewise_center False

samplewise_center False

featurewise_std_normalization False

samplewise_std_normalization False

zca_whitening False

rotation_range 0

zoom_range 0

width_shift_range 0

height_shift_range 0

horizontal_flip True

vertical_flip False
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FIGURE 5

Model architecture.

categorical cross-entropy is typically chosen as the loss function due 
to its effectiveness in handling multiple classes. This function provides 
a measure of the model’s prediction accuracy, guiding the network’s 
adjustments to minimize errors during the training iterations.

Optimization of the network is achieved through sophisticated 
algorithms like Stochastic Gradient Descent (SGD) or Adam, which 
are instrumental in updating the model’s weights and minimizing the 
loss function. These optimizers are selected based on their proven 
efficiency in navigating the complex landscape of high-dimensional 
weight space to find optimal values that minimize the loss. Figure 5 
represents the model architecture with parameters of the model.

To bolster the model’s generalization and prevent overfitting, 
several strategies are employed during the training process. 
Regularization techniques, such as L2 regularization, are incorporated 
to penalize large weights, encouraging the model to develop simpler, 
more general patterns that are robust to variations in the input data. 
Dropout is another crucial technique used, randomly deactivating a 
subset of neurons during training to compel the network to learn 
more distributed representations of the data, thus enhancing its 
generalization capabilities.

Furthermore, the training process involves periodic evaluations 
on the validation set to monitor the model’s performance and make 
adjustments to the hyperparameters as necessary. This iterative 
evaluation helps in identifying the best model configuration that 
balances accuracy and generalizability, ensuring that proposed model 
performs optimally not just on the training data but also on new, 
unseen MRI images. Through this comprehensive and iterative 
training process, the model is finely tuned to excel in the complex task 
of classifying brain tumors from MRI scans, demonstrating its 
potential as a valuable tool in medical imaging analysis.

3.5 Model evaluation and validation

The evaluation and validation of model are pivotal stages in the 
development process, ensuring the model’s efficacy and reliability in 
classifying brain tumors from MRI scans. These phases are designed 

to rigorously assess the model’s performance using a range of metrics 
and benchmarks, providing insights into its accuracy, robustness, and 
clinical applicability (Mahesh et al., 2024).

3.5.1 Accuracy
These primary metric measures the proportion of correct 

predictions out of all predictions made, offering a straightforward 
assessment of the model’s overall performance. It can be achieved by 
equation 16.

 
A =

Number of correct predictions

Total number of predictions  
(16)

3.5.2 Precision and recall
Precision (the proportion of true positive results in all positive 

predictions) and recall (the proportion of true positive results in all 

TABLE 4 Hyperparameters.

Hyperparameter Value

Monitor ‘loss’

min_delta 1e-11

Patience 12

Verbose 1

Monitor ‘val_loss’

Factor 0.2

Patience 6

Verbose 1

Monitor ‘val_categorical_accuracy’

save_best_only True

Verbose 1

steps_per_epoch 178

Epochs 100

validation_steps 40
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actual positives) are crucial for understanding the model’s 
performance in the context of each tumor type, especially in 
imbalanced datasets where some tumor types may 
be underrepresented. Precision and recall can be calculated using the 
following equations 17, 18.

 
P TP

TP FP
=

+  
(17)

 
R TP

TP FN
=

+  
(18)

where TP, FP, TN, and FN stand for True Positive, False Positive, 
True Negative, and False Negative, respectively.

3.5.3 F1 score
The F1 score combines precision and recall into a single metric by 

calculating their harmonic mean, providing a balanced view of the 
model’s performance, particularly in scenarios where the cost of false 
positives and false negatives is significant. The F1 Score is calculated 
using the following equation 19.

 
F P R

P R
1 2= ⋅

+
·

 
(19)

3.5.4 Area under the receiver operating 
characteristic curve (AUC-ROC)

This metric evaluates the model’s ability to distinguish between 
classes at various threshold settings, which is particularly important for 
medical diagnosis where decision thresholds may vary based on clinical 
contexts. Additionally, the error metrics and advanced metrics like Mean 
Squared Error, Mean Absolute Error and F2 Score were calculated and 
they can be interpreted by equations 20–22, respectively.

Equation (20): This represents the Mean Squared Error (MSE), a 
commonly used metric for assessing the performance of regression 
models. It calculates the average squared difference between the actual 
values (Yi) and the predicted values (Yi



) over a dataset of size n.
Equation (21): This is the Mean Absolute Error (MAE), another 

metric for evaluating regression models. It computes the average 
absolute difference between the actual values (Yi) and the predicted 
values (Yi



).
Equation (22): This formula calculates the F-beta score, denoted 

as F2 in this case. It combines precision (P) and recall (R) into a single 
metric, with emphasis on recall. The value of beta determines the 
weight of recall in the calculation, where higher beta values place more 
importance on recall. In this case, beta is set to 2, giving more weight 
to recall.
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Model’s performance is benchmarked against established models 
and industry standards to ascertain its effectiveness and advancement 
in brain tumor MRI analysis. These comparisons help in 
contextualizing Model’s performance within the broader landscape of 
medical imaging AI.

Benchmarking involves comparing model’s performance metrics 
with those from previous studies or conventional methodologies in 
brain tumor diagnosis. Such comparative analysis not only highlights 
the improvements but also identifies areas where model may require 
further enhancement.

By employing these rigorous evaluation and validation methods, 
the effectiveness of model in classifying brain tumors is thoroughly 
assessed, ensuring that the model is not only statistically sound but 
also practically significant in a clinical setting. This comprehensive 
evaluation framework underpins the model’s potential to serve as a 
reliable and robust tool in enhancing the accuracy and efficiency of 
brain tumor diagnostics.

4 Experimentation and results

Experimentation and results sections delves into the different 
metrics result on which model is evaluated along with it the 
comparison with the existing is provided.

The experimental setup for assessing the proposed model involved 
an extensive training and validation regimen using a dataset 
comprising 7,023 MRI images categorized into four groups: glioma, 
meningioma, no tumor, and pituitary tumors. These images 
underwent preprocessing to standardize their dimensions to 200×200 
pixels and conversion to grayscale, which simplified the input while 
preserving crucial structural details essential for accurate classification.

The model underwent training utilizing a stochastic gradient 
descent optimizer with a learning rate set at 0.001, with the objective 
of minimizing the categorical cross-entropy loss function—a suitable 
choice for tasks involving multi-class classification. Figure 6 illustrates 
the epoch-wise accuracy and loss of the proposed CNN model, while 
Figure  7 depicts the epoch-wise rate of accuracy improvement. 
Additionally, Figure 8 presents the learning rate schedule employed in 
the training process.

During training, early stopping mechanisms, learning rate 
reduction on plateau, and model checkpointing were employed to 
enhance training efficiency and prevent overfitting. The training 
process spanned multiple epochs, during which the dataset was 
partitioned into distinct training, validation, and testing sets. This 
division ensured thorough evaluation and validation of the model’s 
performance, as well as its ability to generalize to unseen data.

4.1 Results presentation

The model exhibited exceptional performance metrics when 
evaluated on the testing set, reflecting its robustness and effectiveness 
in distinguishing brain tumors from MRI scans. Its achieved accuracy 
was notably high, reaching a rate of 99%, demonstrating its capability 
to accurately identify and categorize the vast majority of cases.

The precision for detecting glioma was perfect at 1.00, with a recall 
of 0.96, indicating a high true positive rate and few false negatives. The 
model displayed strong predictive power and sensitivity specifically 
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FIGURE 6

Epoch wise accuracy and lose.

for meningioma, with a precision of 0.96 and a recall of 0.98. These 
metrics highlight the model’s ability to accurately identify and classify 
cases of meningioma, emphasizing its effectiveness in this particular 
category. The precision and recall for notumor and pituitary cases 
were equally impressive, showcasing the model’s comprehensive 
learning and classification capabilities across various tumor types. The 
class 0, 1, 2, and 3 represents Glioma, Meningioma, No Tumor and 
Pituitary, respectively.

To highlight the advantages of our CNN model, we compared its 
performance against several established methods in brain tumor 
classification. For instance, traditional machine learning techniques 
such as SVM and Random Forests, though useful, lack the dynamic 
feature-learning capability that deep learning offers. Recent models 
like AlexNet and VGG, while deeper, still suffer from overfitting and 

require extensive labeled datasets. Our model’s use of advanced 
regularization and data augmentation strategies positions it favorably 
against these methods, demonstrating superior accuracy and 
generalization in our tests.

Table 5 provides a comprehensive summary of the classification 
report, detailing various performance metrics such as precision, recall, 
and F1-score for each class.

Figure 9 gives a visual representation of normalized confusion 
matrix followed by precision-recall curve and roc-auc curve in 
Figures 10, 11 respectively.

In terms of error metrics, the model demonstrated low mean 
squared error (MSE) and mean absolute error (MAE), along with a 
high F2 score, underscoring its precision and reliability in prediction. 
The MSE of 0.026 indicates a small average squared difference 
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between estimated values and actual values. Additionally, the MAE 
of 0.0168 represents the model’s average absolute error across 
all predictions.

The F2 score, which strikes a balance between precision and 
recall, was exceptionally high at 0.986 This high F2 score 
underscores the model’s effectiveness in classifying brain tumors, 
with a particular emphasis on minimizing false negatives—a critical 
consideration in medical diagnosis contexts. Figure 12 represents 
the error metrics.

4.2 Comparison with baseline models

When compared to traditional methods or earlier CNN-based 
models, custom CNN’s performance stands out significantly. 
Traditional machine learning models or shallow CNNs typically 
achieve lower accuracy and precision metrics due to their limited 
feature extraction and learning capabilities. In contrast, proposed 

model’s advanced architecture and training regimen have propelled 
its performance metrics well beyond these baseline models, 
demonstrating the effectiveness of its deep learning approach in 
medical image analysis. In Table 6 a comparative analysis between 
the previous methodology and the proposed methodology has 
been given.

The custom architecture and training strategy employed in the 
proposed model, combined with its remarkable performance metrics, 
highlight its potential to establish a new standard in the domain of 
brain tumor classification from MRI scans. The model’s capacity to 
achieve high accuracy, alongside detailed metrics for different tumor 
types, offers robust quantitative evidence supporting its adoption and 
further investigation in clinical environments.

4.3 Ablation study

In the ablation study conducted to assess the robustness and 
significance of each layer within our brain tumor classification 
model, we systematically eliminated layers and documented the 
resulting effects on model performance. Initial results indicated a 
moderate degree of robustness, with the overall accuracy slightly 
declining from 0.89 after removing one layer to 0.92 after 
removing up to four layers. The precision, recall, and F1-score for 
each tumor type demonstrated only minor fluctuations, suggesting 
that the model preserves its discriminatory power up to a certain 
depth. However, a stark degradation was observed when all layers 
were removed, plummeting the overall accuracy to 0.69. This 
highlights the layers’ collective importance in achieving high 
diagnostic accuracy. Conversely, the proposed model, which 
integrates all layers, displayed exceptional performance, achieving 
near-perfect precision and recall across all categories and 
culminating in an exemplary overall accuracy of 0.99. The 
comparison between the layer-ablated versions and the complete 
model underscores the intricate balance between model depth and 
performance, as summarized in the following Table 7.

FIGURE 7

Rate of accuracy improvement over epochs.

FIGURE 8

Learning rate schedule.
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TABLE 5 Summary of classification report.

Type Precision Recall F1-Score

Glioma 1 0.96 0.98

Meningioma 0.96 0.98 0.97

No tumor 1 1 1

Pituitary 0.99 1 0.99

FIGURE 9

Normalized confusion matrix.

The ablation study conducted to assess the robustness and 
significance of each layer within our brain tumor classification model 
revealed insightful findings. We systematically removed layers and 
observed the resulting effects on model performance. Interestingly, the 
model displayed a moderate degree of robustness, with only minor 
fluctuations in precision, recall, and F1-score when one to four layers 
were eliminated. However, a significant drop in accuracy was observed 
when all layers were removed, highlighting the collective importance 
of the layers in achieving high diagnostic accuracy. Conversely, the 
proposed model, which integrated all layers, exhibited exceptional 
performance, with near-perfect precision and recall across all 
categories and an exemplary overall accuracy of 0.99. This comparison 

underscores the delicate balance between model depth and 
performance, emphasizing the critical role of each layer in optimizing 
classification outcomes.

The comprehensive model clearly demonstrates the necessity of 
each layer, offering a robust framework for accurate brain 
tumor classification.

5 Discussion

The outcomes yielded by the proposed model are highly 
encouraging, signifying a notable advancement in leveraging 
convolutional neural networks for analyzing brain tumor MRI scans. 
With an accuracy rate of 99%, the model demonstrates exceptional 
proficiency in distinguishing between various types of brain tumors, 
as well as accurately identifying non-tumor regions within the brain. 
Such elevated accuracy holds immense importance in medical 
diagnostics, where the repercussions of false positives or negatives can 
be significant.

Moreover, the precision and recall metrics across different tumor 
types offer a nuanced insight into the model’s performance. The high 
precision observed for glioma and meningioma indicates that when 
the model predicts these tumor types, it does so with high reliability. 
Similarly, the high recall rates indicate the model’s effectiveness in 

FIGURE 10

Precision-recall curve.

FIGURE 11

ROC-AUC score.
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Error metrics.
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identifying the majority of actual cases for each tumor type, reducing 
the risk of missed diagnoses.

The F2 score, which emphasizes the importance of recall 
(minimizing false negatives), is particularly relevant in a medical 
context (Zhou et al., 2023). A high F2 score, as achieved by proposed 
model, underscores the model’s capability in correctly identifying 
positive cases, a critical aspect when early detection can significantly 
influence treatment outcomes.

Proposed research introduces several innovative elements to the 
domain of medical imaging, particularly in how deep learning can 
be  tailored to enhance diagnostic precision. The network 
architecture’s design, which integrates deep convolutional layers with 
advanced regularization and normalization techniques, is specifically 
optimized for the complex task of brain tumor identification and 
classification. This bespoke approach, which diverges from the 
application of generic CNN models, is a significant contributor to 
the model’s success.

The impact of these findings extends beyond the technical domain, 
potentially revolutionizing how brain tumors are diagnosed and classified 
in clinical settings. By providing a tool that can rapidly and accurately 
analyze MRI scans, proposed model could assist radiologists in making 
more informed decisions, facilitating early and accurate diagnoses, and 
ultimately improving patient care and outcomes.

The model’s performance, while tested on a robust dataset, might 
still be  limited by the diversity and volume of the data available. 

Real-world applicability will require continual testing and validation 
on a broader array of MRI scans from diverse patient demographics 
and equipment.

Although the model achieves high accuracy, it’s important to 
acknowledge the potential limitation posed by the “black box” 
nature of deep neural networks (Salahuddin et al., 2022) Integrating 
attention mechanisms or employing explainable AI frameworks 
could significantly enhance the interpretability of the proposed 
model, thereby increasing its clinical utility. These techniques offer 
insights into the model’s decision-making process, providing 
clinicians with a deeper understanding of how and why specific 
diagnoses are made (Jiang et al., 2023). By elucidating the rationale 
behind the model’s predictions, these methods can improve trust 
and confidence in its outputs, ultimately facilitating more informed 
clinical decision-making. The current version of proposed model 
is optimized for a specific MRI dataset. Its ability to generalize 
across different MRI machines and imaging modalities remains to 
be thoroughly tested. Future work could focus on expanding the 
model’s adaptability to various imaging conditions, enhancing its 
robustness and applicability (Chaudhary et al., 2024). The model 
primarily focuses on cross-sectional MRI data. Incorporating 
longitudinal and multi-modal imaging data, such as merging MRI 
with CT or PET scans, has the potential to offer a more holistic 
understanding of tumor features and development, thereby 
enriching diagnostic capabilities (Sharma and Chaudhary, 2023). 

TABLE 6 Comparative analysis with the proposed model.

Study Technique Accuracy

Pedada et al. (2023) U-Net Model for Brats 2017 and 2018 dataset segmentation 93.40 and 92.20%

Saeedi et al. (2023) 2D CNN with ensemble machine learning techniques 96.47%

Mahmud et al. (2023) Redefined CNN Model with modified classification 93.3%

Wang et al. (2022) Deep CNN on OCT Images 94.90%

Vidyarthi et al. (2022) CNN with NN Classifier 95.86%

Lamrani et al. (2022) CNN with Enhanced Classifiers 96%

Yildirim et al. (2023) Convolutional Neural Network (CNN)-based hybrid model 95.4%

Bacak et al. (2023) Convolutional Neural Network (CNN) using TensorFlow 90%

Khan et al. (2022) Deep Learning Models (Convolutional Neural Networks - CNN) Up to 97.8%

Gómez-Guzmán et al. (2023) Evaluation of deep convolutional neural network (CNN) models for brain tumor classification 97.12%

Sharma and Shukla (2022) CNN for brain tumor classification 93.38%

Nayak et al. (2022) Efficient net on T1 Weighted Data 98.78%

Guan et al. (2021) Agglomerative Clustering Based Approach 98.04%

Rajput et al. (2024) VGG19, Inception-v3, and ResNet50 90%

Suryawanshi and Patil (2024) Convolutional Neural Network (CNN) & VGG19 98.01%

Prasad et al. (2024) CNN 98.93%

Schiavon et al. (2023) convolutional neural networks (CNNs) 96%

Rasool et al. (2022) CNN & SqueezeNet 96.5%

Sarada et al. (2024) ResNet0V2 96.34%

Rahman and Islam (2023) Parallel deep convolutional neural networks 98%

Özkaraca et al. (2023) VGG 16 and basic CNN Architecture 97%

Prabha et al. (2023) Efficeint Net model Using transfer learning 98.27%

Proposed model Custom CNN with advance layer arrangement. 99%
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In Figure 13 one instance which was misclassified has been given 
followed by correct predictions in Figure 14.

The proposed model demonstrates significant advancements in 
brain tumor MRI analysis, a conscious effort to address these 
limitations through continuous research and iterative refinement will 
be  essential. Enhancing data diversity, interpretability, and cross-
modality generalization will be crucial steps in evolving proposed 
model from a promising model to a reliable tool in clinical practice.

However, there are major limitations to consider. The model’s 
performance, while tested on a robust dataset, might be limited by 
data diversity and volume. Real-world applicability will require 
validation on a broader array of MRI scans from diverse demographics 
and equipment. Additionally, the “black box” nature of deep neural 
networks poses interpretability challenges. Integrating explainable AI 
techniques could enhance the model’s transparency and clinical utility. 
Future work should focus on enhancing data diversity, interpretability, 
and cross-modality generalization, along with extensive clinical 

validation for integration into clinical workflows. Furthermore, 
exploring the integration of multimodal imaging data and adapting 
the model to different populations or tumor types represents 
promising directions for future research.

One of the significant challenges in enhancing the generalization 
of datasets for brain tumor classification using MRI scans is the 
diversity and variability inherent in medical imaging data. MRI scans 
can vary widely in terms of imaging protocols, machine calibration, 
and patient demographics, all of which can influence the appearance 
of the images and, consequently, the performance of classification 
models. Additionally, the limited availability of labeled medical images 
due to privacy concerns and the cost of expert annotation poses a 
challenge for training robust models.

To make the dataset more generalized and comprehensive, it is 
crucial to include a broader array of MRI scans from diverse 
populations and multiple healthcare settings. Incorporating images 
from different MRI machines and including variations in scan settings 

TABLE 7 Ablation study.

Precision Recall F1-Score

After removing 1 layer

Glioma 0.98 0.73 0.84

Meningioma 0.77 0.8 0.79

No tumor 0.91 0.99 0.95

Pituitary 0.91 1 0.95

Overall accuracy = 0.89

After removing 2 layers

Glioma 0.97 0.76 0.85

Meningioma 0.79 0.87 0.83

No tumor 0.93 0.99 0.96

Pituitary 0.96 0.99 0.98

Overall accuracy = 0.91

After removing 3 layers

Glioma 0.96 0.81 0.88

Meningioma 0.82 0.87 0.84

No tumor 0.93 0.99 0.96

Pituitary 0.97 0.99 0.98

Overall accuracy = 0.92

After removing 4 layers

Glioma 0.96 0.82 0.89

Meningioma 0.82 0.85 0.83

No tumor 0.92 0.99 0.96

Pituitary 0.97 0.99 0.97

Overall accuracy = 0.92

After removing all layers

Glioma 0.64 0.53 0.58

Meningioma 0.52 0.37 0.43

No tumor 0.79 0.9 0.84

Pituitary 0.72 0.91 0.8

Overall accuracy = 0.69

Proposed model

Glioma 1 0.96 0.98

Meningioma 0.96 0.98 0.97

No Tumor 1 1 1

Pituitary 0.99 1 0.99

Overall accuracy = 0.99
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can help the model learn to recognize tumors across different imaging 
conditions. Extending the dataset to include multi-modal imaging 
data, such as combining MRI scans with CT or PET scans, can enrich 
the dataset and provide more comprehensive features for the model to 
learn. This approach can improve diagnostic accuracy and help the 
model generalize better to new, unseen cases. Furthermore, synthetic 
data generation techniques like Generative Adversarial Networks 
(GANs) can be employed to augment the dataset, providing a wider 
array of training examples without compromising patient privacy. 
These strategies would enhance the model’s robustness and its 
applicability in diverse clinical environments.

The integration of our CNN model into clinical workflows could 
significantly enhance the diagnostic process by providing rapid, 
preliminary analysis of MRI scans. This tool could serve as a second 
opinion to assist radiologists in identifying subtle or ambiguous tumor 
signs, potentially speeding up the diagnosis and reducing the likelihood 
of human error (Chaudhary and Agrawal, 2021). Challenges for 
integration include the need for extensive clinical validation to ensure 
accuracy and reliability, as well as adjustments to existing medical 
software systems to accommodate the new AI capabilities.

Future research could explore the integration of multimodal 
imaging data, combining MRI with CT or PET scans to enrich the 

dataset and potentially improve diagnostic accuracy. Additionally, 
further studies could focus on adapting the model to different 
populations or other types of tumors, enhancing its applicability. 
Another promising direction is the incorporation of explainable AI 
techniques to provide insights into the model’s decision-making 
processes, increasing its transparency and trustworthiness for 
clinical use.

6 Conclusion

This study advances the application of CNNs in the classification 
of brain tumors from MRI scans, demonstrating a significant 
improvement over existing methods. The customized CNN 
architecture introduced novel aspects tailored specifically for medical 
imaging, setting a new benchmark for accuracy and efficiency in this 
field. Tailored specifically for the nuanced task of brain tumor 
classification, proposed method demonstrated an impressive 99% 
accuracy rate in proposed study, alongside high precision and recall 
across various tumor categories, underscoring its potential as a robust 
diagnostic aid in clinical settings. The implications of these 
discoveries are significant for the realm of medical imaging and 
diagnostics. The capability of the model to precisely classify brain 
tumors from MRI scans has the potential to transform diagnostic 
procedures, leading to heightened accuracy, shortened analysis 
durations, and potentially better patient outcomes by enabling earlier 
and more accurate diagnoses. This research emphasizes the value of 
developing specialized, task-specific AI models for medical imaging, 
which can address the unique challenges of the field more effectively 
than general-purpose models.

Looking ahead, there are several promising directions for future 
research. Expanding the diversity of the training and validation 
datasets can enhance model’s generalizability and robustness. 
Improving the model’s interpretability would make it more valuable 
in clinical contexts, where understanding the basis for its predictions 
is crucial. Extending its capabilities to multi-modal and longitudinal 
analyses could offer deeper insights into tumor progression and 
response to treatment. Finally, rigorous clinical validation and 
integration into clinical workflows will be  essential steps toward 
realizing proposed model’s potential to improve diagnostic practices 
and patient care in the realm of brain tumor treatment. By pursuing 
these avenues, we can build on the solid foundation laid by this study 
to further advance the application of AI in medical diagnostics, 
ultimately contributing to better health outcomes and enhanced 
clinical decision-making.

FIGURE 13

Misclassified instances.

FIGURE 14

Correct predictions.
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