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The spiking convolutional neural network (SCNN) is a kind of spiking neural

network (SNN) with high accuracy for visual tasks and power e�ciency on

neuromorphic hardware, which is attractive for edge applications. However,

it is challenging to implement SCNNs on resource-constrained edge devices

because of the large number of convolutional operations and membrane

potential (Vm) storage needed. Previous works have focused on timestep

reduction, network pruning, and network quantization to realize SCNN

implementation on edge devices. However, they overlooked similarities between

spiking feature maps (SFmaps), which contain significant redundancy and cause

unnecessary computation and storage. This work proposes a dual-threshold

spiking convolutional neural network (DT-SCNN) to decrease the number of

operations and memory access by utilizing similarities between SFmaps. The

DT-SCNN employs dual firing thresholds to derive two similar SFmaps from

one Vm map, reducing the number of convolutional operations and decreasing

the volume of Vms and convolutional weights by half. We propose a variant

spatio-temporal back propagation (STBP) training method with a two-stage

strategy to train DT-SCNNs to decrease the inference timestep to 1. The

experimental results show that the dual-thresholds mechanism achieves a 50%

reduction in operations and data storage for the convolutional layers compared

to conventional SCNNs while achieving not more than a 0.4% accuracy loss on

theCIFAR10,MNIST, and FashionMNIST datasets. Due to the lightweight network

and single timestep inference, the DT-SCNN has the least number of operations

compared to previousworks, paving theway for low-latency and power-e�cient

edge applications.

KEYWORDS

spiking neural network, dual-threshold, network compression, edge application,

backpropagation

1 Introduction

Spiking neural networks (SNNs) are inspired by the brain and use spikes (binary

signals) to transmit information between neurons. Neuromorphic hardware only requires

processing the spike-based accumulate (ACC) operations, effectively bypassing the need

to compute zero input values to attain remarkable power efficiency. Consequently, SNNs
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exhibit significant energy efficiency when implemented on

neuromorphic hardware (Pei et al., 2019), making them

increasingly appealing for edge applications (Zhang et al.,

2020; Liu and Zhang, 2022). Spiking convolutional neural

networks (SCNNs) is a kind of SNN widely used in vision tasks

(Cao et al., 2015; Kheradpisheh et al., 2018) with accuracy similar

to convolutional neural networks (Wu et al., 2019). It consists of

convolutional, pooling, and fully connected layers. The SCNNs

extract image features through hierarchical convolutional layers,

providing strong image processing capabilities. Each convolutional

layer generates many spiking feature maps (SFmaps) from

the same number of membrane potentials (Vm). As a kind of

SNN, SCNNs also have high energy efficiency in neuromorphic

hardware. However, SCNNs must generate several SFmaps to

ensure a high processing accuracy, leading to many convolution

operations, weights, and Vm storage. This makes deploying

SCNNs on edge devices difficult due to the limited computing

power, power consumption, and storage capacity. Researchers have

made significant efforts to solve this issue. First, some methods

are proposed to decrease the timesteps1 to decrease operations

and memory access. SCNNs have achieved high precision with

few timesteps (Chowdhury et al., 2021), with the spatio-temporal

backpropagation (STBP) training method (Zhu and Shi, 2018),

direct input encoding (Wu et al., 2019), and re-training strategy

(Chowdhury et al., 2021). Second, a series of methods have been

proposed to compact SCNNs, such as network pruning (Liu et al.,

2022; Schaefer et al., 2023) to increase the sparsity and low-bit

quantization (Kheradpisheh et al., 2022; Shymyrbay et al., 2022) to

reduce the computational precision.

However, these studies overlook the similarity between SFmaps,

leading to wasteful calculations. Figure 1A displays the SFmaps

of the 1st convolutional layer of a typical SCNN. Pairs of similar

SFmaps are marked with boxes of the same color. Figure 1B shows

the generation process of two similar SFmaps. The input maps are

processed through convolution operations to update two Vmmaps.

Each Vm map generates an SFmap via threshold comparisons.

There are minor differences (1SFmaps) between two similar

SFmaps, but they are obtained through the processes described

above, resulting in redundant operations and data volume. The

study (Han et al., 2020) indicates that similarity in feature maps is

vital for achieving high accuracy. Therefore, there are challenges to

reduce these redundancies while preserving similar SFmaps.

To address this challenge, this work proposes a novel

lightweight dual-threshold spiking convolutional neural network

(DT-SCNN)model and a variant spatio-temporal back propagation

(STBP) training method. We simplify the training process in

Chowdhury et al. (2021) into a two-stage training strategy to

train DT-SCNNs with only one timestep. The DT-SCNN uses

dual-threshold to obtain two similar spike feature maps from

one Vm map, reducing the number of convolutional weights and

Vm values by half with minimal impact on the accuracy. As the

network model is lightweight and requires only a single timestep,

the number of operations and memory access can be significantly

reduced, paving the way for low-latency and power-efficient edge

visual applications.

1 Timestep is the unit of time taken by each input frame to be processed

through all layers of the model.

This work proceeds as follows. Section 2 briefly reviews the

general concept of conventional SCNNs and proposes the DT-

SCNN model. The training implementation of the DT-SCNN is

also introduced. Section 3 analyzes the experimental performance

and compares it to other works. Finally, Section 4 discusses and

concludes this work.

2 Methods

This section first describes the general concept and

shortcomings of conventional SCNNs. We then present the

proposed DT-SCNN and analyze its characteristics, such as fewer

operations and memory access. Finally, we introduce the variant

STBP training method with a two-stage strategy for DT-SCNNs.

2.1 Overview and redundancy of normal
SCNN

The SCNN consists of alternately arranged convolutional layers

and pooling layers, and fully connected layers. Each convolutional

layer extracts features into output SFmaps. The pooling layer

combines the neuron cluster outputs from one SFmap into the

input of one neuron in the next layer. The first convolutional layer

of the SCNN acts as a coding layer to directly process the real-

valued picture (Wu et al., 2019) and generate SFmaps. The coding

layer has the same neuron dynamics as other layers. The final SCNN

layer is the classifier, taking the Vms at the last timestep as the

network output. For classification tasks, the neuron label with the

largest Vm in the output layer represents the predicted category.

The leaky integrate and fire (LIF) neuron is a kind of neuronal

model usually adopted for SCNNs because of its simplicity

and hardware friendliness. This kind of neuron is described in

Figures 2A, B. The Vm is governed by (Equations 1, 2):

vli(t) = λvli(t − 1)(1− xli(t − 1))+ ili(t) (1)

xli(t) =

{

1, vli(t) ≥ V l
th

0, otherwise
(2)

where vli(t), x
l
i(t), and i

l
i(t) are the Vm, output, and synaptic current

of neuron i in the l-layer at time t, respectively. The λ is the leakage

factor. When the Vm reaches the threshold Vth, the spike is fired

and the Vm resets to 0. The synaptic current ili(t) is given by:

ili(t) =
∑

j

wl
jx
l−1
j (t) (3)

where wl
j is the synaptic weight connected to the jth neuron in layer

l − 1. In the coding layer, x0j (t) is the input of the whole network,

which is the gray-scale picture pixel value. Equation (3) requires

multiply-accumulation (MAC) operations. In other layers, xlj(t) is

the spike from the pre-synaptic neuron, which is a binary value. As

shown in Equation (3), only ACC operations are needed.

The operations within SCNNs are concentrated primarily

in the convolutional layers. Figure 2C illustrates a convolutional

layer. The input feature maps (IFmaps) of size (h,w, cin) are
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FIGURE 1

Similarity between SFmaps and their generation process. (A) The SFmaps of a SCNN convolutional layer where those corresponding to the same

color boxes have great similarity and (B) generation process of two similar SFmaps.

processed through convolution operations to update the Vm maps

of size (h′,w′, cout). The Vm maps generate SFmaps of the same

size (h′,w′, cout). The number of MAC or ACC operations in a

convolutional layer is h′ · w′ · cin · k · k · cout . To obtain rich

features, the number of Vmmaps, SFmaps, and weight kernels Cout

are always significant, such as 128 and 256, giving high operations

and memory access. As analyzed in the introduction, there is also

considerable redundancy.

2.2 Proposed dual-threshold SCNN and
dual-threshold LIF model

Information transmitted between layers in the SCNN is

encoded as 1-bit spikes generated from multi-bit Vms. The

information capacity of Vms is much larger than that of SFmaps,

meaning that the information of two similar SFmaps may be

contained in one Vm map. Therefore, this work proposes the

DT-SCNN model with dual-threshold LIF (DT-LIF) neurons to

generate two SFmaps from one Vm map using two thresholds,

as shown in Figure 2G. The DT-LIF neuron model is shown in

Figures 2D, E defined as (Equation 4):

vli(t) = λvli(t − 1)(1− xli,0(t − 1))+ ili(t) (4)

xli,0(t) =

{

1, vli(t) ≥ V l
th0

0, otherwise
(5)

xli,1(t) =

{

1, vli(t) ≥ V l
th1

0, otherwise
(6)

where a Vm vli(t) generates two spikes xli,0(t) and xli,1(t) from two

different thresholds Vth0 and Vth1. The Vm is reset only when it

exceeds Vth0, and the values of two thresholds are determined via

training. The DT-LIF neuron model neither introduces complex

operations nor increases hardware complexity when deployed on

edge devices.

The convolutional layers composed of DT-LIF neurons are

called dual-threshold convolutional (DTC) layers, as shown in

Figure 2F. Two similar SFmaps are generated by one Vm map.

The SFmaps generated by two thresholds are concatenated in the

channel dimension as (Equation 7):

Xl(t) = cat(Xl
0(t),X

l
1(t)) (7)

where Xl
0(t) and X

l
1(t) are the SFmaps generated by two thresholds,

Xl(t) is a tensor containing all SFmaps of the DTC layer, where

xli,0(t) ∈ Xl
0(t), x

l
i,1(t) ∈ Xl

1(t). To obtain SFmaps with the

same size of (h′,w′, cout) as the SCNNs, the numbers of Vms

and synaptic weights are reduced by half (cout/2), and their sizes

are (h′,w′, cout/2) and (c, k, k, cout/2), respectively. The number of
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FIGURE 2

Diagram of the SCNN and DT-SCNN. (A) Schematic diagram of LIF neurons, (B) update of LIF neurons, (C) convolutional layer in the SCNN, (D)

schematic diagram of DT-LIF neurons, (E) update of the DT-LIF Vm, (F) dual-threshold spiking convolutional layer in the DT-SCNN, (G) basic structure

of the DT-SCNN, and (H) error propagation in the STD of the DT-LIF.

MAC or ACC operations for the convolutions in Equation (3) is

also reduced by half, which is h′ ·w′ ·cin ·k ·k ·cout/2. Therefore, only

half of the weights, Vms, and convolution operations are needed to

obtain the same number of SFmaps as SCNNs.

The DT-SCNNs can be obtained by replacing convolutional

layers in the SCNN with DTC layers. The basic structure is

shown in Figure 2G. The SCNN’s operations are primarily from

convolutions. Thus, the operations of entire networks can be

reduced by half. Fewer weights and Vms also reduce the demand

for memory access. Although similar SFmaps are derived from the

sameVms, they play different roles in feature extraction. The higher

threshold is used to extract the critical features, while the lower

threshold is employed to preserve the details. Combining critical

and detailed information enables the subsequent layers to extract

features more comprehensively, ensuring high accuracy.

2.3 Training implementation

This section introduces the training method for the DT-SNN.

The DT-SCNN is trained based on the variant STBP with a two-

stage strategy. The variant STBP is based on the STBP (Zhu and

Shi, 2018). So in this work, we only present the main modifications

in the gradient propagation path through the DTC layer. After

forward propagation, the final output of the SCNN and object

labels are used to calculate the loss function as Loss. The error

is back propagated for adjusting the weights to minimize the

Loss. As shown in Figure 2H, the information forward propagates

in the DT-LIF neuron model through the layer-by-layer spatial

domain (SD) and the temporal domain (TD). Therefore, the

error backpropagation must pass through the spatial and temporal

domain (STD).When calculating the derivative of Losswith respect

to x and v in layer l at time t, the STBP backpropagates the gradients
∂Loss

∂xl+1
i,0 (t)

+ ∂Loss

∂xl+1
i,1 (t)

from neurons in layer l+1 and ∂Loss

∂xl
i,k
(t+1)

from time

t + 1 as follows (Equations 8, 9):

∂Loss

∂xl
i,k
(t)

=

Nl+1
∑

j=1

(
∂Loss

∂xl+1
j,0 (t)

∂xl+1
j,0 (t)

∂xl
i,k
(t)

+
∂Loss

∂xl+1
j,1 (t)

∂xl+1
j,1 (t)

∂xl
i,k
(t)

)

+
∂Loss

∂xl
i,k
(t + 1)

∂xl
i,k
(t + 1)

∂xl
i,k
(t)

(8)

∂Loss

∂vli(t)
= (

∂Loss

∂xli,0(t)

∂xli,0(t)

∂vli(t)
+

∂Loss

∂xli,1(t)

∂xli,1(t)

∂vli(t)
)+

(
∂Loss

∂xli,0(t + 1)

∂xli,0(t + 1)

∂vli(t)
+

∂Loss

∂xli,1(t + 1)

∂xli,1(t + 1)

∂vli(t)
)

(9)
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where k ∈ {0, 1} represents the two threshold pathways, and N1+1

represents the number of neurons in layer l + 1 connected to this

neuron. The gradients from two threshold pathways converge to

one Vm. Therefore, the weights can learn the method to encode

information of two SFmaps into a single Vm map. Based on STBP,

the gradients of two thresholds can be computed by (Equation 10):

1V l
th,k = −γ

∂Loss

∂V l
th,k

(10)

where, γ is learing rate. Combining Equations (5, 6, 11):

∂Loss

∂V l
th,k

=
∑

i

∂Loss

∂xl
i,k
(t)

∂xl
i,k
(t)

∂V l
th,k

=
∑

i

∂Loss

∂xl
i,k
(t)

∂xl
i,k
(t)

∂(vli(t)/V
l
th,k

)

∂(vli(t)/V
l
th,k

)

∂V l
th,k

(11)

To avoid overly complex gradient chains, we ignored the

differentiation of vli(t) and V l
th,k

(Equation 12):

∂(vli(t)/V
l
th,k

)

∂V l
th,k

= −
vli(t)

(V l
th,k

)2
(12)

Due to the non-differentiability of the spikes firing process in

Equations (5, 6), using surrogate gradients h(u) to approximate its

differentiation (Zhu and Shi, 2018) (Equation 13, 14):

∂xl
i,k
(t)

∂(vli(t)/V
l
th,k

)
= h(u), u = vli(t)/V

l
th,k (13)

h(u) = sign(|u− 1| <
1

2
) (14)

We use a two-stage re-training strategy to reduce the timestep

to 1 based on the variant STBP training method. The method of

Chowdhury et al. (2021) gradually reduces the number of timesteps

to avoid gradient disappearance when directly training timesteps

to 1. Therein, we divided the training processing into two stages

of pre-train and re-train. The training starts with random weights

with five timesteps in the pre-train stage. The re-training progress

starts from the pre-trainedmodel and sets the timestep to one in the

re-train stage. The networks with one timestep still maintain a high

accuracy. In subsequent experiments, we also used the two-stage re-

training strategy based on the STBP to train conventional SCNNs.

3 Experiments and results

3.1 Datasets and settings

We tested the proposed model on three image datasets

MNIST (Lecun et al., 1998), FashionMNIST (Xiao et al., 2017),

and CIFAR10 (Krizhevsky and Hinton, 2009). To ensure a fair

comparison with several previously state-of-the-art results, we

designed the networks to have the same or similar size. As we

focused on edge applications, we limited the network weights to a

few megabytes (Luo et al., 2022; Wang et al., 2022).

Table 1 illustrates the three networks developed for

comparison: SCNN baseline, DT-SCNN, and HC-SCNN. The

DT-SCNN replaces the spiking convolutional layers in the SCNN

baseline with the DTC layers while maintaining the same number

of SFmaps. To determine the impact of reduced SFmaps on the

accuracy, the HC-SCNN is an SCNN with half the number of

SFmaps compared to the SCNN baseline. The HC-SCNN and

DT-SCNN have the same number of Vms.

The networks were trained using the two-stage re-training

strategy. For Net1, each stage trained for 400 rounds, and the

network learning rate dropped by 10% every 100 rounds. For Net2

and Net3, each stage trained for 100 rounds, and the network

learning rate dropped by 10% every 25 rounds. All thresholds were

initialized to the same value of 0.5. Dropout was used to avoid

overfitting with a probability set to 0.5, and the leakage factor λ was

0.5. The CIFAR10 dataset was normalized, and random cropping

and mirroring were applied for data augmentation. Our code will

be made publicly available at: https://github.com/flaviomarix/DT-

SCNN/.

3.2 Accuracy and computing cost of
normal SCNN and DT-SCNN

Table 1 shows each network’s recognition accuracy, computing

cost, and latency under the three datasets. Compared to the SCNN

baseline, the DT-SCNN exhibits a minimal accuracy reduction,

with decreases of only 0.34, 0.06, and 0.21% on the CIFAR10,

MNIST, and Fashion MNIST datasets, respectively. In contrast, the

HC-SCNN led to a significant accuracy drop, indicating that simply

reducing the number of SFmaps does not retain the accuracy.

In terms of computational cost, the DT-SCNN reduced the

number of operations by nearly 50% over the SCNN baseline. More

operations are removed for networks with a higher proportion

of convolution layers. Such as Net1-DT-SCNN achieved a 49%

operations reduction. In addition, the number of convolutional

weights and Vms were reduced by half, resulting in less memory

access. Although the HC-SCNN has fewer operations, weights, and

Vms, the excessive accuracy loss is unacceptable. The accuracy

loss of HC-SCNN is about four times of the accuracy loss

of DT-SCNN. In short, the DT-SCNN significantly reduces the

operations and memory access requirements while maintaining

nearly the same accuracy. TheDT-SCNNhas less latency and power

consumption in edge applications thanks to fewer operations and

memory accesses.

3.3 Dual threshold and visualization of
feature maps

The dual thresholds of each layer in the DT-SCNN are given

in Figure 3A. For demonstration purposes, we scale the two

thresholds of each layer equally to make Vth0 = 1. The Vth0

and Vth1 are initialized to the same value but differ after training.

The SFmaps generated by the dual thresholds are illustrated in

Figure 3B for the first layer of the Net1-DT-SCNN. The SFmaps in

the left and right are fired by Vth0 and Vth1, respectively. Although
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TABLE 1 Comparison of the proposed approach with the conventional SCNN in di�erent datasets.

Name Model Network Accuracy Operations∗1 Weights∗2 Vms∗3

Net1

(CIFAR10)

SCNN Baseline 96c3-256c3-p2-384c3-

p2-384c3-256c3-1024fc-

1024fc-10fc

89.65% 612M(ACC)

+2.65M(MAC)

3.32M 0.5M

DT-SCNN 48dtc∗3-128dtc3-p2-

192dtc3-p2-192dtc3-

128dtc3-p2-1024fc-10fc

89.31% (↓0.34%) 315M(ACC)

+1.33M(MAC)

(↓49%)

1.66M (↓50%) 0.25M (↓50%)

HC-SCNN 48c3-128c3-p2-192c3-

p2-192c3-128c3-1024fc-

1024fc-10fc

88.39% (↓1.26%) 158M(ACC)

+1.33M(MAC)

(↓74%)

0.83M (↓75%) 0.25M (↓50%)

Net2

(MNIST)

SCNN Baseline 16c5-p2-40c5-p2-256fc-

10fc

99.43% 3.6M(ACC)

+0.31M(MAC)

16.4K 20.7K

DT-SCNN 8dtc5-p2-20dtc5-p2-

256fc-10fc

99.37% (↓0.06%) 2.1M(ACC)

+0.16M(MAC)

(↓45%)

8.2K (↓50%) 10.5K (↓50%)

HC-SCNN 8c5-p2-20c5-p2-256fc-

10fc

99.21% (↓0.22%) 1.0M(ACC)

+0.16M(MAC)

(↓70%)

4.2K (↓74%) 10.5K (↓50%)

Net3

(Fashion

MNIST)

SCNN Baseline 16c5-p2-32c5-p2-256fc-

10fc

92.46% 2.9M(ACC)

+0.31(MAC)

13.2K 19.1K

DT-SCNN 8dtc5-p2-16dtc5-p2-

256fc-10fc

92.25% (↓0.21%) 1.7M(ACC)

+0.16(MAC)

(↓46%)

6.6K (↓50%) 9.7K (↓50%)

HC-SCNN 8c5-p2-16c5-p2-256fc-

10fc

91.34% (↓1.12%) 0.83M(ACC)

+0.16(MAC)

(↓69%)

3.4K (↓74%) 9.7K (↓50%)

∗αdtcβ means double-threshold convolution, α is the number of convolution kernels and Vm maps, 2α is the number of SFmaps obtained after double-threshold firing, and β is the size of the

convolution kernels.
∗1 Number of ACC and MAC operations across the network.
∗2 Number of weights in the convolutional or the dual-threshold convolutional layers.
∗3 Number of membrane potential values (Vms) across the entire network. The experimental results of DT-SCNNs proposed in this work are highlighted in bold.

each SFmap pair is fired from the sameVmmap, there are still some

differences, meaning that sufficiently rich SFmaps can be generated

from halved Vms. The SFmaps for the high threshold filter out

more critical information, while the SFmaps of the low threshold

preserve more details. This ensures the accuracy of the DT-SCNNs.

3.4 Two-stage re-training strategy
accuracy

We use the two-stage re-training strategy to train the SCNNs

and DT-SCNNs. Figure 3C shows the network’s accuracy and

differences in the two stages. Despite having more timesteps in

the pre-train stage (five timesteps) than in the re-train stage (one

timestep), the accuracy loss in the re-train stage relative to the pre-

train stage is <0.13% and is even improved for Net1. This result

shows that the two-stage re-training method is effective at reducing

the timestep to 1 while maintaining a high accuracy.

3.5 Comparison with state-of-the-art
results

We compared DT-SCNN with several previously reported

state-of-the-art results obtained using similar network sizes, as

shown in Figure 3D. The accuracy of the proposed DT-SCNN is

similar to or exceeds previous works with far fewer operations

thanks to DTC layers and single timestep. We define R =

Accuracy (%)/num.Operations(M) to qualitatively analyze the

relationship between the number of operations and accuracy in

different networks. The R of DT-SCNN is significantly higher

than that of other works. It means that the DT-SCNN achieves

higher accuracy with fewer operations, which can prove that

the DT-SCNN is the best choice after balancing efficiency

and accuracy.

4 Discussion

This work proposed a lightweight DT-SCNN structure that

reduces the number of operations and memory access of SCNNs

with minimal accuracy loss. A variant STBP training method

with a two-stage strategy reduces the timestep of the DT-SCNNs

to 1 to reduce the computing delay and power consumption

of SCNNs when deployed on edge devices. Experimental

analyzes show that the DT-SCNNs are the best choice for

balancing trade-offs between the computational requirements

and accuracy for edge applications. This work only investigated

the effect of applying two thresholds to convolutional layers.

Future work will explore more thresholds or apply multiple

thresholds to different types of layers, and expand DT-SCNN to

larger networks.
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FIGURE 3

(A) Dual-thresholds for each DTC layer in DT-SCNNs and (B) visualizations of SFmaps generated by the first DTC layer in Net1-DT-SCNN. The left and

right SFmaps are fired by V1
th0 and V1

th1, respectively. (C) Accuracy of the two-stage re-training strategy and (D) comparison of the state-of-the-art

with the proposed work in terms of operations and accuracy. The number of operations for a single inference of the entire network is multiplied by

the number of timesteps. [1] (Xu et al., 2022), [2] (Wu et al., 2019), and [3] (Zhang and Li, 2020).
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