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Model of the HVC neural network 
as a song motor in zebra finch
Pan Xia *† and Henry D. I. Abarbanel †

Department of Physics, University of California, San Diego, La Jolla, CA, United States

The nucleus HVC within the avian song system produces crystalized instructions 
which lead to precise, learned vocalization in zebra finches (Taeniopygia guttata). 
This paper proposes a model of the HVC neural network based on the physiological 
properties of individual HVC neurons, their synaptic interactions calibrated by 
experimental measurements, as well as the synaptic signal into this region which 
triggers song production. This neural network model comprises of two major neural 
populations in this area: neurons projecting to the nucleus RA and interneurons. 
Each single neuron model of HVCRA is constructed with conductance-based 
ion currents of fast Na+ and K+ and a leak channel, while the interneuron model 
includes extra transient Ca2+ current and hyperpolarization-activated inward 
current. The synaptic dynamics is formed with simulated delivered neurotransmitter 
pulses from presynaptic cells and neurotransmitter receptor opening rates of 
postsynaptic neurons. We show that this network model qualitatively exhibits 
observed electrophysiological behaviors of neurons independent or in the network, 
as well as the importance of bidirectional interactions between the HVCRA neuron 
and the HVCI neuron. We also simulate the pulse input from A11 neuron group to 
HVC. This signal successfully suppresses the interneuron, which leads to sequential 
firing of projection neurons that matches measured burst onset, duration, and spike 
quantities during the zebra finch motif. The result provides a biophysically based 
model characterizing the dynamics and functions of the HVC neural network as a 
song motor, and offers a reference for synaptic coupling strength in the avian brain.
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1 Introduction

Adult male zebra finches are extraordinary singers that produce highly crystallized and 
complex sequence of syllables during courtship (Bolhuis et al., 2010; Margoliash, 2010; Daou et al., 
2013; Mooney, 1991; Mooney and Prather, 2005; Simonyan et al., 2012). Birdsong production 
from male zebra finches when they are directed toward females is an interesting model for 
studying complex vocal behavior. Birdsong and human speech share similar precisely integrated 
vocal and respiratory muscle activity, and have similar critical periods for vocal learning, which 
depends on early auditory experience and feedback (Doupe and Kuhl, 1999; Deregnaucourt et al., 
2005; Mooney, 2009). Moreover, birds and humans share the same basic organizational features 
in their auditory periphery (Mooney, 2009). Therefore, modeling of the zebra finches’ song system 
can be very helpful to understand the mechanisms behind human audition and speech.

Studies of zebra finches have identified a specialized forebrain pathway that ultimately 
regulates syringeal and respiratory muscles to produce songs. Premotor nucleus HVC plays a 
critical role in singing and song learning (Fee and Scharff, 2010; Fee and Goldberg, 2011; Daou 
et al., 2013).

A subclass of HVC neurons (HVCRA neurons) sends excitatory projections to the robust 
nucleus of arcopallium (RA), which in turn controls song acoustic features. During singing 
behavior, HVCRA neurons fire short bursts of action potentials consistent across repeated 
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renditions of the song (Kadakia et al., 2016; Hahnloser et al., 2002). An 
important hypothesis posits that the observed HVCRA neurons’ bursts 
encode the temporal evolution of the birdsong (Long and Fee, 2008; 
Long et al., 2010; Lynch et al., 2016). Identifying how action potential 
bursts of HVCRA neurons are generated and transferred from one cell to 
the next through the local neural network provides a foundation for 
understanding the generation of song timing information. This paper 
explores two major types of neurons in HVC: the HVCRA projection 
neurons and the interneurons. HVCRA neurons give rise to a descending 
song motor pathway required for song generation, while the inhibitory 
effect of HVCI neurons is critical for modulating the activity of HVCRA 
neurons (Long et al., 2010).Numerous intracellular recordings of HVC 
neurons have unveiled a variety of physiological properties and circuit 
mechanisms within the HVC (Daou et al., 2013; Daou and Margoliash, 
2020; Mooney and Prather, 2005; Long et al., 2010), as well as the trigger 
input into HVC before the motif and neuron spikes during singing (Ben-
Tov et al., 2023). There are also many HVC single neuron models focused 
on spike characteristics and different ion channels (Kadakia et al., 2016; 
Daou et al., 2013; Daou and Margoliash, 2020; Meliza et al., 2014; Breen 
et al., 2016), but less work has been done to reproduce the network 
activity (Li and Greenside, 2006; Long et al., 2010; GGA1; Armstrong 
and Abarbanel, 2016). Several earlier network models have successfully 
generated the series of HVCRA neuron firing patterns. However, these 
models either proposed chain models without explaining the biophysical 
mechanism behind the series propagation, or failed to include electrical 
recording confirmed synaptic connections among various of neurons in 
the HVC (Li and Greenside, 2006; Gibb et al., 2009; Jin et al., 2007; 
Cannon et al., 2015; Armstrong and Abarbanel, 2016).

Here, we  begin with conductance-based neuron models for 
individual HVCRA and HVCI cells. Each single-neuron model consists 
of ion channel dynamic equations verified by experiments, and both of 
them reproduce the spontaneous firing behavior of their corresponding 
neuron types under a background current (Daou et al., 2013; 
Armstrong and Abarbanel, 2016). Next, a microcircuit model is 
constructed with HVCRA and HVCI neurons based on experimentally 
established neurotransmitter pulses (Destexhe et al., 1994; Destexhe 
and Sejnowski, 2001), as well as recorded bidirectional synaptic 
interactions between them (Mooney and Prather, 2005). This 
microcircuit exhibits the basic neuron behavior when zebra finches are 
silent, and reproduces the sparse bursting patterns seen during female 
directed singing behavior once a model of dopaminergic innervation 
onto HVC from A11 neurons is included (Ben-Tov et al., 2023). Then, 
we extend the model microcircuit by adding more projection neurons 
along with homotypic synaptic interactions, and demonstrate that this 
framework successfully reproduces the time-locked firing pattern of 
excitatory HVC neurons during repeated renditions of zebra finches’ 
song discovered by Hahnloser et al. (2002). Most parameters in the 
single neuron models and synaptic current models are backed by 
experimental and simulation papers, and we  discuss the model 
robustness under variation of the unknown or fine-tuned parameters.

2 Methods

2.1 Single neuron models

The basic units of our HVC neural network model are 
individual HVCRA and HVCI cells. The HVCRA population projects 

to RA and gives rise to the song motor pathway (SMP). It plays a 
fundamental role in coordinating ensembles of neurons in RA, 
which in turn send motor commands to the brainstem for the 
precise control of the syringeal motor neurons and respiratory 
premotor neurons (Mooney, 2009; Mooney 2022). We also focus 
on the HVCI neurons because prior works have shown that 
interneuron activity can modulate HVCRA neurons’ firing and is 
important for birdsong (Armstrong and Abarbanel, 2016; Long 
et al., 2010).

Our neuron model is developed from conductance-based 
Hodgkin-Huxley-type neurons with sodium, potassium, and leak 
channels (Hodgkin and Huxley, 1952). The specific HVCRA projecting 
neuron model is based on Kadakia et al. (2016) and Armstrong and 
Abarbanel (2016), as well as the electrophysiological recordings and 
simulations from Daou et  al. (2013). Among the HVCRA neuron 
channels, sodium and potassium currents produce fast-response 
spikes in response to stimulating currents, and leak current is a widely 
existing channel which is carried mainly by chloride and other ions. 
The model of inhibitory neurons (HVCI) is adapted from Breen et al. 
(2016), Armstrong and Abarbanel (2016) and Daou et al. (2013). 
Aside from the basic NaKL channels, the HVCI cells are also shown 
to have a T-type low threshold calcium current (ICaT) and a 
hyperpolarization activated current (IH) (Breen et al., 2016; Armstrong 
and Abarbanel, 2016; Daou et al., 2013). The behavior of the calcium 
current is described by the Goldman–Hodgkin–Katz (GHK) equation 
to better reflect its current–voltage curve (Sterratt et  al., 2011; 
Johnston and Samuel Miao-Sin, 1996). Compared to the classic 
Hodgkin–Huxley formulation, the GHK equation adds extra 
nonlinearity to the calcium channel (Bard Ermentrout and 
Terman, 2010).

The time evolutions of the cross-membrane voltages of the HVCRA 
and HVCI neurons are functions of the currents that flow across ion 
channels specific for certain types of neurons, as well as synaptic 
interactions and background stimulus current. All these components 
can be summarized in the following equations:

RA projection neuron:

 
( ) ( ) ( ) ( ) ( )C RA

Na K L syn background
dV t

I t I t I t I t I
dt

= + + + ∑ +

Interneuron:

 

( ) ( ) ( ) ( ) ( ) ( )
( )

C = + + + +

+∑ +

I
Na K L CaT H

syn background

dV t
I t I t I t I t I t

dt
I t I

Here, C is the membrane capacitance. ( )RAV t  and ( )IV t are the 
membrane potentials of HVCRA and HVCI neuron, respectively. 
Sodium, potassium, leak, low threshold calcium, and hyperpolarization 
activated currents are represented by Itype, i.e., INa, IK, IL, ICaT, and IH, 
respectively. The summation of the ( )synI t  terms represents all the 
synaptic input currents from both inside and outside HVC. backgroundI  
refers to the ambient background stimulus which is usually a DC 
current. Each ion channel current can be expressed as a function of 
voltage V(t) and gating variables ( )iG t  = [ ( )m t , ( )h t , ( )n t , ( )a t , ( )b t , 
( )H t ] (Johnston and Samuel Miao-Sin, 1996, Daou et  al., 2013, 
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Kadakia et al., 2016, Armstrong and Abarbanel, 2016), illustrated in 
the following equations:

 ( ) ( ) ( ) ( )( )3
Na Na NaI t g m t h t E V t= −

 ( ) ( ) ( )( )4
K K KI t g n t E V t= −

 ( ) ( )( )L L LI t g E V t= −

 ( ) ( ) ( ) ( ) ( )( )3 3· · ,CaT CaTI t g a t b t GHK V t Ca t=

 ( ) ( ) ( )( )2
H H HI t g H t E V t= −

With the definition of ( ) ( )( ),GHK V t Ca t  written as:

 
( )( ) ( )

[ ] ( )( ) [ ]( )
( )( )

exp /
GHK V ·

1 exp /
extCa ZFV t RT Ca t

V t t
ZFV t RT

− −
=

− −

In the ion current equations, all parameters denoted as “g ” are the 
maximum conductances of corresponding ion channels. The 
parameters named as “E” are the respective reversal potentials. In the 
GHK equation, [ ]extCa  is the constant extracellular concentration of 
calcium ions, and [ ]Ca is the intracellular calcium concentration 
evolving with time. Z is the valence of calcium ions. F is the Faraday 
constant and R is the gas constant. T represents the temperature which 
is 310 K in our case. All the gating variables ( )iG t  = [ ( )m t , ( )h t , ( )n t , 
( )a t , ( )b t , ( )H t ] obey a similar set of equations (Johnston and Samuel 

Miao-Sin, 1996, Daou et al., 2013, Kadakia et al., 2016, Armstrong and 
Abarbanel, 2016):

 

( ) ( )( ) ( )
( )( )

η −
=

τ
Gi ii

Gi

V t G tdG t
dt V t

 
( )( ) ( ) Gi

Gi
Gi

V t V1 1V t tanh
2 2 V

 − 
η = +  

∆ 

 
( )( ) ( )2

0 1 1 tanh
  − 

τ = τ + τ −  
∆   

Gi
Gi Gi Gi

Gi

V t V
V t

V

Here, GiV , ∆ GiV , 0τGi  and 1τGi  are parameters for their 
corresponding gating variable ( )iG t . The dynamics of ( )H t  is the only 
exception here: ( )( )H V tη  and ( )( )H V tτ  use different values of Ä HV . 
The intracellular calcium concentration is also a function of time:

 

[ ]( ) [ ]( )0φ
−

= +
τ

CaT
Ca

d Ca t Ca Ca t
I

dt

where the parameter 0Ca  is the intracellular calcium 
concentration during equilibrium state. All the values for the HVCRA 
neuron model parameters are listed in Table 1; corresponding values 
for the HVCI cell can be found in Table 2. The parameters governing 
the dynamics of gating variables [ ( )m t , ( )h t , ( )n t ] and the parameters 
[ , , ,Na K LE E E C ] have the same set of values for both the HVCRA 
neuron model and the interneuron model, which are listed in 
Table 1.

2.2 Synapses

The synaptic dynamics is built on the formalism of 
neurotransmitter pulses and the fraction of opening neurotransmitter 
acceptors, based on the data from Destexhe and Sejnowski (2001) and 
Destexhe et  al. (1994). For presynaptic neurotransmitter release, 
assuming that all intervening reactions in the release process are fast 
and can be  considered at steady state, the neurotransmitter 
concentration [T] can be expressed as:

 
[ ]

[ ]
( )

max

pre p p

T
T

1 exp V V / K
=

 + − − 

where [ ]maxT  is the maximal concentration of neurotransmitters 
in the synaptic cleft. preV  is the presynaptic cell voltage. pK  is the 
steepness and preV  sets the value of which the function is half 
activated. This is a simplified model of the neurotransmitter release 
process compared to a kinetic model involving calcium diffusion and 
gradients, which introduces a smoother transformation between 
presynaptic voltage and neurotransmitter concentration.

Postsynaptic neurotransmitter receptors have several different 
types, each with specific response to the same concentration of 
corresponding neurotransmitters. Previous studies have confirmed 
that the local axon collaterals of HVCRA neurons release glutamate, 
and excite interneurons by activating ionotropic glutamate receptors 
of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) subtype (Mooney and Prather, 2005; Colquitt et al., 2021). 
For the inhibitory connections from interneurons to HVCRA cells, this 
fast hyper-polarizing response is mediated by γ-aminobutyric acid 
(GABA) and GABAA type receptors (Mooney and Prather, 2005; 
Colquitt et al., 2021). Under the assumption that these two types of 
neurotransmitters both bind to the receptors at a constant rate, the 
postsynaptic kinetics can be  described by the following set 
of equations:

 
[ ]( )/ /1 β= α − −AMPA GABA AMPA GABA

dr T r r
dt

 ( )( )/ij ij j j AMPA GABAI g r V t E= −

where r is the fraction of the postsynaptic receptors in the open 
state. Its dynamics depends on /AMPA GABAα , the gate opening rate, 
and /AMPA GABAβ , the gate closing rate. They take different values for 
AMPA and GABAA type receptors. ijI  is the current seen by 
postsynaptic cell j as a result of input from presynaptic neuron i. ijg  is 
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the maximal conductance and /AMPA GABAE  is the synaptic reversal 
potential. ( )jV t  is the instantaneous membrane voltage of the 
postsynaptic cell. Parameter values for synaptic dynamics can 
be found in Table 3.

The value of maximal conductance ijg  of the synaptic current 
between two neurons is obtained by two factors: the number of 
synapses connecting neuron i  and neuron j, and the maximal 
conductance for a single synapse. Previous morphological studies 
show that there are usually multiple synaptic connections between two 
connected neurons in different cortical circuits across the brain 
(Hiratani and Fukai, 2018). More specifically, the average number of 
synapses per connection is estimated to be around 10 in the barrel 

cortex (Hiratani and Fukai, 2018). For inhibitory interactions, 
estimation for the maximal conductance of a single GABAergic 
synapse with GABAA type currents is in the range of 0.25 to 1.2 nS 
(Ropert et al., 1990; De Koninck and Mody, 1994). Therefore, we take 
the median value of 0.8 nS, so the maximal conductance for inhibitory 
connections between two neurons is estimated to be around 8 nS. For 
excitatory synaptic interactions, measurements of miniature synaptic 
currents and analysis estimate that the maximal conductance of 
AMPA-mediated is between 0.35–1.0 nS in the neocortical and 
hippocampus pyramidal cells (Stricker et  al., 1996; Burgard and 
Hablitz, 1993; McBain and Dingledine, 1992). Thus, ,RA INTg , the 
maximal conductance from an excitatory HVCRA neuron to the 

TABLE 1 Parameter values for HVCRA projecting neurons.

Parameter Value Reference Parameter Value Reference

gNa 1,050 nS Kadakia et al. (2016) Vh −45 mV Kadakia et al. (2016)

ENa 55 mV Kadakia et al. (2016)
∆Vh

−7 mV Kadakia et al. (2016)

gK 120 nS Kadakia et al. (2016) 0hτ 0.1 ms Kadakia et al. (2016)

EK −90 mV Kadakia et al. (2016) 1hτ 0.75 ms Kadakia et al. (2016)

gL 3 nS Kadakia et al. (2016) Vn −35 mV Kadakia et al. (2016)

EL −80 mV Kadakia et al. (2016)
∆Vn

10 mV Kadakia et al. (2016)

Vm −30 mV Kadakia et al. (2016) 0nτ 0.1 ms Kadakia et al. (2016)

Vm∆ 9.5 mV Kadakia et al. (2016) 1nτ 0.5 ms Kadakia et al. (2016)

0mτ 0.01 ms Kadakia et al. (2016) C 10 pF Armstrong and Abarbanel (2016)

1mτ 0.0 ms Kadakia et al. (2016)

Kadakia et al. (2016) constructed an HVCRA model with a particular choice of parameters, which reproduced the neuron response with respect to pseudo-noisy dendritic currents. The HVCRA 
neuron model described in this paper is a simplified version of the one in Kadakia et al. (2016) and the simulated HVCRA model proposed by Armstrong and Abarbanel (2016). Units: mV, 
millivolts; ms, milliseconds; pF, pico-Farads; nS, nano-Siemens.

TABLE 2 Parameter values for interneuron.

Parameter Value Reference Parameter Value Reference

gNa 1,200 nS Armstrong and Abarbanel (2016)
∆Va

32.9 mV Breen et al. (2016)

gK 200 nS Armstrong and Abarbanel (2016) 0aτ 4.44 ms Breen et al. (2016)

gL 3 nS Armstrong and Abarbanel (2016) 1aτ 4.24 ms Breen et al. (2016)

gH 2 nS Armstrong and Abarbanel (2016) Vb −62 mV Breen et al. (2016)

EH −40 mV Armstrong and Abarbanel (2016)
∆Vb

−62.5 mV Breen et al. (2016)

VH −60 mV Armstrong and Abarbanel (2016) 0bτ 2.9 ms Breen et al. (2016)

forVH∆ η −10 mV Armstrong and Abarbanel (2016) 1bτ 7.57 ms Breen et al. (2016)

V forH∆ τ −5.5 mV Armstrong and Abarbanel (2016) [ ]Ca ext
2,500 μM Breen et al. (2016)

0Hτ 214 ms Armstrong and Abarbanel (2016) 0Ca 1.11 μM Breen et al. (2016)

1Hτ 158 ms Armstrong and Abarbanel (2016) φ 3.88 μM/(ms·pA) Breen et al. (2016)

gCaT 0.1 nS Armstrong and Abarbanel (2016)
τCa

0.143 ms Breen et al. (2016)

Va −30 mV Armstrong and Abarbanel (2016)

Breen et al. (2016) estimated the parameter values using a voltage recording of a real interneuron in vitro. Values are chosen based on modeling of HVC neurons in Breen et al. (2016), 
Armstrong and Abarbanel (2016), and Kadakia et al. (2016). The parameter values for [ E ,E ,E ,C, V , V , , , V , V , , , V , V , ,Na K L m m m0 m1 h h h0 h1 n n n0 n1∆ τ τ ∆ τ τ ∆ τ τ ] can 
be found in Table 1. Units: mV, millivolts; ms, milliseconds; nS, nano-Siemens; μM, micro-molar; pA, pico-Amp.
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postsynaptic HVCI neuron is set to 7 nS in our modeling. The only 
parameter we vary is the maximal conductance from one HVCRA 
neuron to another, i.e., , .RA RAg  This synaptic connection strength for 
homotypic HVCRA cell pairs is assigned a higher value to ensure the 
excitatory input is large enough to awaken the postsynaptic HVCRA 
neuron. There will be more discussion about this fine-tuned parameter 
value in the Results section.

2.3 Trigger signal

When male zebra finches sing during courtship, HVC activity is 
closely synchronized with song production. To enable directed song 
production, a neural circuit receives information about sexual 
motivations and then communicates with the HVC neural network to 
start the sequence of stereotyped syllables. A11 cells are part of this 
neural circuit, which connect to HVC to gate the song motif (Ben-Tov 
et al., 2023).

The midbrain A11 cell group is implicated in motor control, 
motivation, and reproduction (Mohebi et  al., 2019; da Silva 
et al., 2018). A11 neurons in songbirds receive sexual motivation 
input from the medial preoptic nucleus (POM) (Riters and Alger, 
2004), and project axons into HVC amongst other regions. A11 
neurons and their axons in HVC are crucial for female-directed 
singing. Male zebra finches with lesioned A11 cell bodies or A11 
terminals in HVC failed to sing when presented with a female 
bird (Ben-Tov et al., 2023). We  sought to simulate the 
physiological changes in HVC neural network following 
activation of A11-HVC projection.

During in vivo experiment, fiber photometry reveals that the 
GCaMP signal of A11 axons in HVC first rapidly increases during the 
introductory notes (repetitive call-like vocalizations that immediately 
precede the song motif), reaches the peak point at the motif onset, and 
then decreases at an almost constant speed (Figure 1). By assuming 

that the trajectory of the neurotransmitter concentration in the 
synaptic cleft in HVC is similar to the shape of the measured calcium 
signal, we  can approximate the dynamics of neurotransmitter 
concentration from A11 axons with the following equations:

 [ ]( ) [ ] ( )min 0T t T t= <

 
[ ]( ) [ ] ( )/

maxmin 0τ= < <rtT t T e t t

 
[ ]( ) [ ] ( )/

max maxmin
− τ= + >ftT t T e T t t

Again, [ ]( )T t  is the neurotransmitter concentration as a function 
of time. [ ]minT represents the baseline concentration, i.e., [T] before 
the trigger signal arrives. rτ  and fτ  are the time constants which 
determine the rate of rise and fall for neurotransmitters, respectively. 
maxt  means the time point when the concentration transits from rise 

to fall. For maxT , it is a constant chosen to ensure the continuity of 
neurotransmitter concentration at time maxt . Therefore, the value of 

maxT  is entirely determined by other parameters:

 
[ ] ( )max //

max min 1 ττ= − × fr ttT T e e

Assuming that the maximum neurotransmitter concentration is 
[ ]maxT , the value of the transition time can be  derived from 
previous equations:

 

[ ]
[ ]

max
max

min
log

 
 = × τ
 
 

r
T

t
T

TABLE 3 Parameter values for synaptic interactions.

Parameter Value Reference Parameter Value Reference

11,gA INT
8 nS Destexhe and Sejnowski 

(2001) and Hiratani and 

Fukai (2018)

αGABA
5 /(mM·ms) Destexhe and Sejnowski 

(2001)

,gINT RA
8 nS Destexhe and Sejnowski 

(2001) and Hiratani and 

Fukai (2018)

αAMPA
1.1 /(mM·ms) Destexhe and Sejnowski 

(2001)

,gRA INT
7 nS Destexhe and Sejnowski 

(2001) and Hiratani and 

Fukai (2018)

GABAβ 0.18 /ms Destexhe and Sejnowski 

(2001)

,gRA RA
10 or 8.2 nS * AMPAβ 0.19 /ms Destexhe and Sejnowski 

(2001)

EGABA −80 mV Destexhe and Sejnowski 

(2001)
Kp

5 mV Destexhe and Sejnowski 

(2001)

EAMPA 0 mV Destexhe and Sejnowski 

(2001)
Vp

2 mV Destexhe and Sejnowski 

(2001)

[ ]T max
2.84 mM Destexhe et al. (1994)

*Means the value has been tuned. Values from Destexhe and Sejnowski (2001) are obtained from the best fit of the synaptic kinetic equations to recorded AMPA/GABA currents. Units: mV, 
millivolts; ms, milliseconds; nS, nano-Siemens; mM, milli-molar.
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The values of all parameters related to the A11 
neurotransmitter dynamics are listed in Table 4. The time course 
of the trigger signal neurotransmitter concentration is displayed 
in Figure  1. We  choose [ ]maxT to be  2.84 mM, a value which 
corresponds to the observation of maximal transmitter 
concentration in Destexhe et  al. (1994). [ ]minT  is chosen to 
be positive so that the value of [ ]( )T t is not constantly zero, and it 
is set to a small value so that the A11 stimulus does not affect HVC 
neural network outside the motif onset period. Other than these 
two restrictions, the exact value of [ ]minT does not make a big 
difference to the modeling result (see Results section for more 
details about this parameter). The rise and fall timescales for the 
recorded GCaMP signal are up to 1 s, but we do not use this to 
determine the values of rτ  or fτ . The reason is that GCaMP 
recordings have a large time lag compared to real neuron activities, 
whose value could be up to a few seconds (Storace et al., 2015). 
The fall time constant is set to 1.2 ms, same as the measured decay 
time course of free neurotransmitters in the synaptic cleft of 
cultured hippocampal synapses (Clements et al., 1992), and within 
the normally estimated decay time range (Scimemi and Beato, 
2009). The rise time constant is chosen to match it so that the 
trajectory of neurotransmitter concentration is symmetric. Based 
on the above choices of parameter values, the combined time span 
of rise and fall is approximately 5 ms (see Figure  1). The 
postsynaptic kinetics of the A11-HVC projection can be described 
with the same equations in Section 2 Synapses.

2.4 Simulation

For all the voltage and current time series shown in this paper, the 
dynamical equations were written in Python, and the results were 
integrated with Python’s adaptive fourth order Runge–Kutta “odeINT” 
using a step size of 0.02 ms. A smaller step size did not lead to 
different results.

3 Results

This section illustrates, via the time course of cross-membrane 
voltages of two types of neuron models, how they function 
independently, respond to external stimulus, and coordinate within 
the network to reproduce important experimental observations. 
We  also test the importance of various experimental established 
synaptic currents by adding them to the modeled network one by one, 
and explore model robustness at the end of this section.

3.1 Behavior of single neuron model

With the published set of parameters shown in Tables 1, 2, the two 
models reproduce qualitative features of HVCRA and HVCI neurons 
observed in whole-cell patch clamp experiments (Daou et al., 2013). 
For the excitatory neurons, although an HVCRA neuron in vivo usually 

TABLE 4 Parameter values for triggering.

Parameter Value Reference Parameter Value Reference

[ ]minT
0.001 mM *

τr
1.2 ms Clements et al. (1992) and 

Ben-Tov et al. (2023)

[ ]maxT
2.84 mM Destexhe et al. (1994)

τ f
1.2 ms Clements et al. (1992)

*Means the value has been tuned. See text for details. Units: ms, milliseconds; mM, milli-molar.

FIGURE 1

Simulated time course of injected neurotransmitter concentration [T] from A11 axons to HVC. The shape of the simulated trajectory of [T] is similar to 
the GCaMP recordings from A11 axons in HVC during female directed song motifs (see Figure 6F, Ben-Tov et al., 2023), but the timescale is determined 
to match the measured time course of neurotransmitters in the synaptic cleft since GCaMP signal has a large time lag.
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generates a single burst synchronized with singing, those projecting 
neurons will no longer fire once per song, but rather multiple times 
without inhibitory neurons (Long et al., 2010). Without inhibition 
input from any HVCI neurons, HVCRA cells can fire with a background 
stimulus above the threshold of about 100 pA (Daou et al., 2013). Our 
simulations reproduce this behavior with a threshold of about 140 
pA. Figure 2 shows the membrane voltage of one independent HVCRA 
neuron given an injected current of this threshold stimulus. For the 
interneuron, Figure 2 shows the stereotyped firing of the interneuron 
model under the same injected current.

3.2 Trigger signal into HVC

The midbrain A11 cell group is implicated in motor control, 
motivation, and reproduction (Mohebi et al., 2019; da Silva et al., 
2018). A11 neurons in songbirds receive sexual motivation input from 
the medial preoptic nucleus (POM) (Riters and Alger, 2004), and 
project axons into HVC amongst other regions. A11 neurons and their 
axons in HVC are crucial for female-directed singing. Male zebra 
finches with lesioned A11 cell bodies or A11 terminals in HVC failed 
to sing when presented with a female bird (Ben-Tov et al., 2023). 

We  sought to simulate the physiological changes in HVC neural 
network following activation of A11-HVC projection.

The A11 cell group is thought to distribute information about 
sexual motivation to HVC. The activity of A11 terminals in HVC 
starts to increase above the baseline before the first syllable as shown 
in Figure 1, which may serve as a trigger for motif initiation (Ben-Tov 
et al., 2023).

To simulate HVC neuron activities after the trigger signal arrives, 
we  first expose an interneuron to the neurotransmitter pulses. 
We  choose interneuron instead of HVCRA neuron because those 
projecting neurons fail to fire at a particular temporal location during 
each motif without the presence of HVCI cells (Kosche et al., 2015; 
Armstrong and Abarbanel, 2016). Therefore, there is a high probability 
that the interneurons receive the signal from A11 cell group and then 
coordinate the behavior of HVCRA neurons.

Normal and uninterrupted singing consists of a fixed sequence of 
syllables, which are interspaced by brief inhalation gaps. Both the 
syllables and the gaps occur in a fixed chronological order, and they 
are precisely timed during repeated renditions of the same motif. 
During this process, single HVCI neuron’s recordings show relatively 
sustained firing throughout the song with intermittent gaps 
(Armstrong and Abarbanel, 2016). However, each HVCRA neuron is 

FIGURE 2

Voltage traces of HVC neurons. Top panel: voltage of an HVC interneuron neuron in response to a background current. Middle panel: an HVCRA neuron 
exhibits action potential given a threshold stimulus of about 140 pA. Bottom panel: the HVCRA model stays silent under a lower background current of 
100 pA.
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FIGURE 3

HVCI neuron responses to the trigger current. The trigger signal happens at 10  ms. Top panel: synaptic connections between A11 axons and 
interneuron. Middle top: Simulated trajectory of injected neurotransmitter concentration [T] from A11 axons to HVC. Middle bottom: postsynaptic 
current from A11 cell axons to interneuron corresponding to the neurotransmitter concentration path in the middle top panel. Bottom panel: 
membrane voltage of the interneuron. The continuous firing of HVCI neurons is interrupted by the inhibition input arising from 10  ms, corresponding to 
the intermittent silence throughout singing.

observed to only burst once throughout a motif at a specific time. 
Together with the fact that HVCRA neurons fail to fire at a particular 
temporal location during each motif without the presence of 
interneurons (Kosche et al., 2015; Armstrong and Abarbanel, 2016), 
we  can assume the input from A11 axons to interneurons to 
be  inhibitory, which stops HVCI neurons from continually firing. 
Following the postsynaptic current equations, the inhibitory current 
corresponding to A11 neurotransmitters and the response of single 
HVCI neuron are depicted in Figure 3. The trigger signal is not present 
until 10 ms so that the interneuron voltages before and after the motif 
onset are both revealed.

3.3 Interactions between HVCI and HVCRA 
neuron

Since the axonal and dendritic processes from all major types 
of HVC neurons as well as axons from HVC afferents are 
interwoven with each other, it is almost impossible to analyze 
every intrinsic connectivity and synaptic interaction based on 
morphological reconstruction (Fortune and Margoliash, 1995; 
Foster and Bottjer, 1998; Mooney, 2000; Nixdorf, 1989). However, 
the synaptic interaction between an isolated neuron pair can 
be  studied by recording the depolarizing or hyperpolarizing 
membrane voltage response in one cell immediately after the 
spontaneous or stimulus-evoked spikes from the other cell in the 

recorded pair (Perkel et al., 1967; Mooney and Prather, 2005; Long 
et al., 2010).

By blind dual sharp microelectrode recordings from synaptic 
coupled pairs of an HVCI and an HVCRA neuron, HVCRA axon 
collaterals often show short-latency, excitatory and strong synaptic 
connections with interneurons (Mooney and Prather, 2005). A single 
spike from the HVCRA cell is often sufficient to evoke the HVCI neuron 
to spike threshold, and spike doublets or triplets from the HVCRA 
neuron could drive depolarizing responses which can evoke action 
potentials in the interneuron. Recordings in the same pairs also 
provide direct evidence that interneurons have synaptic contacts on 
HVCRA neurons. At the population level, the HVCRA - HVCI coupling 
is robust and bidirectional, and synaptic transmissions from the 
interneurons to HVCRA neurons mostly evoke hyperpolarizing 
responses (IPSPs) in the latter ones (Mooney and Prather, 2005). 
Bidirectional connections between interneurons and projecting 
neurons can form bistable networks and generate low-frequency 
rhythms or no output according to the amount of excitatory input 
applied to the HVCRA cells (Börgers and Kopell, 2005).

First, we  permit one interneuron to form inhibitory synapses 
directly to an HVCRA neuron. There is no evidence of reciprocal 
connections from HVC back to A11 cell group, so we only consider 
the inhibition from A11 axons to HVCI cells. When the trigger input 
has not arrived and an awake zebra finch is not singing, the population 
of interneurons are active continually while the HVCRA neurons only 
stay silent (Kozhevnikov and Fee, 2007). With the synaptic model 
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described in the Method section, the inhibitory current from HVCI 
neuron is strong enough to overcome the background stimulus of 300 
pA (Armstrong and Abarbanel, 2016), and silence the HVCRA neuron 
during the interneuron’s active time (see Figure 4 first 10 ms).

In Figure 4, the simulated interneuron stops firing after the A11 
inhibitory current emerges, which enables the HVCRA neuron to 
generate a burst of spikes. In this context, a burst refers to a series of 
action potentials which last a very brief time. However, recordings of 
the HVCRA neuron voltages during singing reveal that a burst usually 
consists of around 4 spikes and lasts approximately 8 ms (Hahnloser 
et al., 2002), while the modeled are almost doubled. At this stage the 
network model output does not fully agree with experimental  
observations.

Second, if the reciprocal excitatory current from the HVCRA 
neuron to the interneuron is added to the model, the simulated burst 
behavior better matches the recorded burst pattern of real HVCRA 
neurons, as illustrated in Figure 5. After the trigger signal appears, the 
interneuron becomes, leading to the cessation of inhibition HVCI to 
HVCRA cell, which in turn allows the HVCRA neuron to start its burst. 
Then, the excitation current generated by the spikes from HVCRA 
neuron successfully drives the silent interneuron to spike again before 
the A11 activity completely vanishes. As the HVCI neuron generates 
continuous spikes again, the interneuron’s sustained firing suppresses 
the activity of the HVCRA neuron. Now the burst duration and the 
spike number of the HVCRA neuron closely match the in vivo neuron 
observation. Therefore, the microcircuit model demonstrates that the 

synaptic interactions of both directions between the interneuron and 
the HVCRA neuron are necessary for the neural network model to 
generate the correct activity.

3.4 Building a synaptic chain

We now demonstrate how to introduce multiple excitatory 
neurons to build a complete synaptic chain. A first syllable from the 
highly stereotyped song motif from the zebra finch is used as an 
example, and the recorded qualitative behavior of projection neuron 
populations in HVC during the syllable is reproduced in this process.

A full motif contains a fixed number of syllables in an invariant 
sequence. Although extracellular recordings in vivo during singing 
confirms that each HVCRA neuron usually generates a single burst at 
a fixed location of one syllable during each song, multiple HVCRA 
neurons are observed to fire successively. During normal singing, this 
firing order is fixed, and the time between bursts of two HVCRA cells 
is also relatively stable. This phenomenon is presented in the 
experimental raster plot by Hahnloser et al. (2002) in Figure 6, which 
is compared to our modeling results in Figure 7.

This chain-like propagation of spikes among various HVCRA 
neurons can be explained by direct connections among excitatory 
neurons (Figure  8). Alternatively, a propagation of silent periods 
among a sequence of interneurons could occur first, and then the 
silent time in each interneuron may allow a corresponding HVCRA 

FIGURE 4

Inhibitory synaptic interaction from HVCI to HVCRA neuron and their voltage traces. Top: diagram of neural circuit simulated in this figure. Note there is 
only one unidirectional synaptic current between the interneuron and the HVCRA neuron. Top middle: continuous firing of the interneuron and the 
quiet time induced by trigger current (dynamics of the trigger current is presented in Figure 1). Bottom middle: membrane voltage of the HVCRA neuron 
with a burst when the interneuron is not active. Bottom: inhibitory current from HVCI to HVCRA cell (Int represents the interneuron, and RA refers to the 
HVCRA neuron.) See text for important details.
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FIGURE 5

Bidirectional synaptic interactions between an HVCI - HVCRA neuron pair and their voltage traces. Top: synaptic connections among A11 cell group, the 
interneuron and the HVCRA neuron. Note bidirectional synaptic currents between the interneuron and the HVCRA neuron are included. Top center: 
continuous firing of the interneuron and the quiet time induced by trigger current. Center: membrane voltage of the HVCRA neuron with a single burst. 
After involving the reciprocal current from HVCRA neuron back to the interneuron, the burst duration and spike number match experimental 
observations better than that in Figure 4. Bottom center: inhibitory current from HVCI to HVCRA cell (Int represents the interneuron, and RA refers to the 
HVCRA neuron). Bottom: excitation connection from HVCRA back to the interneuron. See text for important details.

neuron to burst. The prior mechanism is of higher probability since 
(1) it agrees with the observed high ratio (about 8:1) of HVCRA to 
interneuron populations in the nucleus (Armstrong and Abarbanel, 
2016), (2) paired recordings show that most HVCRA cell pairs exhibit 
unidirectional EPSPs, but few homotypic synaptic interactions are 
observed among interneurons (Mooney and Prather, 2005).

In this network, the first excitatory neuron follows the same 
HVCI - HVCRA neuron interaction and the voltage trace in Figure 5, 
and passes that burst to the second HVCRA neuron by homotypic 
excitation current, and so on (Figure 8). Most HVCRA neurons in the 
chain (except for the first HVCRA neuron) do not fire spontaneously 
considering the general inhibitory effect from the HVCI and HVCX 
projecting neuron populations. Simulating the potential inhibition 
current from each individual neuron is beyond the scope of this 

paper, but we  account for this phenomenon by lowering the 
background stimulation to 50 pA, which is known to allow those 
excitatory neurons to stay silent during in vitro experiments (Daou 
et al., 2013). The average maximal conductance of excitatory synaptic 
currents between two neurons is estimated to be around 7 nS, as 
stated in the Method section. However, if the synaptic connection 
strength for homotypic HVCRA cell pairs is set to 7 nS, the excitatory 
input would not be large enough to awake an HVCRA neuron (see the 
Model Robustness section for further discussions about tuning this 
parameter values). Therefore, the synaptic connection strength for 
homotypic HVCRA cell pairs is set to 8.2 nS to ensure that the 
postsynaptic neuron will copy the burst pattern of the presynaptic 
neuron. The only exception happens at the first HVCRA cell which is 
directly impacted by the trigger signal. The spikes in its one-time 
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burst are relatively weak, so the value of gRA,RA for the first and second 
neuron is tuned to 10 nS so that the second HVCRA neuron can 
generate the same number of spikes.

Figure 7 shows the simulated cross-membrane voltages of the 
sequentially connected excitatory neural network in response to the 
neurotransmitter trigger signal depicted in Figure  1. The firing 
timings of neuron No.2, No.25, No.26, and No.50 correspond closely 
with the repeated electrode recordings of neuron 2–5 in the plot of 
Hahnloser et al. (2002) (Figure 6). During the first syllable, each 
HVCRA cell generates a short burst consisting of four spikes. The time 
span of a single burst is on the order of 10 ms, and the short (∼ 3 ms) 
or long (∼ 50 ms) time intervals between spikes from different 
neurons are also reproduced in Figure 7.

3.5 Model robustness

In our numerical simulations, most parameter values are obtained 
from published literatures, with two exceptions: [T]min and gRA,RA. There 
is no convincing analysis of the baseline concentration of 
neurotransmitters before the onset of a trigger signal, so we choose the 
[T]min value to be 0.001 mM, which is much smaller than the maximum 
neurotransmitter concentration [T]max. Fortunately, varying the value of 
the minimum neurotransmitter concentration does not change the 
simulation result as long as it stays positive and small compared to 
[T]max. In Figure 9, even if the value of [T]min increases/decreases by 10 
times, the magnitude, duration, and shape of neurotransmitter dynamics 
stays almost the same. The only difference that is introduced by the 

[T]min value is the peak time of the neurotransmitter concentration from 
A11 axons, which has no impact on any simulation conclusions since 
this paper does not focus on the exact onset time of the trigger current.

As stated in the section Building a syllable, the value of maximum 
conductance for connecting the chain of HVCRA neurons is chosen to 
be 8.2 nS or 10 nS for the first pair of HVCRA neurons, which allows the 
postsynaptic cell to reproduce the burst duration and spike number of 
the presynaptic neuron. As discussed in the Method section, the maximal 
conductance of AMPA-mediated current for a single synaptic connection 
is measured between 0.35–1.0 nS, and there are approximately 10 
synapses between a pair of connected neurons. Therefore, a reasonable 
value of maximum conductance should be in the range of 3.5–10 nS, 
which includes our proposed parameter value. Furthermore, the 
presynaptic HVCRA neuron will still pass its firing pattern to the 
postsynaptic cell if this maximum conductance varies a small portion. 
When the first HVCRA neuron is the presynaptic cell, gRA,RA is tuned to a 
larger value compared to other interactions since this neuron’s first burst 
spike is weaker than full firing. As long as gRA,RA stays within the range of 
9.9–10.3 nS, the second HVCRA neuron will still generate four full spikes. 
Otherwise, the postsynaptic neuron burst will not reach four full firings 
if the maximum conductance is too small, or there will be  a fifth 
miniature peak if the value is too large (See Figure 10). We select 10 nS 
as the modeling parameter value because it is within the reasonable value 
of measured maximum conductance between two neurons.

In the chain of HVCRA neurons after the first pair, the maximum 
conductance is set to 8.2 nS to ensure that the burst of four spikes can 
be spread by the unidirectional connections. If the value of gRA,RA is 
smaller than 8.18 nS, the burst will gradually disappear during this 

FIGURE 6

A raster plot of spike times of HVCRA during repeated renditions of the zebra finch motif [Reprinted from Nature by permission from Springer Nature 
(Hahnloser et al., 2002)]. Readers may find it of interest to compare these spiking times to the voltage plots in Figure 7.
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FIGURE 7

Simulated voltage plots of multiple HVCRA neurons during singing. The first neuron follows the same activity as the HVCRA cell in Figure 5, while this 
figure shows a time course of 10–160  ms. Given the trigger signal, HVCRA neuron No.2, No.25, No.26, and No.50 reproduce the measured raster plots 
of neuron 2–5 from Figure 6. Their burst duration, number of spikes in a burst and time intervals between two neuron bursts closely match the 
experimental recordings.

long transfer process (Figure 11); if it is larger than 8.27 nS, the burst 
spike number will increase as more neurons are added to this 
sequence of HVCRA neurons (Figure 12). The selected value of 8.2 nS 
for the maximum conductance in the sequence of HVCRA neurons is 
reasonably close to the measured median value of maximum 
conductance for excitatory currents, which is 7 nS.

However, if we only care about one pair of HVCRA neurons, the 
voltage trace of the postsynaptic cell will still be very similar to the 
presynaptic one when gRA,RA = stays in the range of 8.1–8.3 
nS. Moreover, if the maximum conductance value of each HVCRA - 
HVCRA neuron pair is distributed uniformly between 8.1 nS and 8.3 
nS, the neuron behavior and model conclusion will not be changed 
(see Figure 13).

4 Discussion

This paper has described a HVC neural network model 
consisting of single neuron models of HVCI and HVCRA neurons in 
the HVC nucleus, as well as synaptic current equations and a trigger 
signal model based on Ben-Tov et al. (2023). We began with single 
neuron models describing fundamental ion channels in the HVCRA 
and HVCI neurons, and showed that the HVCRA neuron fired 
continuously under a background current above its experimental 
threshold. After introducing an inhibitory connection from the 
interneuron to the HVCRA neuron, this HVCRA neuron became 
silent, which was expected in the absence of singing behavior. Then, 
the current from A11 cell group to HVC allows the interneuron 
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model to reproduce the continuous firing with intermittent pauses 
reminiscent of the HVCRA neurons during song production. Now, 
the HVCRA neuron was able to generate a burst, but the burst 
duration and spike quantity initially did not match experimental 
observations. This mismatch was resolved after the excitatory 
interaction from the HVCRA neuron back to the interneuron was 
added to the circuit, which suggested that the bidirectional 
connections in the HVCRA-HVCI neuron pair observed in vitro 
might be necessary to maintain the firing pattern of neurons in this 
nucleus. Finally, more HVCRA neurons were included in a chain 
configuration, successfully reproducing the time-locked sequential 
burst from multiple HVCRA neurons during a syllable. All but one of 
the parameters in the single neuron models and synaptic current 

models were backed by other simulation or experimental papers. 
The only parameter that was fine-tuned was the maximal 
conductance of synaptic current between two HVCRA neurons. In 
the Results section, we discussed the possible range for the parameter 
and showed that the fine-tuned value fell within the measured range 
of maximal conductances for excitatory synaptic currents.

The model could be further applied to describing the functions 
and dynamics of HVC neurons in other songbirds such as Bengalese 
Finch or canary (Clayton, 1987; Brenowitz et al., 1997). The fine-tuned 
parameter in the synaptic current model may also provide a reference 
for synaptic coupling strength in the avian brain. Our work in this 
paper offers tools to understand the dynamics of HVC and its function 
as a song motor in the avian song system.

FIGURE 8

Network architecture enables production of syllables.

FIGURE 9

Simulated trajectory of neurotransmitter concentration in the synaptic cleft between A11 axons and HVC neurons under different choices of [T]min 
value. Varying the value of [T]min does not affect the magnitude, duration, and shape of neurotransmitter dynamics. The behavior of the neural network 
model exhibits considerable robustness with respect to variations in the value of [T]min.
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4.1 Another type of projecting neurons

Our model focuses exclusively on HVCRA projecting neurons as well 
as interneurons which serve as an important coordination for projecting 
neurons to function properly. This network does not include HVCX 
projecting neurons, a third major type of neurons in this region. HVCX 
neurons projects onto area X, which in turn give rise to the anterior 
forebrain pathway (Mooney, 2009). The synaptic connections from 
HVCX to HVCRA neurons are detected but relatively less frequently than 
the connections from HVCI to HVCRA neurons. The chance that the 
spike-evoked responses from HVCX to HVCRA cells are hyperpolarizing 
or depolarizing are approximately the same (Mooney, 2009). Moreover, 
induced death of HVCX neurons does not significantly alter neuronal 
recruitment or song productions in adult zebra finches (Scharff et al., 
2000). Therefore, the role of HVCX neurons in coordinating HVCRA 

neuron behavior may be not as critical as interneurons, and it is beyond 
the scope of this paper to address alternative detailed network structures 
involving all three major populations of neurons, resulting in the 
requirement for further observations and studies.

4.2 Possible additional ion currents

Previous studies have proposed several models of individual 
HVCRA neurons and interneurons. These models contains different 
combinations of ion currents, as well as different equations and 
parameters for each ion current (Jin et al., 2007; Daou et al., 2013; 
Breen et al., 2016; Kadakia et al., 2016; Armstrong and Abarbanel, 
2016). Our single neuron models are adapted from earlier works. Each 
neuron model in this paper includes only the basic ion channels which 

FIGURE 10

Simulated voltage plots of the first HVCRA neuron and the second HVCRA neuron with different values of maximum conductance for the synaptic 
interaction between them. See text for more information.
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previous papers agree to be important for that specific neuron type. 
Follow-up work may examine additional possible ion currents such as 
A-type potassium current, high-threshold L-type calcium current, 
persistent sodium current, and calcium dependent potassium current.

4.3 Previous models of HVC sequence 
generation

In a previous model of sequence generation by HVCRA neurons, Jin 
proposed that the burst sequence is generated by a synburst chain within 
the HVCRA population alone (Jin, 2007). The model assumes that HVCRA 
neurons are intrinsically bursting, and the burst durations are set by 
cellular properties. Burst sequences generated from the model are similar 
to those observed in HVC. However, the paper assumes that the burst 
sequences are not driven by input from any upstream brain areas, and it 
does not address how to initiate the spiking activities in the chain of 
neurons. The paper claims that its intrinsic bursting model improves the 
spike robustness against synaptic connectivity strength. However, most 
parameters proposed in this neural network model do not have 
experimental or simulation evidence to validate their plausibility, and the 
improvement of robustness has only been tested based on the proposed 
group of parameters. The model also neglects the influence of 
interneurons on the HVCRA population.

Cannon et al. (2015) describes a feedforward excitatory chain 
model with local feedback inhibition, designed to generate 

stereotyped neural sequences. The model integrates inhibition into 
the series propagation of HVCRA neuron activations, but the proposed 
integration mechanism is carefully engineered without biophysical 
motivations. The individual neurons are modeled using quadratic 
integrate-and-fire equations. The excitatory and inhibitory post-
synaptic current equations are independent of pre-synaptic voltages. 
The paper does not intend to describe HVC neurons and their 
connections in biological details, so most parameter values employed 
in this model lack experimental validation and are chosen primarily 
to ensure the functionality of the model.

A more recent model reproduces the observed series of HVCRA 
activities by introducing a small neuronal loop capable of transitioning 
between an “active” and “quiescence” state (Armstrong and Abarbanel, 
2016). Multiple neural loops are arrayed in a chain, stimulated in 
sequence to excite an “active” state that propagates down the chain. The 
mechanism of connectivity between two neuronal loops and the 
method of achieving a sequence of ‘active’ states is unspecified. Certain 
parameter values lack experimental or simulation evidence to support 
their reasonability, and the sensitivity of the modeling results upon 
those parameter values has not been examined.

4.4 Building a complete song

In this paper we consider what happens when the neural network 
is exposed to a neurotransmitter pulse induced by a male zebra finch’s 

FIGURE 11

Simulated voltage plots of multiple HVCRA neurons during singing with gRA,RA  =  8.18 nS. For the first several neurons, the postsynaptic cell is able to copy 
the burst behavior of the presynaptic neuron, but this one-time burst gradually disappears as it is passed through more synaptic connections.

https://doi.org/10.3389/fncom.2024.1417558
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xia and Abarbanel 10.3389/fncom.2024.1417558

Frontiers in Computational Neuroscience 16 frontiersin.org

need to attract a female, and the injected neurotransmitters start the 
first syllable of a motif. It is interesting to further examine the 
plausibility of generating a complete song following similar 
neuromodulator mechanisms. Each bird’s whole song comprises an 
average of 12 harmonic syllables of around 80–200 ms each in 
duration (Woolley et al., 2010; Glaze and Troyer, 2016). Within our 
framework, the full motif could be  explained by a chain-like 
propagation linking HVCRA to HVCRA neurons, similar to how to 
construct the first syllable. This continuous synaptic architecture 
within HVC agrees with the observation that local HVC circuit 
connectivity contains sufficient information to propagate throughout 
the song sequence during sleep replay (Elmaleh et al., 2021). Since 
HVC is responsible for temporal order rather than sound of syllables 
(Fee and Scharff, 2010, Long and Fee, 2008; Simpson and Vicario, 
1990), we do not worry about how to generate acoustic features for 
different syllables.

An alternative scenario would be that the active series of syllables is 
achieved by sequentially arrived neuromodulator from A11 axons. Even 
though the excitatory synaptic connections between HVCRA neurons 
simulate the distributed bursts inside one syllable, it is possible that each 
syllable represents a relatively independent structure in the nucleus. 
During experiments of singing interruption, individual syllables are 
more robust than the full song: direct electrical interference is necessary 
to interrupt a syllable, but ongoing motif can be  interrupted by 
noninvasive techniques such as strobe light (Cynx, 1990; Armstrong and 
Abarbanel, 2016). Experimental results also show that the thalamic axon 
activity is critical for starting the following syllable but no for completing 

the ongoing syllable (Moll et al., 2023). These evidences suggest that the 
connectivity among syllables may follow a different mechanism from the 
direct synaptic interactions. We speculate that a neural feedback loop 
involving other nucleus may activate a succession release of 
neurotransmitters, which triggers multiple syllables to play a whole motif.

Another alternative to achieve a full song would be  that the 
neurotransmitters diffuse and arrive at different parts of HVC 
sequentially. In this case, the microcircuits of neurons responsible for 
their own syllables are located at different locations throughout the 
nucleus. The triggering neurotransmitters are released from the A11 
axons all at once and then diffuse within HVC, activating spatial 
organized microcircuits to sing each syllable sequentially.

4.5 Learning

Multiple HVC neurons of different types form correlational 
connectivity to ensure the functionality of the nucleus. How could 
neurons in junior zebra finches develop this cooperation during 
learning? One possibility is that these neurons adapt both spatial 
organization and synaptic plasticity to achieve bird’s own song. There is 
evidence of directed neural networks within the HVC matures during 
sensorimotor learning (Day et al., 2013), which indicates the existence of 
spatial organization development. Neurons in the HVC also regulate 
their ion channel conductances over the arc of development (Daou and 
Margoliash, 2020), suggesting that the strength of synaptic currents may 
also covary during vocalization development.

FIGURE 12

Simulated voltage plots of multiple HVCRA neurons during singing with gRA,RA  =  8.27 nS. For the first several neurons, the postsynaptic cell is able to copy 
the burst behavior of the presynaptic neuron, but more spikes are added to the burst because of the strong synaptic interaction strength.
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