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Background: The methods used to detect epileptic seizures using

electroencephalogram (EEG) signals su�er from poor accuracy in feature

selection and high redundancy. This problem is addressed through the use of a

novel multi-domain feature fusion and selection method (PMPSO).

Method: Discrete Wavelet Transforms (DWT) and Welch are used initially to

extract features from di�erent domains, including frequency domain, time-

frequency domain, and non-linear domain. The first step in the detection process

is to extract important features from di�erent domains, such as frequency

domain, time-frequency domain, and non-linear domain, using methods such

as Discrete Wavelet Transform (DWT) and Welch. To extract features strongly

correlated with epileptic classification detection, an improved particle swarm

optimization (PSO) algorithm and Pearson correlation analysis are combined.

Finally, Support Vector Machines (SVM), Artificial Neural Networks (ANN),

Random Forest (RF) and XGBoost classifiers are used to construct epileptic

seizure detection models based on the optimized detection features.

Result: According to experimental results, the proposed method achieves

99.32% accuracy, 99.64% specificity, 99.29% sensitivity, and 99.32%

score, respectively.

Conclusion: The detection performance of the three classifiers is compared

using 10-fold cross-validation. Surpassing other methods in detection accuracy.

Consequently, this optimized method for epilepsy seizure detection enhances

the diagnostic accuracy of epilepsy seizures.

KEYWORDS

feature selection, feature fusion, discrete wavelet transform, Welch, particle swarm

optimization, Pearson correlation analysis

1 Introduction

In traditional medical epilepsy diagnosis, medical experts rely on their personal

experience to visually inspect patients’ EEG signals (Tatum, 2014). It is time consuming

and analytically demanding to detect epilepsy manually. Medical experts have difficulties

interpreting EEG signals due to the non-stationary nature of the signals, which may

cause human interpretation errors and disagreements (Oliva and Rosa, 2019). As a result,

computer-based methods have gradually replaced traditional medical detection methods,

helping medical experts to identify epilepsy-related events in EEG recordings (Li et al.,

2020; Vargas et al., 2021; Ramakrishnan and Murugavel, 2019; Türk and Özerdem, 2019).
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There are four main challenges involved in implementing

automatic epilepsy detection and classification: data preprocessing,

feature extraction, feature selection, and classifier design. Recent

epilepsy classifications have become increasingly dependent on

feature selection, and an efficient feature selection method

improves classification accuracy significantly. A low computational

efficiency has resulted from manually extracting features from

large EEG datasets, even as many developers continue to improve

algorithms based on machine learning.

Previously, EEG signal features were extracted manually,

using methods such as Wavelet Transform (WT), Short-Time

Fourier Transform (STFT), and others to categorize various

electrocardiograms and EEG signals. Machine learning, along with

the continuous development of artificial intelligence, has spurred

the development of automatic epilepsy detection technology.

With the introduction of algorithms with decomposition, signal

correlation, feature engineering, and other features, detection time

and classification accuracy have been shortened and improved (Liu

et al., 2021).

In addition to this, the following two unresolved problems exist

in the current epilepsy detection research: (1) the time-domain
features extracted from the original signals are not sufficient to

be used as a feature set for epilepsy detection alone; and (2)
the extracted features suffer from the problem of irrelevance and

independence from epilepsy detection. A number of studies have
proposed methods for solving the above problems, including ICFS,

AsyLnCPSO-GA, and GA (Khalid et al., 2014; Wei et al., 2020;

Prasetiyowati et al., 2020; Mursalin et al., 2017; Gao et al., 2020;

Wang et al., 2022; Omidvar et al., 2021). When using the selected
features for classification, the existing methods also have low

accuracy and high redundancy.

In order to solve the first problem, this work proposes

a method for extracting multidomain features from raw EEG
datasets by using discrete wavelet transforms (DWT) and Welch

methods to extract time-domain (TD), frequency-domain (FD),
time-frequency-domain (TFD), and non-linear features from raw

EEG datasets. Due to the large number of extracted features, it
leads to overfitting of the classifier and the performance of the

classifier is greatly reduced, so it is important to consider that

the number of features should be proportional to the cost of

training and prediction of the classifier, and the features with high

relevance needed by the classifier should be selected (Khalid et al.,

2014). For the second question, a feature optimization method

(PMPSO) is developed that uses the modified particle swarm

algorithm (MPSO) and Pearson’s correlation coefficient to select

features that are both relevant and independent. Compared with

the standard particle swarm optimization algorithm (PSO), MPSO

has made improvements in convergence speed and global search

capabilities. MPSO introduces a key shrinkage factor φ. MPSO

realizes efficient search on feature subsets and uses classification

accuracy as the fitness function for evaluation. In order to further

improve the accuracy of feature selection, MPSO combines the

Pearson correlation coefficient to perform a second screening of

the initially selected features. By calculating the linear correlation

between features and removing redundant features with strong

correlation, the final feature set has better independence. This not

only reduces the training time of the model, but also improves

the overall efficiency of epilepsy detection. By removing irrelevant

elements, these techniques can positively affect the performance

of constructing classifiers (Wei et al., 2020; Prasetiyowati et al.,

2020), using feature selection techniques to compare and improve

on different classifiers. The main contributions of this paper can be

summarized in the following two points:

The EEG signal is decomposed into sub-bands after fusion

using DWT, Welch and STFT methods to extract 35 features in

a variety of fields. As significant features in various fields, these

features improve classification accuracy greatly.

This paper proposes a new method for feature optimization

called PMPSO. This efficient feature optimization method

combines the improved Particle Swarm Optimization algorithm

(MPSO) with the Pearson correlation coefficient. It aims to

eliminate features that are unrelated to epilepsy and those with

strong correlations among themselves. The final feature vector is

the most representative and optimal.

The remaining sections of this paper are organized as follows:

Section 2 introduces some of the developed epilepsy detection

methods in related work; Section 3 presents the proposed automatic

epilepsy detection method in this paper; Section 4 provides

the classification experimental results using this method; finally,

Section 5 describes the conclusions drawn from the research and

outlines future work.

2 Related word

In this section, the work on seizure detection over the past two

decades is discussed. This leads to the epilepsy detection method

proposed in this paper by analyzing the current state of the work.

2.1 Related research on feature selection
methods

Feature extraction methods based on raw EEG signals were

still mostly manual during this period, with techniques such as

WT and STFT widely applied for electrocardiogram and EEG

classification. The method proposed by Mursalin et al. (2017)

combines an improved Correlation-based Feature Selection (ICFS)

with a Random Forest classifier to detect epilepsy. The ICFS was

used to select prominent features from the time domain, frequency

domain, and entropy-based features for RF classification, with

98.45% accuracy. Based on Approximate Entropy and Recurrence

Quantification Analysis combined with Convolutional Neural

Networks, Gao et al. (2020) presented an automated method

for epilepsy EEG recordings, achieving sensitivity, specificity, and

accuracy of 98.84, 99.35, and 99.26%, respectively. According to

Wang et al. (2022), an improved PSO and Genetic Algorithm

were combined to determine the optimal combination of features

for epilepsy seizure detection in a hybrid model. By utilizing a

novel Asynchronous Learning Factor Particle Swarm Optimization

(AsyLnCPSO) and GA for feature selection, a classification

accuracy of 95.35% was achieved. In Omidvar et al. (2021), 55

statistical and entropy-based features were extracted from raw EEG

signals using DWT. Using GA for feature selection, they achieved

improved accuracy, sensitivity, and specificity of 98.7, 97.5, and

100%, respectively. Haputhanthri et al. (2019, 2020) selected the
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FS4 feature set based on the correlated feature selection algorithm

(CFS), which provided a relatively high level of accuracy when

compared to other methods because it contained the mean and

standard deviation of the five channels (FT9, P3, Oz, TP9, and

FC2). Compared to the PMPSOmethod proposed in this study, the

correlation between features is ignored, and the selected feature set

has high redundancy and low independence.

The above-mentioned methods for feature selection have a

significant impact on epilepsy detection. These methods still

select feature sets that have redundant features and are not

optimal. This work proposes a PMPSO method that consists of

two feature selection techniques, which can be used to select

independent feature sets that have strong correlations and the most

representative attributes.

2.2 Related research on feature extraction
methods

Sriraam and Raghu (2017) extracted 26 features from time

domains, frequency domains, information theory, and statistics.

On these features, Wilcoxon rank-sum tests were applied based on

a 95% significance level, and an optimized SVM classifier reached

the highest sensitivity, specificity, and accuracy, respectively, of

94.56, 89.74, and 92.15%. The method proposed by Oliva and

Rosa (2021) was based on the binary fusion of three domain

features (frequency, time-frequency, and nonlinear), producing a

total of 105 features for multiclass classification. The work of Xiong

et al. (2022) exploited Pearson correlation coefficients, mutual

information, and permutation disalignment index to construct a

three-layer network, extracting similar features in each network,

and optimizing them based on an improved genetic algorithm.

In the CHB-MIT database, the method achieved AC, SP, SE, and

F1 of 97.26, 97.55, 96.89, and 97.11%, respectively. In the Siena

scalp database, AC, SP, SE, and F1 reached 98.88, 99.13, 98.36,

and 98.75%.

In the above-mentioned related works, good results have been

achieved in the detection of epilepsy. Although the selected features

have strong relevance to epilepsy detection, the correlation between

them has not been reflected, and some redundant features remain.

Based on the discussion of the above related works, epilepsy

seizure detection still has redundant features. To address the

existing challenges, this study constructs a comprehensive dual-

feature selection method based onmulti-task learning. The method

extracts crucial features from multiple domains of EEG signals,

which directly impacts classification accuracy. Preprocessed EEG

signals are decomposed into five subbands (Gamma, Beta, Alpha,

Theta, and Delta) using DWT. Specific potential features related to

EEG signals’ non-linear and dynamic structure are obtained from

each subband. The logarithmic sum, mean, mean power, standard

deviation, and ratio of absolute mean are extracted. Additionally,

Welch’s method calculates spectral density estimation features

in different frequency bands, extracting 35 features belonging

to different domains from the original EEG signals. Then, the

feature selection optimization method (PMPSO) combining the

MPSO method improved by PSO and the Pearson correlation

coefficient is used to select features with high correlation and strong

independence. The MPSO method introduces a shrinkage factor

φ in PSO to overcome its limitation of fast convergence speed

but easy to fall into local optimality, so that particles can search

collaboratively in the local area, thereby optimizing features with

high correlation. The Pearson correlation coefficient is used to

perform a secondary screening of these selected features to remove

redundant features with strong correlation and further enhance

the independence of the features. Finally, SVM, RF, ANN, and

XGBoost classifiers classify epilepsy patients, healthy individuals,

and epilepsy seizure detection.

3 Material and method

This chapter introduces the proposed epileptic seizure

detection system in four parts: raw data preprocessing, feature

extraction, feature selection, and classification. Raw data is

segmented and filtered in the preprocessing stage. DWT andWelch

methods are then applied to EEG segments to extract features

from different frequency subbands, resulting in a feature set of

35 features, including important features from various domains,

greatly improving classification accuracy. With the PMPSO

method, features with strong correlation and independence are

selected, forming a representative optimal subset. Finally, the

chosen feature subset is serially concatenated to form a feature

vector used for training multiple classifiers. Figure 1 illustrates the

overall architecture of the proposed method, and the following

subsections detail each part of the system.

3.1 EEG dataset

In this study, three electroencephalogram (EEG) datasets from

different sources were used, namely the epilepsy dataset of the

University of Bonn and the CHB-MIT scalp EEG dataset of

Boston Children’s Hospital. The performance of the PMPSO

method was evaluated on these datasets, and the robustness

and applicability of the method in different application scenarios

were verified.

3.1.1 University of Bonn Epilepsy Dataset
In this work, the epilepsy dataset from the University of

Bonn (http://epileptologie-bonn.de/cms/upload/workgroup/

lehnertz/eegdata.html) (Andrzejak et al., 2001) was utilized. The

dataset comprises EEG data from five epilepsy patients and five

healthy individuals, organized into five subsets labeled A to E.

Each subset contains 100 single-channel EEG segments with a

continuous duration of 23.6 s, containing 4,097 data points. For

healthy, interictal, and seizure periods, 200, 200, and 100 data

were available, respectively. After undergoing 12-bit analog-to-

digital conversion, the data was continuously written to disk at a

sampling frequency of 173.61Hz (Andrzejak et al., 2001). Potential

interferences such as muscle artifacts and eye movement artifacts

were removed from the data. Figure 2 illustrates EEG contrasts

during healthy states, interictal intervals, and ictal periods.

The EEG data collected from subsets N, F, and S are

from hippocampal structures and different electrode positions
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FIGURE 1

The architectural diagram of the proposed method.

FIGURE 2

Comparison of EEGs between healthy states, interictal intervals, and ictal periods.

in epilepsy patients’ lesions. Interictal EEG subsets N and

F are of epileptic patients, and iCtal EEG subset S is of

epileptic patients. The Z and O subsets were obtained from

five healthy subjects during awake and relaxed states, with

Z representing an eyes-open situation and O representing an

eyes-closed situation. Table 1 shows sample EEG recordings for

five datasets.

3.1.2 CHB-MIT
This study used the CHB-MIT (https://physionet.org/

content/chbmit/1.0.0/), a publicly available scalp EEG database

developed by researchers at Boston Children’s Hospital and

Massachusetts Institute of Technology (Shoeb, 2009). The

dataset contains EEG records of 23 pediatric patients with

intractable epilepsy, including 5 males with an age range
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TABLE 1 Description of the Bonn University Epilepsy Dataset.

Set A Set B Set C Set D Set E

Participants Healthy person Healthy person Epileptic patients Epileptic patients Epileptic patients

State Open eyes Close eyes Interictal Interictal Stage of attack

Types Cephalic cortex Cephalic cortex Intracranial Intracranial Intracranial

Electrode placements Scalp Scalp Hippocampal structure Focal area Focal area

TABLE 2 Detailed description of the CHB-MIT database.

Patient Gender Age Channel number Epilepsy event
number

Recording
duration

chb01 F 11 22 7 40

chb02 M 11 22 3 35

chb03 F 14 22 7 38

chb04 M 22 22 4 156

chb05 F 7 22 5 39

chb06 F 1.5 22 10 66

chb07 F 14.5 22 3 67

chb08 M 3.5 22 5 20

chb09 F 10 22 4 67

Chb10 M 3 22 7 50

chb11 F 12 22 3 34

chb12 F 2 22 40 23

chb13 F 3 22 12 33

chb14 F 9 22 8 26

chb15 M 16 26 20 40

chb16 F 7 22 10 19

chb17 F 12 22 3 21

chb18 F 18 18 6 35

chb19 F 19 18 3 29

chb20 F 6 22 8 27

chb21 F 13 22 4 32

chb22 F 9 22 3 31

chb23 F 6 22 7 26

Gender: F, female; M, male.

Recording duration: The approximate duration of each case in hours.

of 3–22 years and 18 females with an age range of 1.5–19

years (Goldberger et al., 2000). The records were labeled

by experienced clinicians. The EEG records of each subject

contained 9–42 EDF files with a total duration of ∼983 h,

including 198 epileptic seizure events. All EEG signals were

recorded using the international 10-20 bipolar system with

a sampling rate of 256Hz and a resolution of 16 bits. For

more details about the CHB-MIT database, see the study by

Goldberger et al. (2000), and the relevant case details are shown

in Table 2.

3.2 Pre-processing

The purpose of this section is to provide a detailed

overview of how raw EEG signals are preprocessed. Epileptic

seizures and healthy states cannot be distinguished in some

studies. Because EEG signals are relatively weak, they are

easily disturbed by external factors or human physiological

activities. Consequently, it is impossible to distinguish between

epileptic seizures and signals from a healthy state, which may

adversely affect experimental results (Riccio et al., 2024; Handa
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FIGURE 3

Flowchart of multi-domain feature extraction.

et al., 2023; Li et al., 2023; Pandey et al., 2022). In order

to ensure data quality and accuracy, a series of preprocessing

operations are carried out before extracting features from

EEG signals.

Firstly, linear filters are employed to process

the EEG signals. A simple fourth-order Butterworth

bandpass filter with a range of 0.5–70 Hertz is included.

This filter enhances the signal quality by eliminating

unwanted frequency components. To suppress interference

from power lines, a notch filter at 50 Hertz is

also employed.

Besides mitigating artifacts caused by various factors, it

is imperative to address the issue of limited data size as
well. Continuous EEG data is usually very large, and the

available data for the epilepsy data sample is only 500 data
instances. Therefore, the long EEG data is segmented into
shorter segments using a segmentation strategy. An overlap of

64 data points on the time axis is used with this strategy,
using a fixed-size window of 1,024. With this approach, unstable

EEG fragments are segmented into shorter, pseudo-stable EEG
segments that have similar statistical characteristics. Expanded

data for healthy, interictal and seizure periods to 5,700, 5,700,

and 2,850.

Finally, the segmented 14,250 EEG fragments are divided

into training, validation, and test sets with proportions

of 90, 5, and 5%, respectively. The purpose is to facilitate

the subsequent training and evaluation of the model. The

preprocessing steps provide a reliable foundation for our

research by enhancing the quality and applicability of

the data.

3.3 Feature extraction

Feature engineering is an essential component in the detection

of epileptic seizures. EEG signals during healthy states, ictal periods,

and interictal intervals can only be distinguished by extracting

significant features from them. As shown in Figure 3, various

feature extraction methods are employed in this chapter to extract

key features denoted as f1, f2, , , fc from multiple domains. Multi-

domain features are extracted by converting the original signal into

a format suitable for multi-domain feature extraction, which helps

extract key features in each domain. By adding diversity to the

feature set, classification accuracy is significantly improved.

The feature extraction process encompasses multiple feature

sets from different domains, each having distinct physical and

statistical significance. It includes, but is not limited to, time-

domain, frequency-domain, time-frequency-domain, and other

domain-specific features. As a result of this diverse feature set, our

classifier is able to capture various aspects of EEG signals, thereby

enabling a comprehensive understanding and differentiation of

EEG signals in different states.

3.3.1 Time-frequency domain feature extraction
A time-frequency domain feature extraction is achieved using

DWT in this section. Multiple time and frequency scales are

used in this method to represent signals in the time-frequency

domain through approximation coefficients and detail coefficients.

Signal variations can be more accurately described with this

approach (Ibrahim et al., 2018). By analyzing the time and

frequency information of the signal, extracted time-frequency
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FIGURE 4

Principle of DWT sub-bands decomposition.

domain features provide a comprehensive and integrated way to

determine the signal’s properties. The formula for calculating DWT

is shown in equation:

DWT
(

i,j
)

=
1

√

|2i|

∫ ∞

−∞

x(t)ψ

(

t−2ik

2j

)

Among them, where i represents the frequency band range of

the coefficient, j represents the position of the wavelet coefficient

on the time axis or spatial location, x(t) represents the original

EEG signal, ψ(.) represents the wavelet function (mother wavelet),

and k is the variable of integration representing the integration

across the entire time axis. The primary objective of applying

DWT to the EEG signal x[n] for time-frequency analysis is to

extract sub-signals in five different frequency ranges: Delta, theta,

alpha, beta, and gamma. In this process, low-pass filters h[n] and

high-pass filters g[n] are used to generate wavelet coefficients,

which are transformed sub-bands. We obtain the approximation

coefficient A1 and the detail coefficient D1 at the first level. Next,

the same procedure is applied to the approximation coefficient A1

of the first level to obtain the coefficients for the next level. The

resulting coefficients D1,D2,D3,D4,D5, and A5 are used to represent

EEG sub-bands, as illustrated in Figure 4. This figure depicts a

simple diagram of the decomposition of the EEG signal into five

coefficients using DWT.

Produce an efficient feature vector by calculating 5 features

from each decomposition sub-band. The extracted feature vectors

can be reduced in dimensionality by utilizing statistics on discrete

wavelet coefficients (Kandaswamy et al., 2004). In this work, the

following statistical features were computed using the DWT:

(1) Logarithmic sum of wavelet coefficients (LSWT)

The logarithmic sum of wavelet coefficients refers to taking

the logarithm of the absolute values of wavelet coefficients. This

aids in capturing information about the signal across different

frequency sub-bands. Logarithmic sums can be computed using the

following formula:

LSWT =

N
∑

j=1

ln(|DWT(i, j)|)

In the aforementioned equation, DWT(i, j) represents the

wavelet coefficient, where i indicates the frequency band range of

the coefficient, j indicates where it occurs in space or on the time

axis, and N indicates the total energy of the wavelet coefficients in

the subband.

(2) The average of the absolute values of coefficients in each

subband (MEAN)

The average of the absolute values of coefficients in each

subband helps understand the average amplitude of the signal

in different frequency ranges. This enables identification of

frequency components with significant amplitudes. The formula

for calculating the average of the absolute values of coefficients is

shown in equation:

MEAN=
1

N

N
∑

j=1

|DWT(i,j)|

(3) The mean power of wavelet coefficients in each subband (ABS)

The mean power feature refers to the energy distribution of

the signal in the frequency domain. It distinguishes the levels of

energy within different frequency ranges in the signal. The formula

for calculating the mean power of wavelet coefficients is shown

in equation:

ABS=
1

N

N
∑

j=1

(DWT(i,j))2

(4) The standard deviation of coefficients in each subband (STD)

The amplitude distribution and fluctuation characteristics

of different types of signals vary from frequency sub-band to

frequency sub-band. Standard deviation features help identify and

distinguish different types of signals by capturing the characteristics

of these amplitude changes. The formula for calculating the

standard deviation of coefficients is shown in equation:

STD=

√

√

√

√

1

N

N
∑

j=1

(DWT
(

i,j
)

−MEAN)
2

(5) The ratio of the absolute average values of adjacent

subbands (RAT)

Signal frequency changes can be identified by comparing the

absolute average values of adjacent subbands. When the ratio is

higher, it indicates that there are more pronounced frequency

changes between adjacent subbands, while when it is lower, it

indicates relatively small changes in frequency. The calculation

formula for the ratio of absolute average values of adjacent

subbands is given by equation:

RAT=

∑N
j=1 |DWT

(

i,j
)

|
∑N

j=1 |DWT
(

i,j+1
)

|
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3.3.2 Frequency domain feature extraction
Frequency domain features are extracted using the Welch

method in this section. An EEG signal’s power spectral density

(PSD) can be calculated by using this method. Brihadiswaran

et al. (2019) summarize different techniques of feature extraction

such as statistical feature extraction and entropy based techniques.

Compared to these techniques, Welch’s method is more suitable for

processing EEG signals for epilepsy detection, the extracted features

provide information about the energy distribution of the signal

in different frequency ranges, which provides a more accurate

understanding of the frequency characteristics of the signal (Zhang

and Parhi, 2016), with the advantages of fast computation and

multi-window selection. Following are the steps to calculate the

PSD of EEG signal segments in different frequency bands using

Welch’s period gram method (Welch, 1967):

First, the EEG brainwave signal x (n) with a length of N is

divided into L segments, each segment with a length of M, where

N = ML. The calculation formula for each segment of EEG signal

xi (n) is shown in equation:

xi (n) = x (n+ iM −M) , 0 ≤ n ≤ M, 1 ≤ i ≤ L

Then, use a window function w(n) to mitigate the impact of

spectral leakage caused by the edges of time windows on EEG

brainwave segments. Calculate the power spectrum of each segment

of data using the discrete Fourier transform. The calculation

formula is shown in equation:

Pi (w) =
1

U
|

M−1
∑

n=0

xi(n)w(n)e
−jwn|2, i = 1, 2, , , L− 1

Where U = 1
M

∑M−1
n=0 w2(n) is the normalization factor, and

w(n) is the window function.

Finally, the power spectra of all segments are averaged to obtain

the power spectrum of the entire signal. This reduces the variance

of each power measurement. The calculation formula is shown in:

P (w) =
1

L

L
∑

i=0

Pi(w)

This work divided EEG brainwave segments into five frequency

bands: delta (0.1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–

30Hz), and gamma (30–70Hz). The PSD calculation formula for

the ith frequency band is shown in equation:

Pi = log
∑

ω∈bandi

P(ω)

As a result of this process, the PSD distribution of EEG

signal segments in different frequency ranges can be obtained,

which allows a better understanding of the signal’s frequency

characteristics. The method is widely used in signal processing,

spectrum analysis, and frequency domain feature extraction,

especially when reducing noise and obtaining smooth spectral

estimates are crucial. As shown in Algorithm 1, the pseudocode for

extracting PSD features from each sub-band frequency range using

the Welch method in this study includes Delta, Theta, Alpha, Beta,

and Gamma.

Input: EEG signal x(n), Window

function w(n)

Parameter: M,U, j,w, L, overlap

Output: {Pi}
5
t=1

1: P = zeros(frequency_bins)

2: length = w(n).size- overlap

3: N = length/M

4: for i to range(N) do:

5: start = i ∗ length

6: end = start + w(n).size

7: xi(n) = x[start : end]

8: xi_w(n) = xi (n)
∗ w(n)

9: Pi(w) = perform_fft(xi_w(n))

10: P (w) + = abs(Pi (w))
2

11: Average the spectrum over all

segments

12: Pi = log
∑

ω∈bandi P(ω)

13: end for

return {Pi}
5
t=1

Algorithm 1. Welch spectrum estimation algorithm.

The calculation of PSD in different frequency ranges follows

a methodology similar to the formal description in lines 5–12 of

Algorithm 1. Lines 1–3 of Algorithm 1 initialize the parameters.

Starting from line 5, the algorithm iteratively applies the window

function to each segment of data, preparing for the execution of

the Fast Fourier Transform (FFT) to obtain the frequency domain

representation of the data. The squared magnitude of the FFT

result is calculated in line 10. Finally, the spectral estimates for

all segments are accumulated and averaged to obtain the final

spectral estimate.

3.4 Feature selection

A detailed introduction to the Feature Optimization PMPSO

method is provided in this chapter, which is employed to solve the

problem of inadequately comprehensive feature selection. A total

of 35 features are extracted for each EEG brain signal segment,

including 30 time-frequency domain features and five power

spectral density features. With the increasing number of features

extracted from EEG signals, many irrelevant and redundant pieces

of information are present in the time-frequency domain features,

resulting in dimensionality catastrophe and a significant impact

on the performance of the classifier. An algorithm for selecting

features is therefore crucial. In order to reduce feature dimensions

and eliminate redundancy, the focus is on selecting those EEG

features thatmost effectively reflect the pre-seizure state. As a result,

the classifier’s performance and generalization ability are improved.

Previous research has only considered one aspect of the correlation,

either the correlation between features and seizure occurrence or

the correlation among features. Therefore, this section proposes a

feature selection method based onMPSO and Pearson correlations.

With this method, the MPSO algorithm selects features that are

highly correlated with epilepsy detection, thereby minimizing

the impacts of irrelevant features on classification results and
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reducing network overfitting. The Pearson correlation coefficient is

employed to calculate the correlation between features. The smaller

the correlation between features, the greater the independence of

features, leading to a more comprehensive and effective feature

set. EEG signals from epileptic patients are better measured with

this method (Zhong et al., 2023). In the end, the optimal epilepsy

features are obtained after rigorous screening using both methods.

3.4.1 The MPSO algorithm selects features based
on their correlation

AMPSO algorithm is presented in this subsection for selecting

features with strong correlations. It simulates an individual

searching for the best solution in a multi-dimensional space based

on the individual best solution (pbest) and the global best solution

(gbest), using the PSO algorithm. The particles in PSO represent

birds in a flock that move through the search space at a velocity and

position. It is the velocity that determines the speed of movement,

while the position determines the direction. The individual best

is determined independently by each particle in the search space,

and this information is shared with all particles. To find the global

optimum, particles compare their individual bests with the global

best among all particles. Particle speed and position are adjusted

based on their individual bests and the current global best. As the

iterative process continues, particles collaborate and compete to

come up with better solutions.

It is prone to getting stuck in local optima due to the fast

convergence of the PSO algorithm. In order to address this issue,

a constriction factor φ is introduced to limit the range of the factors

c1 and c2, which control the updating of particle velocity. This

helps to reduce the adverse effects that improper learning factor

setting may have on the algorithm. The particles will also be able to

conduct collaborative search in their immediate vicinity as a result

of this. The contraction factor φ can be expressed mathematically

as follows:

ϕ =
2

|2+ 4c1 −
√

2c22 − 4c1|

Therefore, the updated velocity formula after optimization is

given by equation:

vti
(

k+ 1
)

= wvti
(

k
)

+ ϕ[c1r1(pBest
t
i

(

k
)

− xti (k))

+c2r2(gBest
t
i

(

k
)

− xti (k))]

Here, vti
(

k
)

is the updated velocity of the i particle in the t

dimension after the k iteration. ϕ is the constriction factor, c1 and

c2 are the learning factors, r1 and r2 are random numbers between

0 and 1 for the k iteration, pBestti
(

k
)

is the individual best solution

of the i particle in the t dimension after the k iteration, gBestti
(

k
)

is

the global best solution in the t dimension among all particles after

the k iteration, xti (k) is the current position of the i particle in the t

dimension after the k iteration.

In this section, the MPSO algorithm is introduced for finding

the optimal feature vector set for epilepsy detection in the feasible

space. In Algorithm 2, the optimization process in the feasible

space is explained and the algorithm pseudocode is provided. A

similar process takes place in the MPSO for computing the optimal

Begin

1: Initial Population (Particle Swarm,

vi, xi)

2: while Maximum number of iterations

is not reached || Global convergence

is not 3 achieved do

3: for i =1 to Particle Swarm Size do

4: Calculate the fitness value for

each particle

5: If the fitness value is better than

pBestti
(

k
)

in history

6: Set current fitness value as the

pBestti
(

k
)

7: end if

8: end for

9: Choose the particle having the best

fitness value as the gBestti
(

k
)

10: for i =1 to Particle Swarm Size do

11: for each dimension do

12: Calculate velocity according to

the equation

13: vti
(

k+ 1
)

= wvti
(

k
)

+ ϕ[c1r1(pBest
t
i

(

k
)

−

xti (k))+ c2r2(gBest
t
i

(

k
)

− xti (k))]

14: Update particle position according

to the equation

15: xt
id

(

k+ 1
)

= xt
id

(

k
)

+ vt
id
(k+ 1)

16: end for

17: end for

18: Return pbest

19: end while

End

Algorithm 2. Improved particle swarm optimization (MPSO).

solution pbest as described in lines 3–16 of Algorithm 2. In each

iteration, fitness values are computed for each particle in steps 3–8,

along with individual and global bests. Each particle’s position and

velocity are then updated in steps 10–17.

MPSO algorithm is applied to feature optimization in the

following manner: First, the feature values are sorted in the

order of Di_LSWT, Di_MEAN, Di_ABS, Di_STD, Di_RAT,

Delta, Theta, Alpha, Beta and Gamma, where iε{1, 2, 3, 4,

5, 6}. A particle swarm optimization algorithm maps particles

to binary representations of feature selection statuses. Each

extracted feature has two conditions: selected and unselected,

represented by 0 and 1, respectively. A binary vector of length

30 composed of 0s and 1s represents each result. As an example,

the particle [000011000000100000000000000001] indicates the

selection of D5_LSWT, D6_LSWT, D1_ABS and power_gamma.

An algorithm’s fitness function is the classifier, and its fitness

value is the classification accuracy of each feature combination

(Wang et al., 2022). Figure 5 illustrates the detailed process.

Each particle’s feature values and mapped selection status are

initially initialized, with pbest representing the historical best

candidate solution for a single particle and gbest representing the

population’s best candidate solution. These parameters are updated

in two scenarios:
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FIGURE 5

The flowchart of the application of the MPSO algorithm in feature optimization.

(1) The classification performance of the new particle is better

than pbest/gbest;

(2) The classification performance of the new particle is the same

as pbest/gbest, but the number of features in its corresponding

feature subset is smaller, the solution size is smaller.

After reaching the maximum iteration count or finding the

global optimum, the iteration ends, and the final feature set

selection result is passed on to the next method.

3.4.2 Filtering independent features
The Pearson correlation coefficient is primarily

used in this subsection to select features for the

second round of analysis. By eliminating features with

strong correlations, enhancing feature independence,

removing redundant features, and reducing the

training time of the model, epilepsy detection becomes

more efficient.

The Pearson correlation analysis is widely used to

determine the strength and direction of a linear relationship

between two variables. Based on the concept of covariance,

a correlation coefficient r is calculated by dividing two

variables’ covariances by the product of their standard

deviations, resulting in a range of −1 to 1. The formula for

calculating the Pearson correlation coefficient r is shown

in equation:

r =

∑n
i=1 (Xi − X)(Yi − Y)

√

∑n
i=1 (Xi − X)

2
√

∑n
i=1 (Yi − Y)

2

The correlation coefficient r has a range of values between

[−1, +1], and X and Y represent two features. There is a negative

correlation when the value is negative, a positive correlation

when the value is positive, and no correlation when the value is

zero. In general, the closer the correlation coefficient is to 0, the

weaker the correlation; the closer it is to −1 or +1, the stronger

the correlation.

3.5 Applying PMPSO optimized features in
the classifier

In this section, we apply the optimal feature vectors

extracted using the PMPSO feature optimization method to

four different classifiers: ANN, SVM, RF and XGBoost. An

ANN consists of an input layer, a hidden layer with 19 neural

units, and an output layer with three nodes. For discrete

prediction, the softmax output with cross-entropy loss is used,

and for real-value prediction, the linear output with square loss

is used.

In classification and regression analysis, SVM is a supervised

learning method for analyzing data and identifying patterns

(Kumar et al., 2017; Vapnik and Cortes, 1995). SVM classification

involves separating data points using a hyperplane for input

classification (Vapnik and Cortes, 1995). A SVM focuses

on support vectors, the data points closest to the decision

boundary, which makes it less susceptible to outliers and

noise. Complex data can be handled well by SVM because

of this property. In order to improve the accuracy of the

three-class epilepsy problem, a fifth-order polynomial function

is used with adjusted key parameters γ and c. Parameter

γ controls the influence range of a single training example

on the classification boundary. Parameter c balances correct

classification and margin maximization, set to γ = 0.1

and c= 1.

The RF classifier is a machine learning model based

on the bagging concept, introduced by Breiman (2001),

incorporating additional randomness. A RF model consists

of multiple simple decision tree predictors, each of which

produces an output based on a set of predictor values. A

decision tree is simultaneously constructed by RF by using
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FIGURE 6

(A) Scatter plot of features extracted using the DWT method, (B) scatter plot of features extracted using the Welch method.

different bootstrap samples, changing how classification

or regression trees are traditionally constructed (Breiman,

2001).

The XGBoost classifier is a tree boosting method. It builds

a strong classifier by gradually building multiple weak classifiers

(usually decision trees) and combining their predictions. Each
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step reduces the weight of the previous round of incorrect

predictions, allowing the model to gradually learn data points

that are difficult to classify. Compared with traditional gradient

boosting methods, XGBoost further improves performance

through a variety of optimization techniques (Chen and Guestrin,

2016).

4 Results and discussion

An analysis of the design and implementation of the proposed

epilepsy detection model is presented in this chapter. To work

the impact of design on multi-domain feature extraction and

PMPSO’s performance metrics, experiments were conducted.

A statistical analysis of the features extracted using DWT and

Welch methods is included in the testing of multi-domain

feature extraction. Experiments on the MPSO algorithm for

filtering correlations between features and Pearson correlation

analysis for determining feature independence are included in

PMPSO. Using the random forest classifier, ablation experiments

showed that the two proposed methods greatly improved

seizure detection efficiency. Four classifiers were used to

classify the selected optimal feature vector: ANN, RF, SVM

and XGBoost.

4.1 Statistical analysis of features

Under this subsection, 35 features extracted from different

domains are analyzed statistically using methods such as DWT

and Welch. DWT is initially used to decompose the original EEG

signal. A high-pass filter g[n] and a low-pass filter h[n] are used to

decompose the original EEG signal into five subbands, represented

by coefficients D1, D2, D3, D4, and A4. A number of statistical

features are computed for each subband, including LSWT, Mean,

ABS, STD, and Ratio. The scatterplot of the proposed features

is shown below in Figure 6A, which randomly selects five of the

extracted features as a comparison. It is clearer from the scatterplot

in Figure 6A that the three categories are separated more clearly.

However, a few cluster closer together. The features extracted from

seizures are distinctly different from those extracted from healthy

and inter-seizure periods.

A PSD is extracted using the Welch method, which estimates

frequency-dependent features and aids in understanding static

properties that capture both static and dynamic attributes of time-

evolving properties, serving as a seizure detection feature (Harpale

and Vinayak, 2021). To minimize the loss of edge information

during data processing, overlapping time windows are used. For

each window, the discrete Fourier transform is applied to calculate

the periodicity of the signal. Finally, each period gram is squared

before being averaged, reducing the variance of the power spectral

density measurements. Figure 6A presents the scatter plot of the

calculated average PSD frequency features. In Figure 6B, interictal

and ictal periods are clearly distinguished, with little overlap

between the two, but the health category is difficult to distinguish.

4.2 Application results of MPSO

In this section, features that are closely related to the study

are selected using the improved Particle Swarm Optimization

algorithm (MPSO). In each iteration of the particle swarm, when

updating the particle’s position and velocity, the MPSO algorithm

introduces a contraction factor φ to limit the range of learning

factors c1 and c2, effectively controlling the change of the velocity

vector. Brihadiswaran et al. (2019) summarize some commonly

used feature selection techniques such as correlation-based feature

selection (CFS), analysis of variance (ANOVA), PCA, and input

selection and test training (TWIST). From a multi-domain feature

set, the improved MPSO method selects more features relevant for

epilepsy detection. By using the contraction factor φ, the MPSO

method mitigates the effects of improper learning factor settings

on the algorithm’s performance. The particles are also encouraged

to search for solutions collaboratively in the local area. As a result,

the MPSO algorithm has a stronger exploratory power and is less

likely to fall into local optima than the PSO algorithm.

Using the feature set F as the input for the MPSO

algorithm, F = {Di_LSWT, Di_Mean, Di_ABS, Di_STD,

Di_Ratio, power_delta, power_theta, power_alpha, power_beta,

power_gamma}, where i ∈ {1, 2, 3, 4, 5, 6}, the classification

results of the classifier are used as the fitness functions for

each feature. The correlation weights of each feature for epilepsy

detection are calculated after multiple iterations of optimization, as

shown in Figure 7.

As shown in Figure 7, D5_ABS and power_theta have the

highest importance for epilepsy classification when using the

MPSO method. However, LSWT, Mean, Ratio features computed

for each sub-band have a very low percentage of contribution

to epilepsy classification and have a significant inhibitory effect.

For the next module, the top 10 features with strong correlations

are retained based on their correlation weights. In this work, the

following 10 features are retained for Pearson correlation analysis:

D5_ABS, power_theta, D1_ABS, D2_ABS, D2_STD, D6_STD,

D1_STD, power_gamma, D3_STD, D5 < uscore > STD.

4.3 Application results of Pearson
correlation analysis

Pearson r represents the correlation coefficient between

variable X and variable Y in this section. The value of r ranges from

−1 to 1, and the expression for r is as follows:

r =











1, perfect positive correlation

−1, perfect negative correlation

0, no linear relationship

Whenever the correlation coefficient r is close to 1, it indicates

a strong linear relationship between two variables, X and Y . In

contrast, when the absolute value of the correlation coefficient

is close to 0, it indicates that the two variables have no linear

relationship, indicating that their variations are not related. A

correlation coefficient’s sign also indicates the direction of the

relationship between variables.
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FIGURE 7

The importance of features in MPSO algorithm.

In this work, correlation coefficient r was calculated using

pairwise combinations of the 10 features mentioned above. Since

the number of base features is large, we set the threshold

δ at 0.6. A feature was removed from the feature set if its

calculated correlation coefficients r between feature X and feature

Y exceeded a particular threshold δ. By eliminating that feature

from subsequent calculations, computational resources were saved.

Table 3 shows the correlation coefficient r calculated using Pearson

correlation analysis. First, the correlation coefficient r values

between D5_ABS and power_theta, D3_STD, and D5_STD are all

above threshold δ. This indicates that this feature’s independence

is weak, so it is excluded from the feature vector. The features

selected later are similar. Finally, a feature vector consisting of

D2_ABS,D5_STD, power_gamm, power_theta and D1_ABS was

selected as input for the classifier.

4.4 Performance evaluation

In order to evaluate the effectiveness of the developed algorithm

for distinguishing seizure and interictal states, four evaluation

metrics will be used to assess its performance. These metrics are

SE, SP, AC, and F1. The definitions of these evaluation metrics are

as follows:

SE refers to the proportion of actual positive instances that the

model correctly identifies.

SE =
TP

TP + FN
× 100%

SP refers to the proportion of actual negative instances

that the model correctly identifies among all true negative

instances. Specificity describes the model’s ability to distinguish

negative instances.

SP =
TN

TN + FP
× 100%

AC is the ratio of the number of samples correctly predicted by

the model to the total number of samples in all instances. These

parameters are defined as follows:

AC =
TP + TN

TP + FN + TN + FP
× 100%

The F1 score is a comprehensive metric for evaluating model

performance, commonly used in binary or multiclass classification
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TABLE 3 The calculation of the correlation coe�cient r between features.

Features X Features Y r Features X Features Y r

1 D_5_ABS power_theta 0.712 10 D_1_ABS D_2_ABS 0.742

2 D_5_ABS D_1_ABS 0.463 11 D_1_ABS D_2_STD 0.427

3 D_5_ABS D_2_ABS 0.546 12 D_1_ABS D_6_STD 0.413

4 D_5_ABS D_2_ABS 0.547 13 D_1_ABS D_1_STD 0.782

5 D_5_ABS D_6_ABS 0.554 14 D_1_ABS power_gamm 0.553

6 D_5_ABS D_1_ABS 0.488 15 D_2_STD D_6_STD 0.506

7 D_5_ABS power_gamma 0.497 16 D_2_STD power_gamm 0.444

8 D_5_ABS D_3_ABS 0.613 17

9 D_5_ABS D_5_ABS 0.795 18

FIGURE 8

The results of ablative experiments with di�erent methods.

TABLE 4 The results of the ablation study.

AC (%) SE (%) SP (%) F1 (%)

RF 97.76 97.84 98.84 97.79

RF+MPSO 98.40 98.44 99.14 98.45

RF+ Pearson 97.54 97.93 99.45 97.73

RF+ PMPSO 98.59 98.60 99.25 98.61

problems. It combines two key performance metrics: precision and

sensitivity. The F1 score is calculated using the following formula:

F1 =
2∗(AC∗SE)

(AC + SE)
× 100%

Where TP is true positive, FN is false negative, TN is true

negative, and FP is false positive. These performance metrics

are used to evaluate the performance of the proposed model in

this study.

4.5 Ablation study

This work aims to use the PMPSO feature optimization

method, which consists of MPSO, Pearson, and RF classifiers. In

order to analyze the effectiveness of each module in PMPSO, an

ablation study was conducted on the Bonn University Epilepsy

Dataset, as shown in Figure 8. Specifically, the study derived the

following four model variants.

(1) Classification using only the Random Forest classifier.

(2) RF + MPSO: MPSO without Pearson correlation analysis,

combined with the Random Forest classifier.

(3) RF + Pearson: Pearson correlation analysis without MPSO,

combined with the Random Forest classifier.

(4) RF + PMPSO: Training MPSO and Pearson correlation

analysis together.

The following conclusions can be drawn from the ablation

study shown in Figure 8 and Table 4. First of all, MPSO can

improve classification performance, demonstrating the need to

model epileptic seizures in conjunction with feature vectors. In
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TABLE 5 Comparison of classification performance of baseline PSO methods for MPSO and PMPSO feature optimization methods.

Method Feature subset size AC (%) SP (%) SE (%) F1 (%)

PSO 11 89.50 87.88 90.12 88.92

MPSO 11 92.34 90.51 93.00 91.57

PMPSO 5 98.59 99.25 98.60 98.61

TABLE 6 Comparison of computational e�ciency of baseline PSO methods for MPSO and PMPSO feature optimization methods.

Method Feature subset size Average calculation
time (seconds)

Number of feature
selection iterations

Epoch

PSO 11 47.2 50 247

MPSO 11 53.6 45 198

PMPSO 5 59.8 40 185

TABLE 7 Performance comparison of di�erent feature selection methods.

Method AC (%) Feature
subset
size

Average
calculation time

(seconds)

GA 96.35 12 85.7

MIS 95.48 15 72.3

PMPSO 98.59 5 59.8

addition, the Pearson correlation analysis improves classification

efficiency by removing redundant features from the feature vector

by comparing RF and RF + Pearson. In conclusion, PMPSO

significantly improves performance in epileptic seizure detection

compared to the other three variants in the ablation study.

The proposed feature optimization method shows significant

performance improvement in epileptic seizure detection.

4.6 Comparison with baseline methods

In this section, we will compare the PMPSO feature

optimization method for epilepsy detection to the baseline PSO

method. In the experiment, PMPSO not only introduced the

shrinkage factor φ to dynamically adjust the search range of the

particle swarm, avoiding the problem that the traditional PSO

algorithm easily falls into local optimality during the optimization

process, but also enhanced the speed and position update process

by optimizing the speed and position update process. Global

search capabilities of themodel. This improvement enables PMPSO

to more effectively balance the exploration and exploitation

processes, resulting in faster convergence and fewer iterations

of feature selection. Compared with the baseline PSO, PMPSO

shows stronger robustness and efficiency in feature selection. In

addition, PMPSO performs secondary feature screening combined

with Pearson correlation coefficient to remove redundant features

and improve the independence of features. This dual optimization

strategy ensures that feature subsets are more relevant and reduces

the possibility of overfitting, thereby significantly improving model

performance in classification tasks.

According to Table 5, the improvedMPSOmethod significantly

outperforms the baseline PSO method in terms of classification

accuracy. With a post-selection feature subset size of 5, PMPSO

improves classification accuracy to 98.59%, a 9.09% improvement

over the baseline PSO. The precision, recall, and F1 score of

PMPSO are also higher than those of baseline PSO, indicating

that the feature subset selected by PMPSO can improve the

classifier’s overall performance. Through its improved feature

selection strategy, PMPSO can more efficiently select the features

that have a higher contribution to the classification task, improving

the model’s performance.

This Table 6 compares the computational efficiency of PMPSO

and baseline PSO methods. Despite the 59.8 s average computation

time for PMPSO, which is slightly longer than baseline PSO

(47.2 s) mainly due to the dynamic adjustment strategy and the

additional shrinkage factor φ. In contrast, PMPSO (Dong et al.,

2023) requires fewer iterations to complete feature selection than

baseline PSO (Sun et al., 2022) suggesting that its optimization

process is more efficient and is able to complete feature selection

in fewer iterations. Since the sharp stop strategy is implemented

during the training process, it is evident from the table that the

PMPSO method achieves higher accuracy in fewer training epochs

than the baseline PSO.

4.7 Comparison with state-of-the-art
feature selection techniques

In order to verify the effectiveness of the proposed PMPSO

method in the feature selection task, this experiment selected the

genetic algorithm (GA) and the mutual information-based feature

selection method (MIS) for experimental comparison. These

methods are widely used in feature selection problems and can

effectively reduce redundant features and improve the performance

of the classifier. In the epilepsy dataset of the University of Bonn

and under the same experimental conditions, PMPSO, GA and

MIS were used for feature selection, and the selected features

were input into the classifier. In order to ensure the fairness of

the experiment, the parameter settings and optimization processes

of all methods were kept consistent. The classifier used random
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TABLE 8 Classification results of the PMPSO feature optimization method.

Classifier AC (%) SP (%) SE (%) F1 (%) 95% CI for AC(%)

ANN 98.11 98.54 98.61 98.36 (97.20, 99.02)

SVM 98.25 98.93 98.91 98.57 (97.30, 99.18)

RF 98.59 99.25 98.60 98.61 (97.80, 99.38)

XGBoost 99.32 99.64 99.29 99.32 (98.61, 99.75)

TABLE 9 Classification results of PMPSO feature optimization method on CHB-MIT dataset.

Patient AC (%) SP (%) SE (%) F1 (%) 95% CI for AC(%)

chb01 97.92 98.27 97.89 98.07 (96.80, 99.04)

chb02 98.33 98.67 98.41 98.37 (97.40, 99.26)

chb03 98.74 98.99 98.69 98.71 (97.82, 99.66)

chb04 98.09 98.31 98.02 98.13 (97.05, 99.12)

chb05 98.63 98.89 98.53 98.58 (97.70, 99.56)

chb06 99.03 99.21 98.92 99.01 (98.10, 99.94)

chb07 98.19 98.43 98.07 98.12 (97.14, 99.21)

chb08 97.94 98.29 98.01 97.96 (96.92, 98.97)

chb09 98.68 98.91 98.57 98.61 (97.81, 99.55)

chb10 98.23 98.59 98.18 98.21 (97.30, 99.18)

chb11 98.51 98.76 98.44 98.49 (97.64, 99.45)

chb12 98.42 98.83 98.61 98.57 (97.70, 99.34)

chb13 98.86 99.07 98.79 98.81 (97.99, 99.66)

chb14 97.97 98.24 98.08 98.02 (96.82, 99.12)

chb15 98.69 98.96 98.64 98.66 (97.80, 99.56)

chb16 97.93 98.18 97.86 97.94 (96.81, 99.05)

chb17 99.12 99.29 99.04 99.07 (98.22, 99.96)

chb18 98.71 98.93 98.64 98.67 (97.85, 99.61)

chb19 97.89 98.12 97.79 97.88 (96.76, 99.04)

chb20 98.91 99.14 98.82 98.86 (97.95, 99.72)

chb21 98.43 98.72 98.31 98.38 (97.51, 99.32)

chb22 98.04 98.32 97.96 98.09 (96.94, 99.13)

chb23 98.57 98.84 98.52 98.56 (97.71, 99.51)

Average 98.42 98.83 98.61 98.57 (97.90, 98.95)

forest (RF), and the performance of the model was evaluated by

10-fold cross validation. The experimental evaluation indicators

include classification accuracy, the number of features after feature

selection, and the running time of the algorithm.

Table 7 shows the performance of the three feature selection

methods under different evaluation indicators. From the

experimental results, it can be seen that the PMPSO method

performs well in classification accuracy, reaching an accuracy

of 98.59%, which is significantly better than GA (96.35%) and

MIS (95.48%). In addition, the number of features selected by

the PMPSO method is relatively small, only 5 features, while GA

and MIS select 12 and 15 features, respectively. This shows that

PMPSO can effectively remove redundant features while retaining

key features, thereby improving the generalization ability of the

model. In terms of running time, the average calculation time

of PMPSO is 59.8 s, which is better than GA’s 85.7 s and slightly

higher than MIS’s 72.3 s. PMPSO shows significant advantages in

accuracy, feature subset size and running time, reflecting its unique

innovation and practical application value in feature selection

tasks. By introducing an improved particle swarm optimization

algorithm, PMPSO demonstrates stronger robustness and higher

feature selection efficiency in epilepsy detection tasks, making it an

effective supplement and improvement to existing feature selection

technology.
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FIGURE 9

Confusion matrix plots for (A) RF, (B) ANN, (C) SVM, and (D) XGBoost classification using the Bonn epilepsy dataset.

4.8 Multi-model classification experiments

In this experiment, in order to verify the effectiveness of the

PMPSO feature optimizationmethod in epilepsy detection, amulti-

model classification experiment was designed, using the Bonn

University Epilepsy Dataset and the Boston Children’s Hospital

CHB-MIT Dataset. The PMPSO method was applied to three

common classification models: artificial neural network (ANN),

support vector machine (SVM), random forest (RF) and XGBoost.

Due to computing resource limitations, the training set of the SVM

model was reduced to 2,000 samples on the University of Bonn and

CHB-MIT datasets, while the ANN, RF and XGBoost models used

the full dataset. A comprehensive experiment was conducted on the

three-classification task of epilepsy detection (healthy, interictal,

and epileptic seizure).

The experimental results are shown in Table 8. The

experimental results on the Bonn University dataset show

that the PMPSO method performs very well in different classifiers.

The accuracy of ANN, SVM, RF and XGBoost models reached

98.11, 98.25, 98.59 and 99.32% respectively. Among them, the

XGBoost model performed best in various evaluation indicators,

with a specificity of 99.64%, a sensitivity of 99.29% and an F1

score of 99.32%. In order to enhance the statistical credibility

of the results, this paper calculated the 95% confidence interval

for each model. The 95% confidence interval of the classification

accuracy of the XGBoost model is (98.61, 99.75), while the

95% confidence intervals of the accuracy of the RF, ANN and

SVM models are (97.80, 99.38), (97.20, 99.02), and (97.30,

99.18), respectively, which further proves the stability of the

PMPSO method.

Experiments on the CHB-MIT dataset further validated the

robustness of PMPSO. The original EEG signal of each patient

was used as the input signal of the algorithm. The classification

results for each patient were calculated and the average evaluation

parameters were reported, as shown in Table 9. On the EEG data

of 23 pediatric patients with intractable epilepsy, the accuracy
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FIGURE 10

Confusion matrix of the RF classifier using the CHB-MIT dataset.

TABLE 10 Performance comparison of di�erent methods on the Bonn database.

Method AC (%) SP (%) SE (%) F1 (%)

Wang et al. (2022) 95.35 – – –

Xiong et al. (2022) 97.26 97.55 96.89 97.07

Sairamya et al. (2021) 95.74 95.73 95.74 95.74

Bhanot et al. (2020) 93.4 93 93 93.2

Mouleeshuwarapprabu and Kasthuri (2023) 97.29 97.41 97.77 97.53

Majzoub et al. (2023) 98.23 97.50 97.50 –

Cai et al. (2024) 98.00 98.18 98.18 –

Song et al. (2024) 98.52 98.30 98.88 98.57

PMPSO 99.32 99.64 99.29 99.32

TABLE 11 Comparison of state-of-the-art epileptic seizure detection methods evaluated using the CHB-MIT dataset.

Method AC (%) SP (%) SE (%) F1 (%)

Harpale and Bairagi (2021) 96.48 95.34 96.52 95.93

Zarei and Asl (2021) 97.09 97.26 96.81 97.03

Li et al. (2021) 97.47 97.50 97.34 97.42

Sun et al. (2022) 98.14 98.64 96.79 97.71

Cimr et al. (2024) 98.30 97.32 97.90 97.61

PMPSO 98.42 98.83 98.61 98.57

on the RF classifier was 98.42%, the specificity was 98.83%,

the sensitivity was 98.61%, and the F1 score was 98.57%.

The confidence interval of the accuracy of the RF classifier

on the CHB-MIT dataset is (97.90, 98.95), which shows the

consistency of the performance of this method on different

patient data.

Additionally, confusion matrix plots were generated

using evaluation metrics, illustrating the accuracy, sensitivity,
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and specificity of the four classifiers. In Figures 9, 10,

you can clearly see the specific classification of health,

epileptic seizures, and interictal periods. The current work

on epilepsy detection is compared to recent research

in Tables 10, 11. Using different feature extraction and

selection methods, we significantly improved classification

accuracy and efficiency under the same dataset conditions.

Compared to other algorithms, the proposed algorithm

shows substantial improvements in performance, as shown

in Tables 10, 11.

5 Conclusion

By focusing on feature extraction and feature selection,

this paper explores an effective approach to epilepsy seizure

detection using EEG data. First, 35 measurement features were

extracted using methods such as DWT and Welch. Thereafter, a

novel feature optimization method, Particle Swarm Optimization

with Modified Shrinkage Factor (PMPSO), was developed to

select features that are more relevant to epilepsy detection,

reducing feature redundancy and enhancing detection efficiency

and accuracy. A four-classifier approach was used to evaluate

selected feature subsets: ANN, SVM, RF, and XGBoost. Finally,

the results were assessed through 10-fold cross-validation. The

experiments demonstrated better performance than previous works

that overlooked feature selection and relied on deep learning

methods. The introduced model benefited from the application

of computational techniques in feature selection, enhancing the

signal processing aspect of machine learning methods. The

results validate the proposed approach by significantly reducing

the computational workload while achieving comparable results

through a substantial reduction in the number of features extracted

from EEG segments.

For future work, the following plans are outlined:

(1) Proposing feature selection techniques more suitable

for epilepsy seizure detection; (2) Further reducing the

number of features while maintaining or improving

classification accuracy, aiming to use the minimum

number of features for optimal classification efficiency;

(3) Evaluating the model on epilepsy signal databases with

more channels.
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