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EEG-based emotion recognition 
using graph convolutional neural 
network with dual attention 
mechanism
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EEG-based emotion recognition is becoming crucial in brain-computer 
interfaces (BCI). Currently, most researches focus on improving accuracy, while 
neglecting further research on the interpretability of models, we are committed 
to analyzing the impact of different brain regions and signal frequency bands on 
emotion generation based on graph structure. Therefore, this paper proposes a 
method named Dual Attention Mechanism Graph Convolutional Neural Network 
(DAMGCN). Specifically, we  utilize graph convolutional neural networks to 
model the brain network as a graph to extract representative spatial features. 
Furthermore, we  employ the self-attention mechanism of the Transformer 
model which allocates more electrode channel weights and signal frequency 
band weights to important brain regions and frequency bands. The visualization 
of attention mechanism clearly demonstrates the weight allocation learned 
by DAMGCN. During the performance evaluation of our model on the DEAP, 
SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, 
showing subject-dependent experiments’ accuracy of 99.42% and subject-
independent experiments’ accuracy of 73.21%. The results are demonstrably 
superior to the accuracies of most existing models in the realm of EEG-based 
emotion recognition.
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1 Introduction

EMOTION is the subjective emotional response that humans experience in specific 
moments or situations. It plays a vital role in correctly interpreting behavior and facilitating 
effective communication (Jenke et al., 2014). In the development of brain-computer interface 
(BCI) systems, the urgency to empower machines with the ability to assist in analyzing human 
emotions is significant (Gu et al., 2023). Consequently, emotion recognition has emerged as 
one of the crucial research directions in affective computing (Hu et  al., 2019). Through 
numerous studies, it has been discovered that the generation of human emotions is highly 
correlated with electrical signals in the cerebral cortex of the brain (She et  al., 2023). 
Additionally, humans may involuntarily or intentionally conceal their real emotions through 
facial expressions and language except EEG signals (Zhang et al., 2020). As a result, researchers 
prefer emotion recognition methods based on EEG signals as they are more reliable and 
objective in capturing an individual’s emotional state (Lu et al., 2023).
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In earlier studies on emotion recognition, traditional machine 
learning methods were predominantly relied upon, such as Support 
Vector Machines (SVM) (Kumar and Nataraj, 2019), which were 
extensively used due to their effectiveness in handling high-
dimensional feature spaces and their ability to perform well with a 
limited amount of training data. However, as deep learning continues 
to progress, we are now witnessing a shift in the landscape. It has not 
only demonstrated significant performance in the field of computer 
vision (Yuan et  al., 2018; Zhang and Zheng, 2022) and natural 
language processing (Lauriola and Aiolli, 2022), but has also gained 
widespread popularity in biomedical signal processing (Rahman et al., 
2021). Initially, Wang et  al. (2022) utilized convolutional neural 
network (CNN) to classify positive, neutral, and negative emotions. 
Building on the premise that CNN plays a vital role in emotion 
detection, Yang et  al. (2018) designed a parallel convolutional 
recurrent neural network model for emotion recognition, which 
yielded promising results. To further investigate the temporal and 
spatial aspects of brain networks, Cui et  al. (2022) employed a 
CNN-BiLSTM architecture to investigate the temporal complexity and 
spatial location of brain networks. At the same time, some researchers 
(Jia et al., 2021; Yang et al., 2024) recognized that the brain exhibits a 
complex graph structure in three-dimensional space, leading to 
investigations from spatial perspective. Liu et al. (2024) provide a 
comprehensive and systematic review of existing graph neural 
networks in EEG-based emotion recognition. For example, Liu et al. 
(2023) and Ding et  al. (2022) effectively leveraged Graph 
Convolutional Neural Networks for the efficient feature extraction 
through both global information aggregation between brain regions 
and local information integration within brain regions under 
emotional states. This represents a promising start in EEG-based 
emotion recognition research, yet they did not proceed to further 
explore critical factors for classifying emotions. Liu et  al. (2023) 
utilized transformer model for multimodal knowledge extraction, 
thereby enhancing recognition performance. Gong et  al. (2023) 
designed an attention-based feature extraction and fusion module, 
which can selectively obtain key features based on their spatial and 
temporal significances. Guo et al. (2022) delved into understanding 
the dependence of emotion recognition building on the transformer 
model on each EEG channel and visualized the captured features. 
While they succeeded in extracting vital information from time 
segments or channels, their approach overlooked the foundational 
graph structure. This oversight led to the loss of significant 
information, consequently capping the potential of their model’s 
classification capability.

To address these challenges, our study introduces a brain decoding 
approach that primarily relies on graph convolutional neural network 
and attention mechanism of transformer. To be precise, we construct 
a three-dimensional spatial adjacency matrix and employ graph 
convolutional neural networks to aggregate information from multiple 
channels, extracting representative spatiotemporal features. 
Additionally, we utilize two attention mechanisms: electrode channel 
attention and signal frequency band attention. These mechanisms 
reveal the contributions of individual electrode channels to emotional 
responses in different brain regions and the relative impact of various 
frequency bands on emotions. By employing these attention 
mechanisms, we effectively leverage the information embedded in 
EEG signals, leading to improved overall decoding performance. The 
main contributions can be summarized as follows:

 1) A graph convolutional neural network framework with a dual 
attention mechanism is proposed by combining GCN and 
Transformer. Experiments were conducted on DEAP, SEED, 
and SEED-IV datasets, covering binary, ternary, and quaternary 
classification tasks. The subject-dependent and subject-
independent experimental results demonstrate that our model 
outperforms most existing models.

 2) The graph convolution operation aggregates brain channel 
features based on the adjacency matrix composed of three-
dimensional distances, effectively utilizing spatial information. 
After that, dual attention mechanism operates on both 
electrode channels and signal frequency bands, allocates 
weights and allows for better extraction of crucial information 
from temporal and spectral EEG data sequences.

 3) After model training, we visually analyze the dual attention 
mechanism through model parameters, which can better 
analyze the roles of different electrode channels and signal 
frequency bands in emotion processing. It provides valuable 
insights for further research on emotion regulation and 
cognitive processes, offering important clues for exploring 
these domains.

The remaining sections of this paper are organized as follows: 
Section 2 outlines the related work, providing context and background 
for our study. Section 3 describes the methodology, including the 
development and implementation of our model. Section 4 details the 
experimental setup, dataset, evaluation metrics and presents the 
results. Finally, Section 5 concludes the paper with a discussion of the 
implications, limitations, and future directions for research in 
brain science.

2 Related work

In this section, we begin by showcasing several notable emotional 
recognition features for EEG signals. After that, we provide a concise 
overview of GCN and attention mechanism, fundamental components 
of the proposed model.

2.1 Emotional recognition features for EEG 
signals

In general, most EEG-based emotion recognition methods begin 
by extracting features from processed EEG signals. Subsequently, 
these extracted features are then employed as input for classification 
algorithms to achieve accurate classification of emotional states (Cai 
et al., 2021).

Zhang et  al. (2020) has indicated that the EEG features 
employed in emotion recognition can be  broadly classified into 
time-domain, frequency-domain and time-frequency domain 
features. Recent studies (García-Martínez et al., 2021; Yan et al., 
2023) shows that the human brain functions as a nonlinear dynamic 
system, with EEG signals analyzable via nonlinear methods and 
feature extraction. Commonly used nonlinear features for EEG 
signals include differential entropy (DE) (Duan et  al., 2013), 
permutation entropy (Nicolaou and Georgiou, 2012), discrete 
wavelet transform (DWT) (Chen et  al., 2017), power spectral 
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density (PSD) (Alam et  al., 2020) and various other entropy 
measures. Among them, DE was initially proposed by Duan et al. 
(2013) and validated to be  effective in the field of emotion 
recognition. As a result, DE has gained significant popularity as a 
widely used and effective feature extraction technique in the domain 
of EEG-based emotion recognition.

2.2 Graph convolutional neural network

Graph Convolutional Neural Network is a deep learning 
model specifically designed for graph data (Kipf and Welling, 
2017). It extends the idea of convolutional operations to the graph 
domain and can encode graph structures and node features in a 
useful way for semi-supervised classification. GCN has shown 
excellent performance in tasks such as social networks (Zhong 
et  al., 2020), machine fault diagnosis (Li et  al., 2021), and 
recommendation system (He et  al., 2020). Since the brain can 
be considered as a complex graph network, GCN is capable of 
effectively capturing both local and global information in brain 
networks. This enables it to enhance the performance of EEG 
signal analysis and facilitate research and applications in 
neuroscience and neurology. Song et al. (2020) first applied GCN 
for EEG emotion recognition, using a Dynamic Graph 
Convolutional Neural Network (DGCNN) that operates on multi-
channel EEG data. Qiu et  al. (2023) introduced multi head 
attention mechanism and residual network, proposing the Multi-
head Residual Graph Convolutional Neural Network (MRGCN) 
model which combines short-range and long-range connections 
for EEG-based emotion recognition.

2.3 Attention mechanism

Graph Attention Network (GAT) (Veličković et al., 2018), as a 
graph neural network based on the attention mechanism, has shown 
excellent performance in processing graph data. However, in brain 
network research, GAT has a limitation in capturing global 
information. The attention mechanism of GAT is based on the 
interaction between nodes for weighted aggregation, which may result 
in insufficient capture of global information in the entire brain 
network, especially in the presence of long-range dependencies. The 
Transformer model (Vaswani et al., 2023) can effectively address this 
limitation. The Transformer model initially caused a great sensation 
in natural language processing. Its attention mechanism can adaptively 
focus on different positions of information according to the task 
requirements. This adaptability enables the model to capture global 
relationships and better differentiate important information stored in 
multiple channels of EEG signals. As a result, many researchers have 
applied the Transformer model in EEG studies. Wang et al. (2022) 
utilized the Transformer encoder to capture spatial dependencies 
between brain regions. Liu et al. (2023) made full use of the relative 
spatial information in EEG data and constructed a dual-layer capsule 
network for emotion recognition. (Song et  al. (2021) employed 
attention along the feature channel dimension to weight the 
preprocessed and spatially filtered data, while also considering the 
global dependencies along the temporal dimension for 
emotion recognition.

3 Method

In section 3, we  provide a comprehensive explanation of the 
DAMGCN model, as illustrated in Figure 1. The model comprises four 
main blocks: (A) Feature Extraction Block, (B) Graph Convolution Block, 
(C) Dual Attention Mechanism Block, and (D) Classifier Block.

3.1 Feature extraction block

As shown in Figure 1, we extract DE features from EEG signals 
and the three-dimensional spatial positions of electrodes for emotion 
classification. DE is a measure in information theory that describes 
the uncertainty of continuous random variables and defined as H X� � 
(Feutrill and Roughan, 2021):
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where X  is a time series, p x� � represents the probability density 
function of the continuous information. Assuming X  as the EEG 
signal and following a Gaussian distribution N � �, 2� �, µ  and σ  are 
the mean and variance of X , then p x� � can be expressed as shown in  
Eq. (2):
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As a result, Eq. (1) can be expressed as:

 
H X e� � � � �1

2
2

2
log � �

 
(3)

We divide the EEG signals into five frequency bands using the Short-
Time Fourier Transform (STFT): δ wave (1–4 Hz), θ wave (4–8 Hz), α 
wave (8–13 Hz), β wave (13–30 Hz), and γ wave (>30 Hz). After that, 
we utilize the EEG data of the five wave bands as inputs to Eq. (3) to 
calculate DE.

After EEG signal processing, another feature that we  need to 
extract is the adjacency matrix based on brain network nodes. 3D 
electrode coordinates are employed to compute the connectivity 
matrices of electrode channels to construct a three-dimensional 
spatial adjacency matrix, as shown in Eq. (4):
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(4)

This matrix describes the structure and connectivity patterns of 
the brain network, allowing us to analyze functional connections 
between nodes, study the complexity of the brain network. The 
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adjacency matrix plays a crucial role in understanding the 
organization, functionality, and characteristics of the brain network 
(Gómez-Tapia and Longo, 2022).

3.2 Graph convolution block

As shown in the Figure  2, this block consists of two graph 
convolution layers. The DE features and the adjacency matrix obtained 
from last block are input in batches into the Graph Convolution Block. 
In the GraphConv Model, the input is normalized using a batch 
normalization layer (Ioffe and Szegedy, 2015) to reduce the absolute 
differences between the data, thereby accelerating convergence speed 
and improving stability. In a batch of data X X X X XB

i� �� �1 2 3, , , , , 

X Ri
C F� � , where X B  has three dimensions called batch-size(B), 

channel(C), frequency(F) band, the normalization formula is 
as follows:

 
y x
i

i

�
�

�

�

�
�
�

�

�
�
�
��

�

�
�

2   
(5)

xi denotes the dimension of channel, µ  and σ  represent the 
mean and standard deviation,  is a small constant added to the 
batch variance for numerical stability, γ  is the scaling factor, β  is 
the shifting factor, and ˆiy  represents the data after  
normalization.

FIGURE 1

The overall framework of the proposed DAMGCN for Emotion Recognition. In (A) Feature Extraction Block, EEG signals are decomposed into five 
bands and adjacency matrix composed of three-dimensional electrode coordinate distances is established. (B) Graph Convolution Block utilizes the 
graph structure information to extract spatial topological features of the complex network. (C) Dual Attention Mechanism Block adaptively assigns 
weights to electrode channels and frequency band channels. Finally, the output results are obtained through (D) Classifier Block.

FIGURE 2

The specific implementation of Graph Convolution Block.
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The GCN layer convolves and aggregates the feature information 
of nodes using the adjacency matrix. The calculation formula can 
be concluded as follows (Kipf and Welling, 2017):
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here, H l� � represents the node features at layer l. W l� � denotes the 
trainable weight matrix. A A IN� �  is the self-connected adjacency 
matrix of the graph G, where A is the original adjacency matrix and IN  

is the identity matrix,  D Aii
j
ij��  is the degree of matrix of A. ( )σ ⋅  is 

the activation function, typically a non-linear function like ReLU �� � . 
We also cited the advantages of residual networks (He et al., 2015), 
including their facilitation of model training, alleviation of overfitting, 
and increased network depth. Thus, Eq. (6) can be further expressed 
as shown in Eq. (7):

 H H Hres
l l l�� � �� � � �� �1 1

 (7)

After passing through the residual network, the data is activated 
using the GELU activation function (Hendrycks and Gimpel, 2023), 
which is defined by Eq. (8):
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3.3 Dual channel attention mechanism 
block

The dual attention mechanism block employs the attention 
mechanism of Transformer to separately allocate attention weights to the 
EEG channels and the frequency bands of the DE data. In order to fully 
utilize the graph structure information obtained by the graph convolution 
block, we first implement the electrode channel mechanism to enhance 
the emotional relevance of certain electrodes within the channels while 
suppressing the irrelevant ones. Frequency adaptation mechanism 
amplifies the impact of relevant frequency band signals on emotions 
while attenuating the influence of irrelevant frequency band signals.

As shown in the Figure 3, the data after Graph Convolution 
Block is first mapped to a high-dimensional embedding vector 
Y B  (Y Y Y Y Y Y RB

i i
C E� �� � � �

1 2 3, , , , , , where Y B  has three 
dimensions called batch-size, channel, embedding-vector) 
through Input embedding and then normalized using LayerNorm 
(Ba et  al., 2016). The formula is the same as Eq. (5), while xi 
represents the dimension of embedding vector here. Next, 
we transform the embedding vector into Query, Keys, and Values 
vectors using three weight matrices WQ, WK , and WV  to compute 
the attention, as shown in Eq. (9):

 

Q X W

K X W

V X W

Attention s ftmax Q K
d

Q

K

V

T

k

�

�

�

�
�

�
��

�

�
��

�

�

�
�
��

�

�
�

�

�

�

�o��
�  

(9)

To enhance the robustness and stability of the model, 
we employ Multi-Head Attention to obtain multiple sets of Query, 
Keys, and Values. Each set is used to calculate a Z matrix 
separately, and the resulting Z matrices can be concatenated 
together, as shown in Eq. (10):
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During the computation of the attention mechanism, we also 
employ residual connections and LayerNorm to prevent training 
degradation and other issues. Finally, the output is obtained through 
the forward propagation network based on residual connections, as 
shown in Eq. (11):

 
output Z W b ZT� �� � ��

 
(11)

The frequency band attention mechanism is similar to the channel 
attention mechanism, and the flowchart is shown in the Figure 3.

3.4 Classifier block

During the model training phase, the feature vector obtained from 
the forward propagation is passed through a fully connected layer to 
achieve dimensionality reduction. This is followed by generating 
predicted labels, resulting in the final classification results. The cross-
entropy loss function is then employed to calculate the loss between 
the true emotion labels y and the predicted emotion ŷ  labels, as 
shown in Eq. (12):
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where θ  represents all the parameters in the DAMGCN model. To 
evaluate the classification results of the DAMGCN model, we use 
accuracy as performance metrics, as shown in Eq. (13):

 
Accuracy

TP TN
TP TN FP FN

�
�� �

� � �� �  
(13)

The formula is an example of binary tasks. Total samples are the 
sum of true positive (TP) predictions, true negative (TN) predictions, 
false positive (FP) predictions, false negative (FN) predictions, with 
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the sum of TP and TN representing the count of samples 
predicted correctly.

4 Experiment setting and results

In this section, we first introduce three different types of datasets 
and describe the experimental setup and preprocessing steps. Based 
on this, we  mainly conduct subject-dependent experiments to 
demonstrate the EEG emotion classification performance of the 
proposed DAMGCN model and promote it in subject-independent 
experiments. Subsequently, we  visualize the experimental results 
through subject-dependent experimental data for mechanism analysis 
and conducted ablation experiments.

4.1 Datasets

The DEAP dataset (Koelstra et al., 2012) collected physiological 
signals and emotion label data from 32 participants. Each participant 
watched 40 segments of audio-visual stimuli. EEG signals were captured 
using a 40-electrode EEG cap distributed according to the 10–20 system. 
The duration of each trial was 63 s, consisting of a 3-s baseline data at 
the start followed by 60 s of test data. The data was downsampled to 
128 Hz and bandpass frequency filtering was applied in the range of 
4.0–45.0 Hz. The labels were provided through questionnaire surveys to 
assess the emotional evaluation of the stimulus videos. The participants 
were instructed to provide subjective ratings for the stimulus videos 
across four dimensions: valence, arousal, dominance, and liking. The 

points ranged from 1 to 9 to express self-states, so we compromise by 
selecting a threshold of 5 to binarize the labels.

The SEED dataset (Zheng and Bao-Liang, 2015) contains EEG signal 
data from 15 subjects collected using the 62-channel ESI NeuroScan 
System. The database comprises three sessions, and within each session, 
participants were instructed to choose 15 segments for emotion 
elicitation. The data was downsampled to 200 Hz, and a bandpass 
frequency filter ranging from 0 to 75.0 Hz was applied. The emotion 
labels include three emotional states: positive, neutral, and negative.

The SEED-IV dataset (Zheng et al., 2019) is an extension of the 
SEED dataset, with the main difference being the videos viewed by the 
participants. Each session in SEED-IV consists of 24 trials, and the 

FIGURE 3

The structure of electrode channel adaptation (A) and frequency band adaptation (B).

TABLE 1 Datasets introduction.

Dataset DEAP SEED SEED-IV

Channels 40 62 62

Sampling rate 128 Hz 200 Hz 200 Hz

Subjects 32 15 15

Sessions 1 3 3

Trials 40 15 72

Trial duration 63 s 120 ~ 240 s 120 ~ 240 s

Frequency range 4.0 ~ 45.0 Hz 0 ~ 75.0 Hz 1.0 ~ 75.0 Hz

Frequency bands 4 5 5

Label types 4 1 1

Classification 2 3 4
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emotion classification labels are categorized into four classes: happy, 
sad, neutral, and fear.

In summary, the similarities and differences among the three 
datasets are shown in the Table 1. It should be noted that the duration 
of trials in the SEED and SEED-IV dataset are inconsistent.

4.2 Data preprocessing

The approach to data preprocessing and feature extraction in 
emotion recognition tasks is critical for optimal model performance. 
Our methodology for processing the DEAP, SEED, and SEED-IV 
datasets is outlined as follows:

For the DEAP dataset, we selected 32 channels related to EEG and 
set the non-overlapping duration of each segment to 0.5 s to obtain 
120 samples every trial. Since the provided data from the official 
source has already been filtered using a bandpass filter in the range of 
4.0–45.0 Hz, according to the section 3.1 mentioned, we  further 
filtered the raw data into four frequency bands (θ, α, β, γ) and 
extracted DE features. Data format for each 
subject is 4800 32 4� � � �� �sample channel frequency band .

For the SEED and SEED-IV datasets, EEG data from each 
channel is segmented into temporal window of 1 s each, with no 
overlap between them. Unlike the DEAP dataset, SEED and 
SEED-IV do not filter out signals in the δ (1–4 Hz) frequency band. 
We have summarized all the trials of one subject because of different 
sample sizes for each trial. In each session, the data format for a 
single subject in the SEED dataset is 3394 62 5× ×  
(sample channel frequency band× × ). However, what sets it apart 
from the SEED dataset is that trials for each session in the SEED-IV 
dataset are inconsistent, resulting in 851, 832, 822 samples in 3 
sessions. The data format for a single subject in the SEED-IV dataset 
is 851 832 822 62 5/ / × ×  (sample channel frequency band× × ).

4.3 Evaluation strategy

In this article, the strategy for model training includes both 
subject-dependent and subject-independent experiments.

In the subject-dependent experiment, we  use ten-fold cross 
validation and leave-one-trial-out strategy to analyze each subject. For 
ten-fold cross validation strategy, the entire dataset is randomly 
divided into 10 equally sized subsets, each of which strives to maintain 
the overall distribution of the data. The model is trained using merged 
data from 9 subsets, and then evaluated on the reserved test set to 
obtain performance metrics such as accuracy. This process is repeated 
ten times to ensure that each subset has a chance to be used as a test 
set, resulting in 10 independent training and validation processes. 
Leave-one-trial-out strategy aims to evaluate the model’s 
generalization ability to new experiments. If there are N experiments 
of one subject, in each validation process, select one experiment as the 
test set and the remaining N-1 experiments as the training set. This 
process will be  repeated N times, each time selecting a different 
experiment as the test set to ensure that each experiment has the 
opportunity to be  used as data to validate the performance of 
the model.

In the subject-independent experiment, leave-one-subject-out 
cross validation strategy was adopted. This strategy is used to evaluate 

the model’s generalization ability to new individual data. Assuming 
there are N subjects, data from N-1 subjects is selected as the training 
set for each experiment, leaving one subject as the testing set until 
each subject’s data is tested once.

In terms of data label selection, we  use the valence, arousal, 
dominance labels of the DEAP dataset, and the emotional state labels 
of the SEED and SEED-IV datasets.

4.4 Model training details

In the development of our DAMGCN model, it is necessary to 
quantify these model parameters in Dual Channel Attention 
Mechanism Block: Encoder, embedding vector, Multi-Head Attention. 
EEG data may contain more direct emotional signals compared to 
natural language processing tasks. The number of Encoders can start 
with fewer layers to avoid overfitting and maintain computational 
efficiency. The size of the embedding vector is determined based on 
the size and complexity of the dataset. In EEG emotion recognition 
tasks, it is possible to consider setting it between 32 and 64 because of 
the number electrode channels. The number of Multi-Head Attention 
can start with 4, which means it is possible to simultaneously focus on 
multiple aspects of the signal. For the Classifier Block, we use GELU 
activation function and two linear layers to gradually map high-
dimensional features to the output dimension of emotion categories 
to increase the non-linear ability of the model. However, excessively 
large parameter settings may not result in significant performance 
improvements but could instead increase computational complexity. 
Based on experimental results and computational resources, we have 
made appropriate adjustments, with the parameter values shown in 
Table 2. Other parameters are adjusted through the first experiment 
of ten-fold cross validation. The number of epochs was set by early 
stopping strategy. After 200 epochs, the classification performance of 
the model did not show significant improvement and the training 
would be stopped. Batch size is conventionally established as a power 
of 2. Through our rigorous experimentation, it has been determined 
that a batch size of 64 facilitates more stable gradient descent. After 
experimenting with dropout rates between 0.1and 0.5, we selected 0.5 
for optimal performance. We tested multiple learning rates from 1e-6 
to 1e-1 and found that when the learning rate was 0.001, the model 
was able to perform better. The loss function and optimizer we used 
are Cross entropy and Adam. Our experimental platform relies on the 
hardware condition of NVIDIA GeForce RTX 3080 Ti and deep 

TABLE 2 Parameters settings of DAMGCN.

Hyper-parameter of 
DAMGCN

Value or type

Number of Encoders 2

Size of the embedding vector 64

Number of multi-head attention 6

Linear layers in classifier block 2

Max number of epochs 200

Batch size 64

Dropout 0.5

Learning rate 0.001
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learning framework used was PyTorch 1.11.0. The parameter settings 
are shown in the Table 2.

4.5 Results and comparison

As shown in the Figure 4, we obtained ten-fold cross validation 
experiment’s average accuracies of 96.96, 97.17, 97.50% for the 
two-class dimension labels of valence, arousal, dominance in DEAP 
dataset. For the three-class labels in SEED dataset, we achieved an 
average accuracy of 99.42% in three sessions. And in the case of the 
four-class labels in the SEED-IV dataset, the average accuracy 
obtained was 96.86%. The data indicates that our model has achieved 
an accuracy of over 96% on various types of datasets, demonstrating 
its wide applicability across different datasets.

Based on the results of ten-fold cross validation experiments, 
we  selected 5% DE features of all subjects and plotted t-SNE in 
Figure 5. It can be observed that after DAMGCN training, the sample 
distribution becomes more distinct, and the level of disorder 
decreases. To analyze the performance of each dataset in different 
emotion categories more comprehensively, we  have calculated 
confusion matrices using the proposed DAMGCN model in Figure 6. 
In the confusion matrix, the row sum represents the total number of 
samples, the diagonal elements represent the percentage of correctly 
classified samples for each emotion, and the remaining elements 
indicate the percentage of misclassified samples. Our findings reveal 
that the accuracy of classifying positive emotions consistently exceeds 
that of negative emotions. This suggests that the proposed method 
exhibits higher discriminative capability for positive emotions, which 
aligns with similar observations in other related works (Koelstra et al., 
2012; Li et al., 2021; Guo et al., 2022).

To evaluate the performance of our method, we  conducted 
comparative studies with relevant literature that employed the same 

experimental methods and datasets in Tables 3–5, which including 
traditional machine learning models as well as some state-of-the-art 
neural network models. Session-average represents the average 
accuracy across three sessions on SEED and SEED-IV datasets. Based 
on the comparison, it has been demonstrated that our proposed 
DAMGCN model outperforms existing algorithms in terms of 
accuracy and stability on the DEAP, SEED, and SEED-IV datasets. In 
addition, we extended our investigation through leave-one-trial-out 
strategy and subject-independent experiment, the outcomes 
delineated in Tables 6, 7 reveal that DAMGCN continues to exhibit 
comparative superiority in relation to existing methods. Comparing 
our results with existing graph neural network methods (Kipf and 
Welling, 2017), it can be concluded that DAMGCN designed with 
EEG signal characteristics performs better in emotion recognition 
tasks. Furthermore, Transformer’s attention mechanism can selectively 
focus on electrical signals in certain regions or frequency bands of 
EEG data that are more relevant to emotion recognition tasks, 
dynamically assigning weights to different features, thereby enhancing 
the influence of informative features while reducing less useful ones.

4.6 Interpretable analysis

Benefiting from the combination of the dual attention mechanism 
and GCN, our model has an advantage in interpretability. In frequency 
band analysis, the DEAP dataset is not included due to the absence of 
data in the α wave band (1–4 Hz). Figure  7 shows the parameter 
visualization after training convergence on the SEED and SEED-IV 
datasets, obtaining the contribution of different frequency bands to 
emotion recognition tasks.

The initial weight coefficients for each band before training are 
0.2. After training, the weight δ coefficient of the band is the lowest 
and consistently below 0.2. This is similar to the conclusion from 

FIGURE 4

Average accuracy of DEAP, SEED and SEED-IV.
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previous literature (Duan et al., 2013; Zhang et al., 2020), which 
indicate that the δ band is associated with unconscious states and 
often appears during deep dreamless sleep, while emotional 
responses typically occur during wakefulness, especially in γ 
frequency band that is more prominent. We speculate that the weight 
coefficients of δ should gradually approach 0 as the epochs increase. 
However, in Figure 7, the coefficient remains around 0.15, suggesting 
that during the optimization process, the model parameters might 
have stagnated at a local minimum or maximum, causing the model 
to become trapped in a local optimum. We attempted to increase the 
learning rate to mitigate this situation in 4.3 section. Unfortunately, 
a large learning rate destabilized the optimization process, causing 
the loss function of the model to gradually increase instead of 
decreasing, preventing the model from converging to a suitable 
solution and ultimately resulting in ineffective training results. The 
issue of local optima is inevitable in deep learning. As a result, it’s 
necessary to analyze from the trend of parameter changes rather than 

the results. This approach can provide us with directions for 
exploration in unknown domains and serve as a reliable way to 
validate conclusions drawn by previous researchers in 
clinical settings.

On the other hand, we  extracted the attention matrix of the 
electrode channels and used degree centrality to evaluate the 
importance of nodes. The formula is as follows in  Eq. (14):

 
DC k

Ni
i�
�1 

(14)

N  represents the number of nodes, k di
j

n
ij�

�
�

1
 represents the sum 

of the weights connected to current node and all other nodes. By 
calculating the mean of the degree centrality weights for all 
participants, we generated a distribution map of node importance in 
the brain regions involved in emotional activity.

FIGURE 5

Visualization of 5% DE features of all subjects before and after training using DAMGCN.
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TABLE 3 The average accuracy /standard deviation (%) of different methods on DEAP two-class.

Method Feature Valence (acc/std) Arousal (acc/std) Dominance (acc/std)

SVM (Kumar and Nataraj, 2019) PSD/DE 74/− 86/− 72/−

CNN-BiLSTM (Cui et al., 2022) DE 94/− −/− −/−

CNN (Li et al., 2019) DE 89.43/4.72 90.40/4.05 −/−

LSTM-RNN (Xing et al., 2019) PSD 81.1/− 74.38/− −/−

GCN (Kipf and Welling, 2017) DE 82.56/2.11 80.47/3.84 85.23/2.32

MRGCN (Qiu et al., 2023) DE 94.97/3.8 95.72/2.5 −/−

GLFANet (Liu et al., 2023) DE 94.53/1.02 94.91/1.05 95.35/0.90

AP-CapsNet (Liu et al., 2023) MobileNet 93.89/− 95.04/− 95.08/−

TR&CA (Peng et al., 2023) Raw signal 95.18/2.46 95.58/2.28 95.78/2.16

ST-CLSM (Feng et al., 2022) Raw signal 95.52/− 95.04/− −/−

EESCN (Xu et al., 2024) DE 94.56/4.18 94.81/3.62 94.73/4.12

DAMGCN (ours) DE 96.96/2.24 97.17/2.35 97.50/2.03

The results in Figure 8 reveal that frontal lobe, temporal lobe, and 
occipital lobe regions exhibit higher node weight coefficients, indicating 
heightened emotional activity. Our finding aligns partially with the 
observations reported in reference (Liao et al., 2024 ; Nie et al., 2011; Li 
et al., 2024). In addition, we found that there is a greater difference in 
brain regions between the SEED and SEED-IV datasets through the 
comparison of the ab and c graphs. Based on the significant differences in 
the data in Tables 6, 7, it can be analyzed that as the number of electrode 
channels increases and the graph structure information becomes richer, 
the model can learn more common features, especially in subject-
independent experiments. This can not only highlight the importance of 

graph convolutional neural networks but also offer insights for 
neuroscientists to assess the reliability of emotion recognition results 
based on brain activity regions.

4.7 Ablation

We conducted subject-dependent ablation study by removing 
the GCN block and the DAM block to examine the importance 
of each block in our proposed model. The comparison of average 

FIGURE 6

Confusion matrixes of the results on DEAP, SEED, SEED-IV.
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accuracies of the DAMGCN, DAM, and GCN models on the 
DEAP, SEED, and SEED-IV datasets is shown in the Figure 9. 
When only the GCN block was involved in emotion recognition, 
the accuracy was 96.13, 95.1, 96.2, 98.98, 92.2%, resulting in a 
decrease of 0.73, 2.07, 1.3, 0.44, 4.66% in accuracy, respectively. 
This indicates that there might be channels unrelated to emotions 
among all electrode channels, and the GCN module was not 
effective in distinguishing them. DAM is the block proposed in 
this paper for effectively allocating channel weights. Without the 

GCN module, the accuracy on the DEAP dataset decreased by 
1.46, 1.97, and 1% in the three different labels, while the accuracy 
on the SEED and SEED-IV datasets decreased by 0.92 and 3.46%. 
In addition, we  removed the DAM and GCN modules, and 
compared the results obtained from only the linear layer model 
in Figure 9(labeled as None), it can be seen that the classification 
accuracy the accuracy was 70.62, 72.13, 74.26, 80.46, 72.54%. 
We  can analyze the significant classification performance of 
DAM and GCN modules on EEG signals through data ablation 
experiments. We  believe that the reason why the method 
proposed in this article performs well on these datasets can 
be attributed to the adaptability of the proposed model to EEG 
signals: EEG signals are electrical signals collected from multiple 
positions on the surface of the scalp, with a fixed spatial structure. 
The connections between different brain regions form a dynamic 
network, and different brain regions interact with each other 
through neural networks to influence emotional states. GCN 
naturally matches the spatial structure and dynamic network 
characteristics of EEG data through its ability to process graph 
structured data, enabling it to extract more complex and in-depth 
features from EEG signals. Transformer’s attention mechanism 
can selectively focus on electrical signals in certain regions or 
frequency bands of EEG data that are more relevant to emotion 
recognition tasks, dynamically assigning weights to different 
features, thereby enhancing the influence of informative features 
while reducing less useful ones.

In conclusion, our research results demonstrate the 
complementary roles played by the information aggregation of 
the Graph Convolutional Neural Network and the weight 
allocation of the Dual Attention Mechanism in extracting 
significant information from brain networks and ensuring 
stability in channel selection for classification.

TABLE 4 The average accuracy /standard deviation (%) of different 
methods on seed three-class.

Method Feature Session-average 
(acc/std)

CNN-BiLSTM (Cui et al., 2022) DE 94.82/−

GCN (Kipf and Welling, 2017) DE 92.54/1.89

MRGCN (Qiu et al., 2023) DE 98.98/1.5

DPGAT (Li et al., 2021) Raw signal 95.76/5.77

GLFANet (Liu et al., 2023) DE 93.19/1.54

Bi-ViTNet (Lu et al., 2023) PSD/DE 97.55/1.58

ACTNN (Gong et al., 2023) DE 98.47/1.72

ST-CLSM (Feng et al., 2022) Raw signal 96.20/−

DAMGCN (ours) DE 99.42/0.24

TABLE 5 The average accuracy /standard deviation (%) of different 
methods on SEED-IV four-class.

Method Feature Session-average 
(acc/std)

SVM (Kumar and Nataraj, 2019) PSD/DE 77.33/−

GCN (Kipf and Welling, 2017) DE 82.86/3.64

Bi-ViTNet (Lu et al., 2023) PSD/DE 88.08/6.32

ACTNN (Gong et al., 2023) DE 91.90/5.43

ST-CLSM (Feng et al., 2022) Raw signal 93.86/−

EESCN (Xu et al., 2024) DE 79.65/8.22

DAMGCN (ours) DE 96.86/1.33

TABLE 6 The average accuracy /standard deviation (%) of different 
methods (leave-one-trial-out strategy).

Method Feature DEAP 
(acc/std)

SEED 
(acc/std)

SEED-IV 
(acc/std)

SVM (Kumar and 

Nataraj, 2019)

PSD/DE 66.25/9.04 −/− −/−

DBN-CRF (Chao 

and Liu, 2020)

Power 

features

76.13/− 83.46/− −/−

GAT (Veličković 

et al., 2018)

DE 72.65/6.88 80.15/5.56 78.55/6.32

GCN (Kipf and 

Welling, 2017)

DE 75.86/4.35 83.56/2.98 81.05/4.73

DAMGCN (ours) DE 78.21/5.64 90.4/2.61 83.55/3.88

TABLE 7 The average accuracy /standard deviation (%) of different 
methods (subject-independent).

Method Feature DEAP 
(acc/
std)

SEED 
(acc/
std)

SEED-IV 
(acc/
std)

SVM (Kumar and 

Nataraj, 2019)

PSD/DE 59.6/− 56.73/16.29 51.78/12.85

VDM-DNN 

(Pandey and 

Seeja, 2022)

VMD 61.88/− −/− −/−

GCN (Kipf and 

Welling, 2017)

DE 58.4/13.56 62.4/10.14 59.13/14.55

LGG (Ding et al., 

2022)

Raw signal 63.07/− −/− −/−

AP-CapsNet (Liu 

et al., 2023)

MobileNet 63.41/− −/− −/−

SSL-EEG (Xie 

et al., 2021)

Raw signal −/− 67.52/12.73 53.62/8.47

MetaEmotionNet 

(Ning et al., 2024)

DE 77.5/0.088 61.2/0.083

A-LSTM (Li et al., 

2022)

Raw signal −/− 72.18/10.85 69.5/15.65

DAMGCN (ours) DE 64.61/10.54 73.21/8.35 68.22/7.03
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FIGURE 7

The weight proportion of frequency before and after training using DAMGCN.

FIGURE 8

Visualization of brain regions weight distribution map on SEED, SEED-IV and DEAP.
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5 Conclusion and future work

In this manuscript, we present the DAMGCN emotion recognition 
model, which combines the synergistic power of GCN and 
Transformer. The proposed model leverages the inherent connections 
between brain channels and utilizes the graph structure information 
to extract spatial topological features of the complex neural network. 
Additionally, it assigns weight coefficients to individual information 
to enable effective emotion classification. We conducted an extensive 
array of experiments on the DEAP, SEED, and SEED-IV datasets, and 
the results indicate that the model is competitive compared to state-
of-the-art methods. Additionally, through ablative experiments, 
we corroborated the substantial contributions made by both the GCN 
block and the DAM block of our model in augmenting the 
classification performance. We also employed attention mechanism to 
visualize the significance of each EEG channel and different frequency 
bands in emotion recognition. Through this analysis, we observed that 
the weight coefficients associated with the δ frequency band were 
relatively low across most participants, suggesting a weak correlation 
between this particular EEG band and human emotions. Finally, our 
observations indicate a strong association between emotional activity 
and specific brain regions, notably the prefrontal and occipital lobes. 
This method we proposed offers a valuable framework for subsequent 
research endeavors in the field of emotion recognition.

In terms of models, our model requires more time to learn its 
parameters during the training phase, yet it remains susceptible to the 
challenge of getting trapped in local optima, a prevalent issue in many 
deep learning studies. Fortunately, we can mitigate this concern by 
focusing on the physical implications of parameter variations rather 
than solely relying on outcomes. In our subject-dependent and 
subject-independent experiments, the results of the subject-
independent experiments were not very impressive. Therefore, our 
forthcoming study will attempt to introduce contrastive learning and 

transfer learning methods to improve the model, so that the model 
can learn common features between subjects to achieve high 
classification results in subject-independent experiments.
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