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Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of 
epileptic seizures, which affects over 70 million people in the world. Nonetheless, 
the visual interpretation of EEG signals for epilepsy detection is laborious and 
time-consuming. To tackle this open challenge, we introduce a straightforward 
yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting 
epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural 
network (ResNet) is tailored to adeptly extract the local spatial features of EEG 
signals. Subsequently, the acquired features are input into a bidirectional long 
short-term memory (BiLSTM) layer to model temporal dependencies. These 
output features are further processed through two fully connected layers to 
achieve the final epileptic seizure detection. The performance of ResBiLSTM 
is assessed on the epileptic seizure datasets provided by the University of 
Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves 
epileptic seizure detection accuracy rates of 98.88–100% in binary and 
ternary classifications on the Bonn dataset. Experimental outcomes for seizure 
recognition across seven epilepsy seizure types on the TUH seizure corpus 
(TUSZ) dataset indicate that the ResBiLSTM model attains a classification 
accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-
validation. These findings illustrate that ResBiLSTM outperforms several recent 
deep learning state-of-the-art approaches.
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1 Introduction

Epilepsy is a neurological disorder stemming from sudden irregular nerve cell discharges 
in the brain (Fisher et al., 2017). It impacts a global population of over 70 million across all 
age groups (Thijs et al., 2019). The timely and precise identification of epileptic conditions, 
coupled with appropriate treatment, holds the potential to alleviate patient suffering. 
Electroencephalogram (EEG) play an important role in detecting epilepsy, as it captures rich 
physiological and pathological information, reflecting brain nerve cells electrophysiological 
activities on the scalp surface or cerebral cortex (Foreman and Hirsch, 2012; Devinsky et al., 
2018). Traditional diagnosis and treatment of epilepsy require neurologists to manually sift 
through extensive EEG recordings, a process often hindered by its labor-intensive, time-
consuming, and subjective nature, especially in identifying brief, low-amplitude events 
(Cendes et al., 1997; Sheth et al., 2014; Kramer et al., 2019). Consequently, there is an urgent 
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need for an automated and reliable detection approach. Such a method 
would not only alleviate the burden on neurologists but also enable 
prompt and effective treatment for patients (Cho and Jang, 2020). In 
response to this need, a considerable volume of research has been 
dedicated to enhancing epileptic seizure detection.

The traditional predominant approach in epilepsy detection 
combines conventional signal processing with machine learning 
techniques (Subasi and Gursoy, 2010). These methodologies primarily 
revolve around feature extraction and classification. In feature 
extraction, researchers manually construct EEG signal features based 
on empirical knowledge and observations. A wide array of features has 
been derived from the time domain (Gotman, 1982), frequency 
domain (Qu and Gotman, 1997), and time-frequency domain (Saab 
and Gotman, 2005) for seizure EEG recognition. Additionally, various 
nonlinear features, including the Hurst exponent (Lahmiri, 2018), 
entropies (Acharya et  al., 2012), Lyapunov exponent (Elger et  al., 
2005), and fractal dimension (Zhang et al., 2015), have been utilized 
for epilepsy seizure detection. Various classifiers, such as logistic 
regression (Claassen et al., 2004), Bayesian (Saab and Gotman, 2005), 
k-nearest neighbor (KNN) (Acharya et al., 2012), random forest (RF) 
(Mursalin et al., 2017), support vector machines (SVM) (Park et al., 
2011), and artificial neural networks (ANN) (Ramgopal et al., 2014), 
have subsequently been applied for identifying seizure activities. 
While algorithms based on hand-crafted feature engineering have 
achieved significant success in detecting epileptic seizures (Sharma 
and Pachori, 2015; Sharma et  al., 2017), distinguishing between 
epileptic and non-epileptic EEG signals remains a challenge due to 
data noise, artifacts, and the variability in seizure morphology (Tao 
et al., 2017).

The emergence of deep learning (DL) (LeCun et  al., 2015) 
techniques in various domains such as computer vision (Chen et al., 
2021), natural language processing (Young et al., 2018), and speech 
recognition (Khalil et  al., 2019) has demonstrated substantial 
performance improvements. It employs ANN with multiple layers to 
extract intricate features from data. Its primary objective is to capture 
high-level abstractions within data by employing intricate 
architectures comprising multiple non-linear transformations. 
Therefore, DL techniques can automatically extract intrinsic features 
from EEG signals, and achieve end-to-end epileptic seizure detection 
(Zhang et al., 2020; Zhao et al., 2020; Zhao and Wang, 2020). Hence, 
this paper investigates DL-based epileptic seizure detection 
approaches. These models are categorized as convolutional neural 
network (CNN)-based models, recurrent neural network (RNN)-
based models, and hybrid models.

CNNs can efficiently extract local spatial features from raw EEG 
data without the need for hand-crafted feature extractors. Johansen 
et al. (2016) developed a CNN featuring filters of various sizes at the 
input layer, leaky ReLUs as activation functions, and a sigmoid output 
layer, aimed at automated detection of spikes in EEG recordings of 
epileptic patients. Their model achieved an AUC of 0.947 on scalp 
EEG recordings from five patients with diagnosed epilepsy. Tang et al. 
(2021) employed a CNN comprising two convolutional layers for 
classifying raw time-series EEG data. Their approach achieved an 
AUC of 0.752  in a dataset encompassing 930 seizures across nine 
distinct seizure types. Acharya et al. (2018) developed a 13-layer deep 
CNN algorithm to discern healthy, interictal, and ictal EEG 
recordings, achieving accuracy of 88.67%. Ullah et  al. (2018) 
introduced an ensemble of pyramidal one-dimensional CNN 

(P-1D-CNN) models for binary and ternary epilepsy detection, 
featuring 61% fewer parameters compared to standard CNN models, 
thereby enhancing generalizability. Türk and Özerdem (2019) 
transformed EEG records into two-dimensional frequency-time 
scalograms using continuous wavelet transform and utilized a CNN 
to analyze these scalogram images. Roy et al. (2020) performed a 
thorough search space exploration to evaluate the efficacy of a variety 
of preprocessing approaches, machine learning algorithms, and 
hyperparameters to classify seven seizure types using the TUSZ 
dataset. Their research in the development of a CNN model achieved 
a weighted F1 score of 0.722. Raghu et  al. (2019) introduced a 
CNN-based framework that transforms EEG time series into 
spectrogram stacks, tailored for CNN input. This approach was 
applied to an eight-class classification challenge using the TUSZ 
dataset. The accuracy was meticulously evaluated through four 
distinct CNN models: AlexNet (84.06%), VGG16 (79.71%), VGG19 
(76.81%), and the basic CNN model (82.14%). Shankar et al. (2021) 
utilized the Gramian Angular Summation Field (GASF) to convert 1D 
EEG signals into 2D images, followed by employing a CNN for 
automatic feature extraction and classification. This approach yielded 
impressive accuracies in seizure type classification, reaching up to 
96.01% for binary, and 89.91, 84.19, and 84.20% for multiclass 
categories – 3, 4, and 5 respectively, on the TUSZ dataset.

RNN-based methodologies are recognized as effective DL 
solutions for time-series problems, finding widespread application in 
diverse domains. Long short-term memory (LSTM), gated recurrent 
unit (GRU), bidirectional long short-term memory (BiLSTM) and 
bidirectional gated recurrent unit (BiGRU) represent variant models 
derived from the traditional RNN architecture. Güler et al. (2005) 
formulated an Elman RNN model integrated with Lyapunov 
exponents to distinguish healthy, interictal, and ictal EEG signals. 
Hussein et al. (2018) proposed an optimized deep neural network 
architecture featuring a single-layer LSTM for robust epileptic seizure 
detection using EEG signals, even in noisy and real-life conditions. 
Tuncer and Bolat (2022b) adopted instantaneous frequency and 
spectral entropy to extract features from raw EEG signals, employing 
BiLSTM as the classifier. Their model achieved 99% accuracy in binary 
classification on the Bonn epilepsy dataset. Zhang et  al. (2022) 
conducted wavelet transforms as a preprocessing step for EEG signals, 
subsequently employing a BiGRU network, along with a series of post-
processing steps to generate discriminant results regarding seizure 
presence. Their model achieves an average sensitivity of 93.89% and 
an average specificity of 98.49% on the CHB-MIT scalp EEG database. 
Tuncer and Bolat (2022a) integrated classifiers such as KNN, RF, 
SVM, and LSTM to achieve an accuracy of 95.92% for four-category 
seizure type detection and 98.08% for two-category seizure type 
classification within the TUSZ scalp EEG dataset.

To leverage the advantages of both CNNs and RNNs, hybrid 
models combining these architectures have been proposed. These 
hybrid models are capable of capturing both the spatial features and 
the temporal dynamics of EEG signals. Typically designed in series or 
parallel, hybrid DL models combine CNN and LSTM. Xu et al. (2020) 
proposed a serial connection between CNN and LSTM, where CNN 
first extracts spatial features from normalized EEG sequences, 
subsequently utilized by LSTM to learn temporal dependencies. Their 
method achieved recognition accuracies of 99.39 and 82.00% for 
two-category and five-category epileptic seizure detection tasks, 
respectively, on the Bonn university epilepsy dataset. Furthermore, 
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several analogous studies have utilized varying numbers of 
convolutional layers or LSTM layers (Yang et al., 2021; Pandey et al., 
2023; Shanmugam and Dharmar, 2023; Wang et al., 2023; Yu et al., 
2023). Similarly, Ahmad et al. (2023) combined CNN and BiLSTM in 
a series, implementing truncated backpropagation through time to 
efficiently capture spatial and temporal sequence information while 
minimizing computational complexity. Their model achieved 
accuracies of 99.41 and 84.10% for two-category and five-category 
classifications, respectively, on the Bonn epilepsy dataset. Affes et al. 
(2019) introduced a convolutional gated recurrent neural network 
(CGRNN) for predicting epileptic seizures from EEG data, capturing 
both temporal and frequency aspects of the signals. The CGRNN, 
tested on data from the Children’s Hospital of Boston, achieves an 
average sensitivity of 89%, a mean accuracy of 75.6%, and a false 
positive rate of 1.6 per hour, with performance varying across patients. 
Ma et al. (2023) introduced a parallel multi-channel feature fusion 
model, CNN-Bi-LSTM, featuring dot-product attention for weighted 
electrode channel output classification. Their model achieved 
accuracies of 94.83 and 77.62% for three-category and five-category 
classifications, respectively. Qiu et al. (2023) introduced the DARLNet 
model, a parallel combination of the ResNet and LSTM network. They 
further enhanced recognition accuracy by introducing a difference 
layer and channel attention mechanism. Their model achieved a 
recognition accuracy of 90.17% for the five-category classification task.

Moreover, the recognized modesty of the aforementioned hybrid 
models persists in multi-classification seizure detection. Consequently, 
we propose a novel hybrid network model based on residual and 
BiLSTM (ResBiLSTM) to enhance recognition accuracy across various 
classification challenges. The results reveal the superior performance 
of the proposed ResBiLSTM model compared to several existing 
hybrid methods.

The rest of this paper is organized as follows. Section 2 introduces 
the datasets and the proposed methodology. Section 3 covers the 
experimental results and analysis. Section 4 discusses the results and 
compare the performance with other DL algorithms. Finally, the 
study’s conclusions are presented in Section 5.

2 Materials and methods

2.1 The benchmark datasets

2.1.1 The Bonn dataset
The Bonn dataset used in this study was acquired by a research 

team at the University of Bonn and have been extensively used for 
research on epilepsy seizure detection (Andrzejak et al., 2001). These 
segments were selected and cut out from continuous multichannel 
EEG recordings after visual inspection for artifacts. The dataset 
consists of five sets (denoted A-E) each containing 100 single-channel 
EEG segments of 23.6-s duration. Each EEG segment was recorded 
using a standard 10–20 electrode placement system at a sampling rate 
of 173.61 Hz, so each segment contains 4,097 data points.

Sets A and B consisted of segments taken from scalp EEG 
recordings that were carried out on five healthy volunteers while they 
were relaxed in an awake state with eyes opened (A) and eyes closed 
(B), respectively. Sets C, D, and E were acquired from five patients. Set 
C was recorded from the hippocampal formation of the opposite 
hemisphere of the brain. Set D were recorded from within the 

epileptogenic zone. Sets C and D consists of EEG signals measured 
during seizure free intervals. Set E only contained seizure activity.

2.1.2 The TUSZ dataset
The TUSZ dataset stands as one of the largest and most well-

acknowledged open-source epilepsy EEG datasets available to 
researchers, offering detailed clinical case descriptions (Shah et al., 
2018). It includes annotations on the timing and types of epileptic 
seizures, as well as comprehensive patient information such as sex, 
age, medications, clinical history, seizure event count, and duration. 
Our study utilized the May 2020 release of the corpus (V1.5.2), 
comprising 3,050 seizure cases across eight distinct seizure types, 
recorded at various sampling frequencies and montages. The seizure 
types include Focal Non-Specific Seizure (FNSZ), Generalized 
Non-Specific Seizure (GNSZ), Absence Seizure (ABSZ), Complex 
Partial Seizure (CPSZ), Tonic Clonic Seizure (TCSZ), Tonic Seizure 
(TNSZ), Simple Partial Seizure (SPSZ), and Myoclonic Seizure 
(MYSZ), as detailed in Table 1. Due to the limited number of MYSZ 
events, we excluded this type and focused on the remaining seven 
seizure categories for analysis.

2.2 Preprocessing

The dataset contains an insufficient number of instances to 
effectively train the DL model. Therefore, we need a data augmentation 
scheme that can help us in increasing the amount of training data. To 
overcome this problem, we propose two data augmentation schemes 
for training our model. The raw full length EEG segment is split into 
several small signals using a fixed-size window. The splitting strategy 
is adopted by the training EEG set and the test EEG set. Every small 
signal is used as an individual instance to learn or test the proposed 
model. The division of an EEG signal into smaller segments is a 
standard procedure utilized in previous approaches (Ullah et al., 2018).

One scheme (scheme-1) involves choosing a non-overlapping 
window size of 512. Take the Bonn dataset for example, each signal of 
length 4,097 is segmented into 8 smaller signals, discarding the last 
data point. The small EEG signals of each class are divided into 
disjoint training and testing sets, which consist of 90 and 10% of total 
signals, respectively. In this way, a total of 800 instances are created for 
each category, 720 for training and 80 for testing.

The other scheme (scheme-2) is employed to further increase the 
amount of training data, generating an additional training dataset by 

TABLE 1 The statistics description of the TUSZ dataset.

Seizure 
type

Seizure 
Events

Patients Duration (s)

FNSZ 1836 150 121,139

GNSZ 583 81 59,717

CPSZ 367 41 36,321

ABSZ 99 12 852

TNSZ 62 3 1,204

SPSZ 52 3 2,146

TCSZ 48 14 5,548

MYSZ 3 2 1,312

https://doi.org/10.3389/fncom.2024.1415967
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2024.1415967

Frontiers in Computational Neuroscience 04 frontiersin.org

adding a small amplitude of noise based on scheme-1. The procedure 
of generating additional training data set is as follow:

 x s n= + × ×α σ  (1)

where x represents the generated additional training data; s 
represents the raw training EEG signal with a standard deviation of σ
; n represents the noise signal with a mean of 0 and a variance of 1; α
represents the intensity of noise signal, and is set to 0.01. For the Bonn 
dataset, the artificial generate training data are created twice, and the 
testing data is the same as scheme-1. In this way, a total of 2,240 
instances are created for each category, 2,160 for training and 80 for 
testing. For the TUSZ dataset, the artificially generated training data 
volume matches that of the original EEG training data.

Furthermore, for the TUSZ dataset, we employed the IBM TUSZ 
data-preparation version for building data (Roy et al., 2020), which 
utilizes the transverse central parietal montage (TCP) featuring 20 
selected paired channels as input. Additionally, all EEG recordings 
were resampled to a uniform frequency of 250 Hz.

2.3 Residual and bidirectional LSTM

As an emerging DL network structure, residual neural network 
(ResNet) has a deeper network and can achieve a better performance (He 
et al., 2016). The advantage of ResNet is that it solves the problem of 
gradient disappearance as the number of model layers increases. This is 
achieved by adding skip connections that bypass one or more layers in the 
network, allowing the input to be added directly to the output of a later 
layer. The residual block is the basic component of ResNet, and 1D 
residual blocks are used in the propose model as depicted in the Figure 1.

The residual block contains two convolutional layers, and each 
convolutional layer is followed by a batch normalization layer and a 
ReLU activation function. Then, a shortcut is used to skip these two 
convolution operations and add the input directly before the final 
ReLU activation function. Figure 1A demonstrates the presence of an 
identity mapping within the residual element, permitting the direct 

transmission of the input feature map to the output when the shape of 
the feature maps are identical. However, when the shape of the input 
and output feature maps differ, an additional 1 × 1 convolutional layer 
is required to transform the input for the addition operation, as 
depicted in Figure  1B. Each residual block can be  expressed in a 
general form (He et al., 2016):

 
y x xl l l lh F= ( ) + ( );θ

 (2)

 x yl lf+ = ( )1  (3)

where xl and xl + 1 represent input and output of the l-th residual 
block, F is a residual function, θl includes all learnable parameters in 
the l-th residual block, and f is a ReLU function. In Figure 1A, h(xl) = xl 
is an identity mapping. In Figure 1B, h(x) is convolutional function. 
The residual blocks with and without convolution are adopted in the 
proposed model.

LSTM networks (Tuncer and Bolat, 2022b) were developed as an 
evolution over the RNNs, explicitly engineered to capture and retain 
long-term temporal dependencies. The innovative part of LSTM 
networks compared to traditional RNNs is the inclusion of gate 
mechanisms, namely the input gate, forget gate, and output gate, 
which allows the model to control more precisely what information 
needs to be kept in its memory cell and what needs to be removed. The 
input gate it regulates the inflow of new information into the memory 
cell, allowing the network to determine the relevance and significance 
of incoming data. In contrast, the forget gate ft controls the extent to 
which previously stored information should be discarded from the 
cell’s memory. Finally, the output gate ot determines the flow of 
information from the memory cell, thereby regulating the contribution 
of the memory cell to the overall network output. The typical structure 
of an LSTM unit is depicted in Figure 2A. The formulas of the LSTM 
are explained as follows (Graves and Schmidhuber, 2005):

 f W h x bt f t t f= [ ] +( )−σ 1,  (4)

 i W h x bt i t t i= [ ] +( )−σ 1,  (5)

 o W h x bt o t t o= [ ] +( )−σ 1,  (6)

 
C W h x bt C t t C= [ ] +( )−tanh 1,  (7)

 C f C i Ct t t t t= × + ×−1 

 (8)

 h o Ct t t= × ( )tanh  (9)

where σ (sigmoid) and tanh are activation functions; W* are 
weight parameters; b* are bias parameters; ht-1 and ht represent the 
previous and current hidden states; Ct and Ct represent candidate and 
current memory cell state, respectively.

FIGURE 1

Residual blocks with and without convolution, which transforms the 
input into the desired shape for the addition operation. (A) Residual 
block without convolution; (B) Residual block with convolution.
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BiLSTM networks (Graves and Schmidhuber, 2005) serve as a 
significant extension of the LSTM architecture, enabling the 
incorporation of information from both preceding and subsequent 
time steps. This is achieved through the utilization of two LSTM 
blocks, allowing the model to capture contextual dependencies in both 
temporal directions. This bidirectional flow significantly enhances the 
network’s capacity to capture comprehensive patterns and 
dependencies in sequential data, rendering it particularly effective for 
tasks demanding a nuanced analysis of temporal dynamics and 
complex sequential data. Figure 2B shows the internal structure of the 
BiLSTM networks. The hidden state used in BiLSTM is as follows:

 h h ht
BiLSTM

t
forward

t
backward= ⊕  (10)

The proposed model for Epilepsy detection based on residual and 
BiLSTM network. Firstly, the ResNet actively learns the local 
correlation characteristics through the utilization of three residual 
blocks. Moreover, the learned features are fed into BiLSTM network 
to model the temporal dependencies. Subsequently, the extracted 
high-level epileptic features are inputted into a straightforward 
classifier module comprising two fully connected (FC) layers. To show 
the effectiveness of the proposed model, eight models with different 
configurations were designed. These models will guide the design of 

future models to better address overfitting. Table 2 shows the detailed 
specifications of these models. The detail of a ResBiLSTM model(M5) 
is depicted in Figure  2C. In order to streamline the architectural 
representation, the introduction of the residual block simplified 
drawing. For a more comprehensive understanding of its intricate 
arrangement, please refer to Figure 1, which illustrates the detailed 
structure of this process. The EEG recordings are directly used as the 
input of the proposed model, and the shape of the input data is 
512 × ch, where ch represents the number of the raw EEG recording 
channel. The ResNet consists of three residual blocks, with each block 
being accompanied by a dropout layer incorporating a dropout rate of 
0.2. This design choice aims to address the issue of overfitting, which 
can be  mitigated through the application of dropout techniques. 
Within each residual block, every convolutional layer employs a 
convolution kernel with dimensions of 5 × 1. The first convolutional 
layer in the initial residual block has a stride of 2 and is equipped with 
64 kernels. Additionally, the second convolutional layer in the same 
block has a stride of 1 and is also furnished with 64 kernels. The 
connection between the input and output of the initial residual block 
is established via a convolution operation, visually indicated by a 
dashed line in Figure 2C. The second and third residual blocks follow 
a similar procedure as the first residual block. The BiLSTM employs 
64 neurons. The resulting output from the BiLSTM is then fed to a 
classifier composed of two dropout layers, two FC layers, and two 

FIGURE 2

The structure of ResBiLSTM. (A) LSTM unit; (B) BiLSTM network; (C) Overall model architecture.
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activation layers. The first FC layer (FC1) integrates 128 neurons and 
is followed by a ReLU activation layer. The subsequent FC layer (FC2) 
matches the number of neurons to the total classes in the classification 
task. A softmax activation layer follows FC2 layer. Dropout layers, 
with probabilities of 0.2 and 0.5 respectively, are employed before each 
FC layer to mitigate overfitting.

2.4 Strategy for the cross-validation and 
performance metrics

To evaluate our model, we implemented cross-validation (CV) to 
ensure thorough testing across various data variations. Specifically, 
we employed 10-fold CV for the Bonn dataset, 5-fold and 10-fold CV 
for the TUSZ dataset. Taking the Bonn dataset as an example, EEG 
signals for each class were randomly divided into 10 equal-sized folds. 
For each iteration, 1 fold (10%) served as the test set, while the 
remaining 9 folds (90%) were used for training the model. The CV 
process is then repeated 10 times, with each of the 10 fold used exactly 
once as the test data. The average performance is calculated for 10 
folds. We used evaluation criteria commonly used in classification to 
measure the validity and robustness of the proposed model from 
different perspectives, including accuracy, precision, recall, F1-score 
and weighted F1-score. These indicators are defined as:

 
Accuracy Acc TP TN

TP TN FP FN
( ) = +

+ + +  
(11)

 
Precision Pre TP

TP FP
( ) =

+  
(12)

 
Recall Rec TP

TP FN
( ) =

+  
(13)

 
F score F Precision Recall

Precision Recall
1 1 2− ( ) = ×

×
+  

(14)

 1Weighted 1 1ω==∑K
k kkF F

 
(15)

where TP and TN are symbols of the correct positive sample 
number and the correct negative sample number predicted by the 
model, respectively. FP and FN are symbols of the false positive sample 
number and the false negative sample number predicted by the model, 
respectively. F1-score is a comprehensive indicator that measures the 
classification performance. A larger values of these indicators mean 
better classification performance. The weighted F1 is under the 
proportion ωi of the i-th seizure type, and K denotes the total number 
of all attack types. The weighted F1-score is calculated in proportion 
Éi to the i-th seizure type, where K represents the total number of 
seizure categories.

The ResBiLSTM model’s weight parameters are learned using 
traditional back-propagation, with the cross-entropy function as the 
loss function and the Adam optimizer for optimization. For the Bonn 
dataset, settings include a learning rate of 0.0001, batch size of 64, and 
100 training epochs. For the TUSZ dataset, the learning rate is set to 
0.001, with a batch size of 320 and 200 training epochs. We select the 
model’s best weight parameters based on optimal accuracy and 
minimal loss across all training iterations. All DL models were 
developed using Pytorch, an open-source DL framework. A Debian 
11 operating system-based workstation equipped with an Intel Core 

TABLE 2 The specifications of eight models using 10-fold CV for fine tuning.

Layers\Model M1 M2 M3 M4 M5 M6 M7 M8

Residual block 1 Number of kernels 32 32 32 32 64 64 64 64

Kernel size 5 5 5 5 5 5 5 5

Stride 2 2 2 2 2 2 2 2

Dropout 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Residual block 2 Number of kernels 32 32 32 32 64 64 64 64

Kernel size 5 5 5 5 5 5 5 5

Stride 1 1 1 1 1 1 1 1

Dropout 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Residual block 3 Number of kernels 64 64 64 64 128 128 128 128

Kernel size 5 5 5 5 5 5 5 5

Stride 2 2 2 2 2 2 2 2

Dropout 3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

BiLSTM 64 64 128 128 64 64 128 128

Dropout 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

FC1 128 256 128 256 128 256 128 256

Dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

FC2(Out) 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3

Parameters 133,571 150,467 282,051 315,331 314,755 331,651 496,003 529,283
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i9-9820X CPU and RTX3090 GPU facilitated the model’s training 
and testing.

3 Model performance and 
comparisons

3.1 Performance in fine tuning

For optimal model selection, we considered eight ResBiLSTM 
models in our initial experiments, as is shown in Table 2. For 
selecting the best model, we need to address two questions: (a) 
How can the hyper-parameters of the model be  optimized to 
enhance its generalization capability and suitability for diverse 
epilepsy detection tasks? (b) Which data augmentation scheme is 
the most appropriate?

To address these inquiries, we  conducted comprehensive 
experiments on the models, employing 10-fold CV for three type 
classification tasks on the Bonn dataset: (i) non-seizure vs. seizure 
(two-category: D-E); (ii) healthy vs. interictal vs. ictal (three-category: 
AB-CD-E), (iii) eyes opened vs. eyes closed vs. interictal out the 
epileptogenic zone vs. interictal within the epileptogenic zone vs. 
seizure ictal (five-category: A-B-C-D-E) epilepsy detection tasks. The 
model’s hyper-parameters, including the count of kernels in residual 
blocks, BiLSTM units, and FC1 layer neurons, were adjusted during 
experiments, resulting in eight different models. Increasing the 
number of convolutional kernels, BiLSTM units, and neurons in the 
classifier typically enhances the model’s expressive power, thereby 
improving its ability to learn complex patterns in the EEG signal. 
However, this also increases computational cost and the risk of 
overfitting, especially when training data is limited. An appropriate 
number of convolutional kernels and BiLSTM units can effectively 
capture spatio-temporal features while mitigating overfitting. To find 
the balance between model complexity and performance, 
we  conducted extensive preliminary experiments. The number of 
kernels in each residual block of models M5 to M8 is twice that of M1 
to M4, respectively. The two convolutional layers within each residual 
block employ an identical number of convolutional kernels. The 
number of BiLSTM units of models M1, M2, M5, and M6 are equal 
that is 64, and that is 128 in models M3, M4, M7, and M8. The number 
of neurons in the FC1 layer of models M1, M3, M5, and M7 are equal 
that is 128, and that is 256  in models M2, M4, M6, and M8. The 
models are trained and tested using data augmentation scheme-1 and 
scheme-2. The detailed specifications of these models and their 
corresponding parameter quantities are presented in Table 2. The 
values of the hyper-parameters in Table 2 are based on preliminary 
experimental experiences. The optimal model and data augmentation 
scheme from these experiments are applied to other epileptic seizure 
classification tasks.

The performance disparities among these eight models are 
illustrated in Figure 3. It can also be clearly seen that the performance 
of scheme-2 is better than scheme-1. For two-category, three-category, 
and five-category classifications, the average accuracy of augmentation 
scheme-2 surpass those of augmentation scheme-1 by 1.05, 1.70, and 
7.17%, respectively. Almost similar results can be observed for other 
performance metrics. Therefore, scheme-2 is adopted in all other 
experiments in this study.

Using Scheme-2, we conducted a comparative analysis between 
models M1-M4 and models M5-M8, revealing that in the case of the 
two-category classification task, the variation in the number of 
kernels in the residual block does not significantly impact 
performance. However, for the three-category and five-category 
classification tasks, an increase in the number of kernels within the 
residual block markedly enhances model performance. 
Consequently, we  proceed to select the optimal model from the 
models M5-M8. In the comparison between M5 and M6 utilizing 64 
BiLSTM neurons and M7 and M8 employing 128 neurons, the 
findings indicated superior performance for the 128 BiLSTM neuron 
model in the two-category classification tasks. However, in the 
three-category and five-category classification tasks, the 64-neuron 
model exhibited superior performance. Upon comparing models M5 
and M7, which utilize 128 neurons in the FC1 layer, with models M6 
and M8 employing 256 neurons, it is evident that the model with 128 
neurons performs better in identifying the five classification tasks. 
Overall, model M5 has the best average performance, with accuracy, 
precision, recall and F1 score of 96.75, 96.85, 96.73, and 96.76, 
respectively.

To further optimize hyper-parameters, we  conducted a 
comparative study on network depth. Using model M5 as a base, 
we adjusted either the number of residual blocks in the ResNet or 
the number of layers in the BiLSTM network. When reducing the 
depth of the ResNet module, we  removed the corresponding 
residual blocks from model M5. For the configuration with 4 
residual blocks, we added an additional residual block after the 
third block of model M5, with 128 kernels, a kernel size of 5×1, and 
a stride of 1. For the configuration with 5 residual blocks, we further 
added another residual block with 256 kernels, a kernel size of 5×1, 
and a stride of 2. When increasing the depth of the BiLSTM 
network, the number of neurons per layer remained consistent. The 
experimental results are presented in Table 3. From Table 3, it is 
evident that models with a certain depth of residual networks 
perform better, while different depths of BiLSTM do not show a 
significant impact on model performance. For the binary 
classification task of detecting epileptic seizures, the model achieved 
optimal performance with 5 residual blocks and a single-layer 
BiLSTM, attaining an accuracy of 99.88%, precision of 100.00%, 
recall of 99.75%, and F1 score of 99.87%. For the three-category 
classification task, the best performance was achieved with 4 
residual blocks and one layer BiLSTM, with an accuracy of 99.23%, 
precision of 99.34%, recall of 99.31%, and F1 score of 99.32%. For 
the most challenging five-class classification task, the optimal 
configuration was 3 residual blocks and a two-layer BiLSTM, 
achieving an accuracy of 91.60%, precision of 91.76%, recall of 
91.60%, and F1 score of 91.57%.

Deeper models have more learnable parameters, which can lead 
to overfitting when there is insufficient training data. As shown clearly 
in Table  3, while increasing the network depth can improve the 
model’s performance in specific epilepsy detection tasks, it can also 
lead to a decline in performance for other detection tasks. Therefore, 
considering the model size, recognition accuracy, and generalization 
ability, we selected the M5 model, configured with 3 residual blocks 
and one layer BiLSTM, as the optimal model for subsequent epilepsy 
detection experiments and comparative analysis with 
other approaches.
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3.2 Comparisons with the baseline models

The empirical analysis is compared with baseline approaches, 
including ResNet, LSTM, and BiLSTM, across two-category, three-
category, and five-category epilepsy detection tasks. Figure  4 
illustrates the ResBiLSTM model’s dominance, followed by the 
ResNet model, with the BiLSTM and LSTM models showing 
comparatively lower performance. In epilepsy onset detection, all 
methods surpassing 96% in epilepsy onset detection. The ResBiLSTM 
performed the best, followed by the ResNet model. The ResNet 
model consistently outperforms the BiLSTM and LSTM models by 
over 2% across all measures. In the case of the complex three-
category classification task, the ResBiLSTM model demonstrates 
superior performance, surpassing the ResNet, BiLSTM, and LSTM 
models by 0.49, 4.99, and 7.15% in accuracy, respectively. The 
ResBiLSTM model exhibits a similar advantage across other 
performance metrics. In the intricate five-category classification 
problem, the ResBiLSTM model exhibits distinct advantages  
over other models, leading by margins of 4.76–23.84% across  
various metrics. The funding shows that the increasing complexity of 
the recognition tasks accentuates the superiority of the 
ResBiLSTM model.

To comprehensively assess the performance disparities among 
various methods during the testing procedure, Figure 5 exhibits the 
test accuracy and loss of the four methods throughout the initial-fold 
CV testing. The two-category classification performance comparison 
is displayed in Figure 5A. Both the ResBiLSTM model and ResNet 
model exhibit excellent performance, demonstrating similar accuracy 
close to 100%. In the three-category classification comparison 
depicted in Figure 5B, the ResBiLSTM model outperforms the ResNet 
model slightly and significantly surpasses the BiLSTM and LSTM 
models. Additionally, the BiLSTM model demonstrates superior 
performance compared to the LSTM model. The five-category 
classification performance, as shown in Figure 5C, indicates that the 
ResBiLSTM achieves the highest accuracy across the entire testing 
process. Notably, the proposed model demonstrates a notably faster 
convergence rate compared to other methods.

To analyze the epileptic detection performance of each condition, 
the confusion of models ResNet, LSTM, BiLSTM, and ResBiLSTM are 
depicted in Figure 6. The row and column in these confusion matrices 
indicate the true labels and predicted labels. It can be seen that the 
primary source of error arises notably from the misclassification of the 
samples within sets C and D, subsequently followed by 
misclassifications within sets A and B. Furthermore, The 

FIGURE 3

Comparison of evaluation metrics of each model using two data augmentation schemes: (A) Accuracy, (B) Precision, (C) Recall, (D) F1-score. Among 
them, blue represents scheme-1, red represents scheme-2, dot-dash line and dot represents two-category detection, solid line and triangle represents 
three-category detection, and dash line and square represents five-category detection.
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misclassification of ResBiLSTM is relatively better than that of 
other approaches.

3.3 Comparison between various seizure 
detection tasks on Bonn dataset

We conducted three group experiment of epilepsy recognition, 
using the M5 model, and using data augmentation scheme-2: (i) 
two-category classification tasks (A-E, B-E, C-E, D-E, AB-E, CD-E, 
C-DE, ABCD-E), (ii) three-category classification tasks (A-C-E, 
A-D-E, B-C-E, B-D-E, AB-CD-E), (iii) five-category classification 
task (A-B-C-D-E).

Figure 7 demonstrates that the classification problem concerning 
the onset of epilepsy exhibits the fastest convergence speed and the 
highest accuracy. On the other hand, the accuracy of the two-category 
classification problem, aimed at detecting epileptic seizure regions 
(C-DE), requires improvement. The detailed average experimental 
performances are presented in Table 4. In the two-category epileptic 
seizure recognition tasks (A-E, B-E, C-E, D-E, AB-E, CD-E, ABCD-E) 
which are used to identify seizures, all evaluation indicators exceeded 
99%. Notably, the A-E and C-E classification tasks achieved perfect 

scores of 100% across all evaluation metrics. However, for the C-DE 
classification task identifying epileptogenic zone, the accuracy, 
precision, recall, and F1-score are 89.42, 91.71, 92.50, and 88.04%, 
respectively. While the two-category classification experiment for 
identifying the presence of epilepsy seizures is relatively 
straightforward, distinguishing the epileptogenic zone proves to 
be more challenging due to the sets C and D are both collected from 
the interictal periods of epileptic patients. The three-category 
classification experiments aimed to distinguish healthy, interictal, and 
ictal. Notably, both B-C-E and B-D-E demonstrated better 
performance, with all indicators exceeding 99.45%. However, the 
model exhibited relatively weaker performance on the A-C-E 
classification task, with accuracy, precision, recall, and F1 values of 
98.88, 98.89, 98.88, and 98.87%, respectively. Moreover, all average 
indicators in the five-category classification experiment surpassed 
91.2%. The identification of five-category classification problems 
presents the greatest challenge.

The t-distributed stochastic neighbor embedding (t-SNE) serves 
as a widely-used statistical method for dimension reduction and 
visualization. Its adoption aids in gauging the discriminative nature of 
the extracted features. Figure 8 presents the t-SNE visualizations of the 
output features from the ResNet and BiLSTM module. Figure 8A 

FIGURE 4

Comparison of performance with baseline approaches: (A) two-category, (B) three-category, (C) five-category.

TABLE 3 Performance of models with various network layer configurations.

Configuration Residual Block 1 2 3 4 5 3 3

BiLSTM Layers 1 1 1 1 1 2 3

Two-category Accuracy 98.56 99.31 99.75 99.75 99.88 99.75 99.56

Precision 99.01 99.50 99.88 99.88 100.00 99.88 99.75

Recall 98.13 99.13 99.63 99.63 99.75 99.63 99.38

F1-Score 98.56 99.31 99.75 99.75 99.87 99.75 99.56

Three-category Accuracy 97.48 98.58 99.23 99.23 98.98 98.90 99.03

Precision 97.78 98.71 99.30 99.34 99.13 99.03 99.19

Recall 97.46 98.67 99.29 99.31 98.98 98.88 99.08

F1-Score 97.60 98.68 99.29 99.32 99.05 98.95 99.12

Five-category Accuracy 77.98 85.78 91.28 90.93 90.85 91.60 90.85

Precision 78.64 86.15 91.38 91.02 91.02 91.76 91.01

Recall 77.98 85.78 91.28 90.93 90.85 91.60 90.85

F1-Score 77.41 85.66 91.24 90.93 90.83 91.57 90.82

The bold font highlights the best result among the different methods.
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demonstrates that the features extracted by the ResNet module from 
the EEG signals can preliminarily differentiate healthy (sets A and B), 
interictal (sets C and D), and ictal (set E) states. Notably, there exists 
considerable overlap between EEG sets C and D, both acquired from 

the interictal period. Moreover, Figure  8B demonstrates that the 
incorporation of BiLSTM module to capture the temporal 
dependencies results in the acquisition of more discriminative EEG 
features. It leads to a notable expansion in inter-category distances and 
a reduction in intra-category distances. These experimental findings 
collectively indicate the model’s ability to achieve exceptional 
recognition performance across various epilepsy detection tasks.

3.4 Seizure detection tasks on TUSZ 
dataset

We employed both 5-fold and 10-fold CV strategies using the 
ResBiLSTM model to identify seven types of epileptic seizures on the 
TUSZ dataset. The confusion matrices of the classification results are 
shown in Figure 9, with Figure 9A depicting the 5-fold CV confusion 
matrix and Figure 9B depicting the 10-fold CV confusion matrix. From 
Figure 9A, it is evident that under the 5-fold CV conditions, the FNSZ 
seizure type achieved the highest recognition accuracy at 95.97%, while 
SPSZ had the lowest accuracy at 85.69%. The most severe 
misclassification was SPSZ being incorrectly classified as FNSZ, with a 
misclassification rate of 9.02%. From Figure 9B, under the 10-fold CV 
conditions, the average recognition accuracies for FNSZ, GNSZ, CPSZ, 
ABSZ, TNSZ, SPSZ, and TCSZ were 96.40, 93.89, 93.72, 93.96, 90.27, 
87.84, and 90.21%, respectively. Compared to the 5-fold CV results, 
there were significant improvements in the recognition accuracies for 
SPSZ, FNSZ, and TCSZ, with increases of 2.15, 0.43, and 0.41%, 
respectively. The highest misclassification rate was still SPSZ being 

FIGURE 5

Testing accuracy and loss of these models on recognition tasks: (A) two-category, (B) three-category, (C) five-category.

FIGURE 6

Confusion matrix of models in five-category detection task: 
(A) ResNet, (B) LSTM, (C) BiLSTM, and (D) ResBiLSTM.
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misclassified as FNSZ, with a misclassification rate of 8.14%. Overall, 
the average recognition accuracy and weighted F1 score for the 
ResBiLSTM model were 94.76 and 94.77% for the 5-fold CV, and 95.03 
and 95.03% for the 10-fold CV, respectively, indicating that the 10-fold 
CV results were slightly better than those of the 5-fold CV.

4 Discussion

4.1 Limitations of previous studies and 
advantages of the ResBiLSTM model

Epileptic seizure detection algorithms are crucial for providing 
timely and accurate diagnosis, which is essential for effective treatment 
and management of epilepsy. These algorithms can significantly 
improve patient outcomes by enabling early intervention and reducing 
the risk of seizure-related complications. Traditional epileptic seizure 
detection algorithms typically rely on hand-crafted feature extractors 
combined with machine learning algorithms. The quality of these 
features is highly dependent on the expertise and experience of the 
designer. Since these feature extractors are tailored for specific datasets 
or tasks, their generalizability across different datasets or tasks is 
limited. Additionally, traditional methods separate feature extraction 
and classification, lacking end-to-end learning capabilities. This 
separation means the model cannot adjust the feature extraction 
process based on the final classification outcomes, thus limiting 
overall performance. To address these issues, several end-to-end 
DL-based algorithms for epileptic seizure detection have emerged. 
These algorithms primarily include CNN-based methods, RNN-based 
methods, and hybrid models combining both CNN and RNN. CNNs 
are highly effective at capturing and extracting spatial features from 
raw EEG data, eliminating the need for hand-crafted feature 
extractors. Due to the parallel computation nature of convolution 
operations, CNN models offer faster training and inference speeds. 
However, CNNs have limited ability to handle time-series data and 

capture the temporal dynamics of EEG signals, which may restricts 
their accuracy in epileptic seizure detection. RNNs, particularly LSTM 
networks and BiLSTM networks, excel at capturing temporal 
dynamics in sequential data. LSTM networks can capture long-term 
dependencies in EEG signals, which is crucial for epileptic seizure 
detection. Nonetheless, RNNs have high computational complexity, 
longer training times, and are challenging to parallelize. RNNs also 
encounter issues such as gradient vanishing and exploding when 
handling long sequences, though LSTM and BiLSTM mitigate these 
problems to some extent. To leverage the advantages of both CNNs 
and RNNs, hybrid models utilize the spatial feature extraction 
capabilities of CNNs along with the temporal feature capturing 

FIGURE 7

Testing accuracy in each task of EEG signal classification for epilepsy detection. Among them, dot-dash lines represent two-category classification, 
solid lines denote three-category classification, and a dashed line represents five-category classification.

TABLE 4 The average performance of all experiment tasks using 10-fold 
CV with model M5 (%).

Class 
labels

Accuracy Precision Recall F1-
score

A-E 100.00 100.00 100.00 100.00

B-E 99.88 99.88 99.88 99.87

C-E 100.00 100.00 100.00 100.00

D-E 99.75 99.88 99.63 99.75

AB-E 99.92 99.88 99.88 99.91

C-DE 89.42 91.71 92.50 88.04

CD-E 99.71 99.75 99.38 99.67

ABCD-E 99.83 99.88 99.25 99.73

A-C-E 98.88 98.89 98.88 98.87

A-D-E 99.04 99.06 99.04 99.04

B-C-E 99.46 99.47 99.46 99.46

B-D-E 99.46 99.47 99.46 99.46

AB-CD-E 99.23 99.30 99.29 99.29

A-B-C-D-E 91.27 91.38 91.27 91.24
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abilities of RNNs, providing a more comprehensive solution for 
epileptic seizure detection. Although current hybrid models excel in 
binary classification tasks for epileptic seizure detection, there is 
considerable potential for enhancing both recognition accuracy and 
generalization capability in multi-category classification tasks.

Inspired by these studies, we propose the ResBiLSTM model for 
epileptic seizure detection. ResBiLSTM first utilizes a ResNet to 
automatically extract local spatial features from EEG signals. 
Subsequently, a BiLSTM network captures the temporal dynamics 
within these EEG features. The ResNet addresses the vanishing 
gradient problem in deep networks by introducing skip connections, 
enabling the training of deeper networks and the extraction of richer 
features. The BiLSTM network, on the other hand, simultaneously 

considers the forward and backward dependencies in time series 
data, capturing long-term dependencies that are crucial for a 
comprehensive understanding of signal variations, which is 
particularly important for epileptic seizure detection. Experimental 
results demonstrate that the ResBiLSTM model effectively combines 
the strengths of CNNs and RNNs. Comparative analysis with baseline 
approaches such as ResNet, LSTM, and BiLSTM illustrates the 
superior performance of the proposed ResBiLSTM model across 
these tasks, with its increasing advantage becoming more prominent 
as the task complexity escalates. By enhancing the extraction of both 
spatial and temporal features, ResBiLSTM improves recognition 
accuracy and generalization ability, making it a highly effective 
method for epileptic seizure detection.

FIGURE 8

Two-dimensional t-SNE visualization of the features at the output layer of (A) ResNet, (B) BiLSTM.

FIGURE 9

Classification confusion matrix for seven seizure types: (A) 5-fold CV, (B) 10-fold CV.
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4.2 Evaluation of data augmentation 
strategies and model hyperparameter 
tuning

Using the Bonn dataset, we validated the efficacy of the proposed 
model across three distinct classification tasks: two-category, three-
category, and five-category epilepsy detection tasks. Experimental 
results indicate that employing data augmentation scheme-2, which 
involves segmenting EEG signals and adding slight white noise, 
significantly enhances the performance of the ResBiLSTM model 
compared to using data augmentation scheme-1, which only involves 
non-overlapping segmentation. This improvement is attributed to the 
fact that scheme-2 generates a larger volume of training data. 
Consequently, for epileptic seizure detection, exploring more effective 
methods to generate extensive training datasets for better DL model 
training is a promising area of research.

Additionally, the experimental results for finding the optimal 
hyper-parameters of the model indicate that using more network 
nodes in ResBiLSTM enhances its expressive power, leading to higher 
recognition accuracy. However, having too many nodes can result in 
overfitting. For the binary classification task of detecting epileptic 
seizures, the model performs better with deeper residual layers. 
However, for the three-class and five-class classification tasks, a 
moderate depth of residual layers yields the best performance. 
Increasing the depth of the BiLSTM network did not show a consistent 
pattern in performance improvement. In summary, adjusting the 
network layer depth can indeed improve accuracy for specific 
classification tasks but may also reduce accuracy for others. Therefore, 
further fine-tuning of the network depth and the number of nodes 
might help identify an even better model configuration.

4.3 Comparison and interpretation of 
evaluation metrics

In our study, we  employed multiple metrics to evaluate the 
performance of our ResBiLSTM model. For the Bonn epilepsy dataset, 
we used accuracy, precision, recall, and F1-score as evaluation metrics. 
For the TUSZ epilepsy seizure type detection dataset, which is highly 
imbalanced, we used accuracy and weighted F1-score as evaluation 
metrics. The experimental results demonstrate that our ResBiLSTM 
model performs exceptionally well across these evaluation metrics.

The Accuracy metric indicates the proportion of correctly 
predicted instances out of the total instances. While it provides a 
general measure of model performance, it can be  misleading in 
imbalanced datasets where the number of instances in each class 
varies significantly. The precision metric measures the proportion of 
true positive predictions out of all positive predictions made by the 
model. High precision indicates that the model makes fewer false 
positive errors. The recall metric measures the proportion of true 
positive predictions out of all actual positive instances. High recall 
indicates that the model successfully identifies most of the positive 
instances, which is critical in medical diagnosis scenarios such as 
epileptic seizure detection, as missed diagnoses (false negatives) can 
have severe consequences. The F1-score is the harmonic mean of 
precision and recall, providing a single metric that balances both. It is 
particularly useful when the importance of precision and recall needs 
to be balanced. The weighted F1-score takes into account the support 

(the number of true instances) for each class, calculating the F1-score 
for each class independently and then computing their weighted 
average. This metric is especially useful for imbalanced datasets as it 
provides a more comprehensive measure of overall model performance.

For the Bonn epilepsy dataset, the combination of accuracy, 
precision, recall, and F1 score provides a holistic view of the model’s 
performance. Precision and recall are particularly important in 
medical diagnostics, where false positives and false negatives have 
significant implications. Compared to the baseline methods (ResNet, 
LSTM, and BiLSTM), the ResBiLSTM model exhibits superior 
performance across all four metrics. Moreover, these advantages 
become increasingly pronounced as the classification tasks grow more 
complex. For the TUSZ dataset, the use of the weighted F1 score is 
crucial due to the dataset’s imbalance. The weighted F1 score ensures 
that the model’s performance is not biased towards the majority class 
and provides a balanced evaluation across all classes. Our model’s high 
weighted F1-score indicates its robustness and reliability in handling 
imbalanced data, which is common in real-world medical applications.

In summary, the comprehensive evaluation using these metrics 
shows that the ResBiLSTM model not only achieves high overall 
accuracy but also excels in reducing errors and maintaining balanced 
performance across classes, making it a reliable tool for 
clinical applications.

4.4 Comparison with other state-of-the-art 
approaches

Comparative experiments were conducted between the proposed 
model and several recent state-of-the-art approaches for epileptic 
seizure detection. A total of 14 recognition tasks on Bonn dataset were 
performed, comprising eight two-category tasks, five three-category 
tasks, and one five-category task. Table 5 presents a comparison with 
recent DL approaches from the literature, including an RNN-based 
method (Tuncer and Bolat, 2022b), and several hybrid-based methods 
(Xu et al., 2020; Ahmad et al., 2023; Pandey et al., 2023; Qiu et al., 
2023; Shanmugam and Dharmar, 2023; Wang et al., 2023).

As shown in Table  5, our proposal achieves best results in 
two-category classification tasks (A-E, C-E, D-E, AB-E, CD-E, ABCD-E). 
In the B-E classification task, our proposed method demonstrates a 
slightly lower accuracy of 99.88% compared to other methods. Notably, 
In the C-DE classification task, aimed at identifying the epileptogenic 
zone, the method in Tuncer and Bolat (2022b) outperforms ours by 
10.58% in accuracy, while our model surpasses it by 11.23% in the 
AB-CD-E three-classification task. It is important to note that Tuncer and 
Bolat (2022b) only conducted experiments for binary and three-category 
classifications, where their model showed high performance in specific 
binary tasks. In contrast, our ResBiLSTM model demonstrated robust 
performance not only in binary and three-category classifications but also 
in more complex five-class tasks. Two factors may contribute to the 
observed discrepancy in accuracy between our study and Tuncer et al.’s 
study. Firstly, Tuncer and Bolat (2022b) used a feature extraction approach 
involving instantaneous frequency and spectral entropy from EEG 
signals, which are effective in capturing the underlying characteristics of 
epileptic activity. These features are specifically designed to enhance the 
separability of epileptic and non-epileptic events in binary classification 
tasks. Our study, while utilizing a more complex model, did not focus on 
these specific features, which may have contributed to the difference in 
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performance. Secondly, binary classification tasks, such as those 
performed by Tuncer and Bolat (2022b), are generally less complex than 
multi-class classification tasks. Their model was optimized for binary 
classification, allowing it to achieve higher accuracy in those specific tasks. 
Our model was designed to handle a wider range of classification 
challenges, including more challenging three-category and five-
category scenarios.

In three-category classification tasks (A-D-E, B-C-E, B-D-E, AB-CD-
E), our proposed approach demonstrates the best performance. For the 
A-C-E classification task, our model achieves a recognition accuracy of 
98.88%, slightly lower by 0.45% compared to the approach discussed in 
Pandey et al. (2023). Notably, the performance of the method in Pandey 
et al. (2023) was not assessed for the model’s generalization ability and was 
limited to a three-category classification problem in their literature. In the 

five-category classification task, the method (Shanmugam and Dharmar, 
2023) achieves the highest accuracy, closely followed by our model, with 
an epilepsy recognition accuracy of 92.50, 1.23% higher than our 
proposed model. However, our model’s accuracy in the AB-CD-E 
classification task exceeds that of Shanmugam and Dharmar (2023) by 
2.15%. Therefore, our model exhibits superior efficacy and adaptability in 
various epilepsy recognition and classification tasks compared to 
other methods.

Table 6 offers a comparative analysis of the ResBiLSTM method 
against recent state-of-the-art studies for classifying the same seven 
epileptic seizure types. Notably, ResBiLSTM outperforms other 
methods in terms of classification performance. Li et  al. (2020) 
introduced a channel-embedding spectral-temporal squeeze-and-
excitation network (CE-stSENet) with maximum mean 

TABLE 5 The comparison between the ResBiLSTM and other recent DL state-of-the-art methods using the Bonn dataset.

Class labels Publication year and author Methodology Acc(%) Our Acc(%)

A-E Tuncer and Bolat (2022b) BiLSTM 100 100

Wang et al. (2023) CNN + LSTM 100

Qiu et al. (2023) ResNet + LSTM 100

B-E Tuncer and Bolat (2022b) BiLSTM 100 99.88

Wang et al. (2023) CNN + LSTM 100

Qiu et al. (2023) ResNet+LSTM 100

C-E Tuncer and Bolat (2022b) BiLSTM 100 100

Wang et al. (2023) CNN + LSTM 98.2

Qiu et al. (2023) ResNet + LSTM 99.78

D-E Tuncer and Bolat (2022b) BiLSTM 96 99.75

Wang et al. (2023) CNN + LSTM 97.6

Ahmad et al. (2023) CNN + BiLSTM 99.41

Qiu et al. (2023) ResNet + LSTM 99.57

AB-E Xu et al. (2020) CNN + LSTM 99.39 99.92

Wang et al. (2023) CNN + LSTM 98.3

C-DE Tuncer and Bolat (2022b) BiLSTM 100 89.42

CD-E Wang et al. (2023) CNN + LSTM 97.9 99.71

ABCD-E Tuncer and Bolat (2022b) BiLSTM 96 99.83

Wang et al. (2023) CNN + LSTM 98.7

A-C-E Shanmugam and Dharmar (2023) CNN + LSTM 97.43 98.88

Pandey et al. (2023) CNN + LSTM 99.33

A-D-E Shanmugam and Dharmar (2023) CNN + LSTM 97.36 99.04

B-C-E Shanmugam and Dharmar (2023) CNN + LSTM 99.09 99.46

B-D-E Shanmugam and Dharmar (2023) CNN + LSTM 99.37 99.46

AB-CD-E Tuncer and Bolat (2022b) BiLSTM 88 99.23

Wang et al. (2023) CNN + LSTM 98

Shanmugam and Dharmar (2023) CNN + LSTM 97.08

Qiu et al. (2023) ResNet+LSTM 98.17

A-B-C-D-E Xu et al. (2020) CNN + LSTM 82 91.27

Shanmugam and Dharmar (2023) CNN + LSTM 92.5

Ahmad et al. (2023) CNN + BiLSTM 84.1

Qiu et al. (2023) ResNet + LSTM 90.17

The bold font highlights the best result among the different methods.
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discrepancy-based information maximizing loss, achieving an 
accuracy of 92.00% and a weighted F1 score of 93.69%. Jia et al. (2022) 
developed variable weight convolutional neural networks (VWCNNs) 
for seizure classification, attaining an accuracy of 91.71% and a 
weighted F1 of 94.00%. Zhang et al. (2022) implemented a variational 
mode decomposition (VMD) technique and nonlinear twin support 
vector machine (NLTWSVM), recording an accuracy of 92.29% and 
weighted F1 of 92.30%. Li et al. (2022) utilized fast Fourier transform 
(FFT) and a graph-generative neural network (GGN) for dynamic 
brain functional connectivity analysis, holding out (HO) 2/3 of EEG 
data for training and 1/3 for testing, achieving 91.00% accuracy and 
weighted F1. Huang et  al. (2023) proposed an end-to-end 3D 
convolutional multiband seizure-type classification model with 
attention mechanisms, reaching an accuracy of 94.47% and weighted 
F1 of 94.38%. In comparison, our ResBiLSTM model demonstrated 
excellent classification performance, achieving an accuracy of 94.76% 
and a weighted F1 score of 94.77% with 5-fold CV, and an accuracy of 
95.03% and a weighted F1 score of 95.03% with 10-fold CV.

The ResBiLSTM model not only demonstrates excellent 
performance on single-channel EEG datasets (Bonn dataset) but also 
excels on multi-channel EEG datasets (TUSZ). This further indicates 
that the ResBiLSTM model, with its well-integrated capabilities of 
local spatial feature extraction by the ResNet and long-term temporal 
dependency modeling by the BiLSTM network, possesses strong 
generalization ability.

5 Limitations and future directions

In this study, we presented the ResBiLSTM model for epileptic 
seizure detection, demonstrating robust performance on both the 
Bonn and TUSZ datasets. However, it is crucial to acknowledge the 
intrinsic variability and potential imprecision inherent in EEG signals, 
which pose significant challenges for machine learning model. The 
variability of EEG signals, caused by factors such as physiological 
differences, electrode placement inconsistencies, environmental 
interference, subject state changes, and equipment variability, can 
significantly impact model performance. While effective in controlled 
datasets, the current ResBiLSTM model may encounter difficulties in 
handling noisy and atypical data, which are common in real-world 
clinical settings. Two key limitations point towards areas for further 
research. Firstly, our current approach’s handling of data uncertainty 
is a limitation. The model treats the input data deterministically, 
potentially leading to less robust performance in the presence of 

substantial noise and outliers. Secondly, while our study utilizes the 
Bonn and TUSZ datasets, we recognize the importance of expanding 
our training data to enhance the model’s generalizability to unseen 
data. A more extensive and diverse dataset can help mitigate the risks 
of overfitting and improve the robustness of the model in real-
world applications.

Incorporating fuzzy logic could enhance the model’s resilience to 
noisy and atypical data variations (Versaci et al., 2022; Zhou et al., 
2022). To address the issue of EEG signal uncertainty, we plan to 
integrate fuzzy logic principles in our future research. Fuzzy logic can 
manage data imprecision and ambiguity by providing probabilistic or 
membership degree-based evaluations, thus reflecting the uncertainty 
inherent in EEG signal classification. To expand the number of 
training data, future research will focus on incorporating additional 
public EEG datasets. By including data from a variety of sources, 
we aim to provide our model with a broader spectrum of EEG signal 
characteristics. This diversity is essential for training a model capable 
of handling the wide range of variations present in real-world EEG 
data. Moreover, we  will explore the generation of synthetic data 
through data augmentation techniques, such as employing generative 
adversarial networks (GANs), to enhance the model’s ability to 
generalize across different scenarios.

6 Conclusion

With the increasing volume and complexity of EEG data, DL 
approaches demonstrate their capability to handle the chaotic nature 
of EEG signals, creating new possibilities in challenging biomedical 
applications such as epileptic seizure detection. This work introduces 
a novel hybrid DL model that combines the strengths of a CNN-based 
network and an RNN-based network, utilizing ResNet for extracting 
local spatial features and BiLSTM for learning temporal dependencies. 
Experimental results from the Bonn and TUSZ datasets underscore the 
efficacy and adaptability of our proposed ResBiLSTM model across a 
range of epileptic seizure detection scenarios. Moreover, the proposed 
methodology can be utilized for identifying other related disorders, 
with significant implications for clinical diagnosis and analysis.

Data availability statement

Publicly available datasets were analyzed in this study. 
This data can be  found here: the Bonn dataset is available at  

TABLE 6 Comparison with recent state-of-the-art approaches for classifying the same seven epileptic seizure types using the TUSZ dataset.

Publication year 
and author

Strategy Features Methodology Acc(%) Weighted F1(%)

Li et al. (2020) CV (5 folds) Raw EEG CE-stSENet 92.00 93.69

Jia et al. (2022) CV (5 folds) Raw EEG VWCNNs 91.71 94.00

Zhang et al. (2022) CV (10 folds) VMD NLTWSVM 92.29 92.30

Li et al. (2022) HO (2:1) FFT GGN 91.00 91.00

Huang et al. (2023) CV (5 folds) Raw EEG 3D-CBAMNet 94.47 94.38

ResBiLSTM (Proposed) CV (5 folds) Raw EEG ResBiLSTM 94.76 94.77

ResBiLSTM (Proposed) CV (10 folds) Raw EEG ResBiLSTM 95.03 95.03

The bold font highlights the best result among the different methods.
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https://repositori.upf.edu/handle/10230/42894, and the TUSZ dataset 
can be found at https://isip.piconepress.com/projects/nedc/html/
tuh_eeg/#c_tusz.
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