
TYPE Original Research

PUBLISHED 06 June 2024

DOI 10.3389/fncom.2024.1410335

OPEN ACCESS

EDITED BY

Horacio G. Rotstein,

New Jersey Institute of Technology,

United States

REVIEWED BY

Antonio C. Roque,

University of São Paulo, Brazil

Charles J. Wilson,

University of Texas at San Antonio,

United States

*CORRESPONDENCE

Adam Ponzi

apdp@chain.hokudai.ac.jp

†These authors have contributed equally to

this work

RECEIVED 01 April 2024

ACCEPTED 15 May 2024

PUBLISHED 06 June 2024

CITATION

Correa A, Ponzi A, Calderón VM and

Migliore R (2024) Pathological cell assembly

dynamics in a striatal MSN network model.

Front. Comput. Neurosci. 18:1410335.

doi: 10.3389/fncom.2024.1410335

COPYRIGHT

© 2024 Correa, Ponzi, Calderón and Migliore.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Pathological cell assembly
dynamics in a striatal MSN
network model

Astrid Correa1†, Adam Ponzi1,2*†, Vladimir M. Calderón3 and

Rosanna Migliore1

1Institute of Biophysics, National Research Council, Palermo, Italy, 2Center for Human Nature, Artificial

Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan, 3Department of Developmental

Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of

Mexico, Querétaro, Mexico

Under normal conditions the principal cells of the striatum, medium spiny

neurons (MSNs), show structured cell assembly activity patterns which alternate

sequentially over exceedingly long timescales of many minutes. It is important

to understand this activity since it is characteristically disrupted in multiple

pathologies, such as Parkinson’s disease and dyskinesia, and thought to be

caused by alterations in the MSN to MSN lateral inhibitory connections and in

the strength and distribution of cortical excitation to MSNs. To understand how

these long timescales arise we extended a previous network model of MSN

cells to include synapses with short-term plasticity, with parameters taken from

a recent detailed striatal connectome study. We first confirmed the presence

of sequentially switching cell clusters using the non-linear dimensionality

reduction technique, Uniform Manifold Approximation and Projection (UMAP).

We found that the network could generate non-stationary activity patterns

varying extremely slowly on the order of minutes under biologically realistic

conditions. Next we used Simulation Based Inference (SBI) to train a deep net

to map features of the MSN network generated cell assembly activity to MSN

network parameters. We used the trained SBI model to estimate MSN network

parameters from ex-vivo brain slice calcium imaging data. We found that best fit

network parameters were very close to their physiologically observed values. On

the other hand network parameters estimated from Parkinsonian, decorticated

and dyskinetic ex-vivo slice preparations were di�erent. Our work may provide a

pipeline for diagnosis of basal ganglia pathology from spiking data as well as for

the design pharmacological treatments.

KEYWORDS

basal ganglia, striatum, calcium image, pathology, network model, cell assembly,

Parkinson’s disease, Simulation Based Inference

Introduction

The striatum, the largest part of the basal ganglia (BG), is important in motor
control, action selection, and reinforcement learning. It is over 90% composed of
medium spiny neurons (MSNs), its only projection neurons. MSNs have been found to
be important for multiple cognitive functions including habit learning and formation
(Graybiel and Grafton, 2015), multisensory integration (Reig and Silberberg, 2014;
Coffey et al., 2016), and motivational control (Haber and Knutson, 2010; Sesack
and Grace, 2010; Lobo et al., 2013; Révy et al., 2014; Ikemoto et al., 2015). MSN
activity is controlled by feedforward glutamatergic input from the thalamus and cortex,
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as well as feedforward GABAergic input from striatal interneurons,
themselves driven by cortical excitation. Besides this MSNs also
receive inhibitory input from the extensive axonal collaterals
emmanating from other MSNs (Tunstall et al., 2002; Guzmán
et al., 2003; Tepper et al., 2004; Wickens et al., 2007; Wilson, 2007;
Taverna et al., 2008; Chuhma et al., 2011; López-Huerta et al., 2013;
Moyer et al., 2014; Dobbs et al., 2016; Wei et al., 2017), through
which they form a recurrent mutually inhibitory network. The
function of this network is not well-understood.

Various pathologies, like Parkinson’s disease (PD; Kish et al.,
1988), Huntington’s disease (Glass et al., 2000), depression (Francis
et al., 2015) addiction, and schizophrenia (Simpson et al., 2010)
are associated with striatal MSN dysfunction. Parkinson’s disease
is the second most common neurodegenerative condition in the
world (Blesa et al., 2017; Shen et al., 2022). It is caused by loss of
over half of the dopamine innervation to the striatum (Burke and
O’Malley, 2013). This alters MSN synaptic and cellular properties
which is thought to lead to an inbalance of the direct and indirect
BG pathways (Day et al., 2006; Kravitz et al., 2010; Gerfen and
Surmeier, 2011; Calabresi et al., 2014; Fieblinger et al., 2014; Suarez
et al., 2016; Parker et al., 2018) which between them promote
and inhibit movement. The inbalance results in motor deficits
like tremor, rigidity, hypokinesia and bradykinesia (Lees et al.,
2009; Obeso et al., 2017). Dopamine (DA) replacement with L-
DOPA provides an effective therapy in the short-term (Foley, 2000;
Mercuri and Bernardi, 2005; Lees et al., 2015; De Deurwaerdére
et al., 2017), but longer-term it produces a different set of motor
problems characterized by abnormal involuntary movements,
including chorea and dystonia, termed L-DOPA induced dyskinesia
(LID; Ahlskog and Muenter, 2001; Aquino and Fox, 2015; Sharma
et al., 2015; Picconi et al., 2017).

Animal models of PD demonstrate that loss of dopamine is
associated with changes to single unit MSN firing patterns (Day
et al., 2006; Mallet et al., 2006; Shen et al., 2007) as well as abnormal
synchronization and pathological oscillations in cell populations
(Raz et al., 1996; Moran et al., 2011; Quiroga-Varela et al., 2013)
which accord with symptoms in PD patients (Marreiros et al.,
2013; Oswal et al., 2013; Little and Brown, 2014). Sequential
neural ensemble activity in striatal cultures (Carrillo-Reid et al.,
2008, 2009; Pérez-Ortega et al., 2016; Lara-González et al., 2019,
2022; Serrano-Reyes et al., 2022) and ex-vivo brain preparations
from different transgenic animal models in multiple brain areas
(Ahrens et al., 2013; Lock et al., 2015; Carrillo-Reid et al., 2016;
Serrano-Reyes et al., 2020; Pérez-Ortega et al., 2021) has been
observed using fluorescent calcium imaging (Figure 1). While
control striatal preparations show definite repetitive sequences of
neuronal assembly transitions (Carrillo-Reid et al., 2008, 2009),
MSN population activity in 6OHDA dopamine depleted striatal
preparations, an animal model of PD, seems to become locked
into less varied and persistent activity patterns, reminiscent of
the pathological hypokinesia and rigidity symptoms shown in PD
(Jáidar et al., 2010, 2019; Plata et al., 2013a,b; Pérez-Ortega et al.,
2016). On the other hand LID preparations show more frequent
and complex cell assembly transitions (Pérez-Ortega et al., 2016;
Calderón et al., 2022) than control preparations, which is again
reminiscent of the dyskinetic abnormal involuntary movements
shown in this condition.

How these alterations in sequential cell assembly activity
patterns arise from altered striatal or cortical physiology is not
well-understood. In fact a cascade of numerous complex changes
occur at the cellular and synaptic levels in PD and LID (Blesa et al.,
2017; Shen et al., 2022). Under normal conditions DA modulates
intrinsic MSN excitability and synaptic connections, as well as
bidirectional corticostriatal synaptic plasticity. It is thought that
while DA reduction in PD initially causes an inbalance of activity
between BG direct and indirect pathways, subsequently this sets
off multiple homeostatic adaptations which try to normalize the
inbalance. For example, decreased dopamine levels in models of
PD alter dendritic spines on MSNs (McNeill et al., 1988; Ingham
et al., 1989; Stephens et al., 2005; Zaja-Milatovic et al., 2005; Day
et al., 2006; Villalba et al., 2009; Zhang et al., 2013; Fieblinger et al.,
2014; Suárez et al., 2014; Toy et al., 2014; Suarez et al., 2016),
which changes cortical and thalamic excitatory transmission. Other
studies find that reduced dopamine causes changes in intrinsic
cellular excitability and in the density of dopamine receptors
(Falardeau et al., 1988; Graham et al., 1990; Decamp et al., 1999;
Aubert et al., 2005; Chefer et al., 2008; Sun et al., 2013; Blesa
et al., 2017; Shen et al., 2022), produces altered pathological LTP
and LTD at cortical-striatal synapses (Centonze et al., 1999, 2001)
affecting cortical-striatal excitatory drive, and dramatically alters
MSN collateral inhibitory connections (Taverna et al., 2008; Flores-
Barrera et al., 2010; López-Huerta et al., 2013; Zhai et al., 2018).

LID is caused by the prolonged dopamine replacement
treatment for PD using the DA precursor L-DOPA (Barbeau,
1971; Blesa et al., 2017; Olanow and Stocchi, 2018; Calderón
et al., 2022). It was originally aimed at re-balancing the direct
and indirect pathways to allow normal processing of cortical
and thalamic inputs. But L-DOPA also induces multiple complex
persistent changes in the striatal circuit. Excess activity is found
in direct pathway MSNs (Huot et al., 2013; Bastide et al., 2015;
Yang et al., 2021), and multiple synaptic and cellular pathologies
are present such as dysregulated corticostriatal synaptic plasticity
(Picconi et al., 2003; Calabresi et al., 2015), altered glutamatergic
transmission (Garcia-Montes et al., 2019; Zheng et al., 2020),
maladaptive molecular mechanisms in MSNs (Finlay et al., 2014;
Eshraghi et al., 2020; Fieblinger, 2021) and altered firing patterns
and connectivity (Li et al., 2015; Tamté et al., 2016; Zheng et al.,
2020; Yang et al., 2021).

Here we take steps, using computational modeling, to try
to understand how aberrant striatal cell assembly population
dynamics relates to the complex array of underlying cellular and
synaptic pathophysiologies found in PD and LID. In previous work
(Ponzi and Wickens, 2008, 2010, 2012, 2013, 2022; Ponzi et al.,
2020) we showed that an inhibitory MSN network could generate
switching cell assembly activation patterns in good agreement
with experimental studies (Carrillo-Reid et al., 2008), providing
network parameters, in particular the strength and distribution
of excitatory driving and the strength of recurrent inhibition
between MSNs, was appropriate for the striatum. However when
network parameters are altered away from their true striatal
values, various types of pathological cell assembly dynamics can
be found (Ponzi and Wickens, 2012, 2022; Ponzi et al., 2020)
including patterns resembling those found in 6OHDA and LID
slices. Here we quantitatively estimate computational network

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1410335
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Correa et al. 10.3389/fncom.2024.1410335

FIGURE 1

Examples of Ca imaging slice data calculated from data in Pérez-Ortega et al. (2016) and Serrano-Reyes et al. (2022). (A) Control (CT), (B)

decorticated (DEC), (C) Parkinsonian (PD), and (D) dyskinetic (DYS). Figures have been calculated using code and methods taken from Serrano-Reyes

et al. (2022) with identical parameter settings. Time series are clustered using UMAP and the cells colored according to their assigned cluster in the

time series (upper left panels) and in the 3D UMAP projections (far right panels). Time series of total activity across cells is also shown (lower left

panels). Cluster sequential state transitions are also shown (middle panels) identified using methods and code also taken from Serrano-Reyes et al.

(2022). Here the colored circle indicates the cluster, and the lines indicate temporally sequential transitions between active clusters, with line color

the same as the initial cluster. Line thickness indicates the quantity of transitions. It should be noted that the appearance of these representations and

the quantity of clusters, can depend a lot on the quantity of recorded cells which varies between preparations.

model parameters from empirical slice data using the deep learning
framework, Simulation Based Inference (SBI). Since empirically
observed cell assembly patterns (Carrillo-Reid et al., 2008; Jáidar

et al., 2010; Pérez-Ortega et al., 2016; Lara-González et al., 2019,
2022) reverberate on exceedingly long timescales of minutes we first
extended our previous modeling to include short-term plasticity
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on the inhibitory collaterals between MSNs, with parameters taken
from a recent detailed connectome study (Hjorth et al., 2020),
to generate very long dynamical timescales. We varied network
parameters and trained the SBI deep net to map features of the
dynamical activity patterns generated by the model network, to the
network parameters. Subsequently we were able to test our trained
deep net on experimental control and pathological slice data to
provide insight into physiological changes occurring in PD and
LID. We discuss our findings in light of the experimental literature.

Materials and methods

Model
Wemade a model of theMSN-MSN network based on a striatal

connectome (Hjorth et al., 2020). We only included MSN cells of
one type without distinguishing the D1 and D2 subtypes, randomly
connected with inhibitory connections. Instead of the detailed cell
models used in Hjorth et al. (2020) we used the single compartment
cell model used in multiple previous studies (Mahon et al., 2000;
Ponzi et al., 2020) including multiple ion-channels, INa, IK , IKir ,
IAf , IAs, IKrp, and INaP, INaS which reproduces the delay to first
spike property of MSNs, as can be seen in the illustrative membrane
potential trace (Figure 2A).

Experimentally the distribution of the number of MSNs
connected to any given MSN peaks around 100 but has a long tail
(Hjorth et al., 2020). The mean appears to be around 160 (Hjorth
et al., 2020). Here synapses betweenMSNs are established randomly
with a a connection probability of 0.4. This connection probability
is slightly higher than it should be, which is around 0.3 (Hjorth
et al., 2020), but it keeps simulations a bit more tractable since we
only need 400 cells to achieve an average of 160 connections per cell
which is probably the most important quantity to respect. Thus, all
simulations reported here had 400 cells. Simulations lasted for 10
min. The long simulation periods were necessary for comparison
with ex-vivo Ca slice data recorded over several minutes.

The deterministic version (Fuhrmann et al., 2002) of the
Tsodyks-Markram synaptic short-term plasticity model (Tsodyks
and Markram, 1997) was used for the MSN-MSN synapses, as in
Hjorth et al. (2020),

dR

dt
=

(1− R(t))

D
− S(t)R(t)δ(t − tsp)

dS

dt
= −

S(t)

F
+ U(1− S(t))δ(t − tsp)

where the short-term depressing variable, R(t) models the fraction
of resources available, and short-term facilitation is modeled by
the utilization variable, S(t), and δ(t − tsp) is the presynaptic spike
at time tsp. After a spike the synaptic current increases rapidly
in proportion to the product R(t)S(t) and decays exponentially
otherwise. The detailed parameters are as follows: synaptic
utilization factor (U), 0.41, depression time constant (D), 222 ms,
facilitation time constant (F), 1,859 ms. The synaptic exponential
decay timescale was 20 ms, and the GABA reversal potential, -85
mV. These parameters were, as described in Hjorth et al. (2020),
taken from Table 1 in Planert et al. (2010). Due to the necessity
of very long simulations we were not able to explore multiple
different synaptic plasticity parameter values. We took the mean

values quoted for U and D, while for F we took the mean value plus
one standard deviation. We used the slightly longer F to increase
the dynamical timescale within the acceptable range, however a few
simulations where F was reduced to the mean value did not seem
to be much different. MSN-MSN synaptic delays were uniformly
random in the range 1–3 ms, (see Supplemental material for full
details).

To estimate the network parameters from slice data we
performed 200 network simulations of 10 min each, where the
strengths of lateral inhibition between MSNs, GI , and driving
excitation to MSNs, GE, were varied. This latter quantity, GE,
reflects several factors including the intrinsic MSN cellular
excitability, which can be controlled by various modulators such as
local dopamine concentration, as well as on the strength of cortical
and thalamic excitatory synaptic drive, and also on the strength
of feedforward inhibition from striatal fast spiking interneurons.
For any given simulation, GE, was uniformly drawn from the range
[0, 0.00002] and all MSN cells in the simulation were driven above
threshold by somatic current injection (IClamp) with uniform
random strength between 0.001305 and 0.001305 + GE which was
fixed for the duration of a simulation. For any given simulation,
the strength of lateral inhibition,GI , was uniformly drawn from the
range [0.002, 0.02] and all MSN synaptic weights were uniformly
random in the range 0.3125GI–0.9375GI .

These GI and GE ranges cover the acceptable range of IPSP
sizes and firing rates we expected to find in the slice data. The
maximum firing rate possible occurs when inhibition, GI , is zero
and GE = 2 × 10−5. This generates spiking at around 10 Hz,
as shown in Figure 2A. MSNs only spike at higher rates than
this when phasically driven in behavior and such rates are not
expected to occur in slices. As shown in Figure 2B peak IPSPs
at the maximum strength of inhibition, GI = 0.02, are around
1.5 mV, which is much larger than they are expected to be, while
at GI = 0.002 peak IPSPs are around 0.1 mV which is smaller
than they are expected to be. IPSPs are similar to experimentally
determined ones (Planert et al., 2010; Hjorth et al., 2020) which
peak between around 0.25 and 0.6 mV and decay over around 40
ms, [see Figure 8D(i, ii) in Hjorth et al., 2020]. Model simulation
code is available at: https://github.com/adampdp/MSNnetwork. All
network simulations are performed using the NetPyNE simulation
environment (Dura-Bernal et al., 2019) on the Piz Daint Cray
XC40/XC50 supercomputer of the Swiss National Supercomputing
Centre (CSCS).

To generate the “calcium activity” time series shown in
Figure 3, first spike times are recorded from each cell. Next the
spike times are turned into spike count time series using 250 ms
non-overlapping time bins. Next these spike count time series are
binarized according to whether there is at least one spike in each
250 ms window. This provides a method to compare network
spiking activity with calcium imaging data which is known to reflect
bursts of spiking, with the same 250 ms temporal resolution.

Simulation Based Inference
We used Simulation Based Inference to estimate network

parameters from slice data. From each of the 200 ten minute
simulations we extracted summary features. We first removed any
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FIGURE 2

(A) Membrane potential trace from MSN cell under excitation level GE = 1.5× 10−5, close to the top of the range of GE explored here. (B)

Depolarizing IPSPs from an MSN cell held at –80 mV with chloride reversal potential of –40 mV as in Planert et al. (2010) and Hjorth et al. (2020) with

several di�erent levels of GI = 0.002, 0.005, 0.01, 0.015 (see key), across the range of GI explored here. Experimentally determined mean peak IPSPs

(Planert et al., 2010) are between around 0.25 and 0.6 mV and decay over around 40 ms [see Figure 8D(i, ii) in Hjorth et al., 2020].

cells which did not spike at least once during the 10 minute
simulation. Next we converted the cell spikes rasters into binary Ca
rate time series with 250 ms bins, as described above. For each of
these binary time series we calculated three summary features and
used these to train the SBI estimator. The first feature was the mean
activity. For each cell we divided the total number of active bins by
the total number of bins, then we averaged this quantity across all
active cells. Next, for each cell we obtained the sequence of time
intervals between consecutive active bins. If a pair of temporally
adjacent bins were both active, it was counted as a zero interval.
We calculated the average interval and coefficient of variation of
the intervals (i.e., the interval standard deviation divided by average
interval) for each cell. The second and third summary features were
the averages of these quantities across all cells. We experimented
with other summary features but found these performed best.

Sometimes simulations fall to fixed-point attractor states,
reflecting permanent winners-take-all (WTA) states. An example
is shown in Supplementary Figure 1A. Since the full permanent
WTA is highly pathological and not expected to be found in
experimental slices, we removed simulations which displayed
this behavior before training the SBI estimator. To do this
we first calculated the total fluctuation of the network activity,
Supplementary Figure 1B(i). This is simply the coefficient of
variation (CV) of the mean network activity time series. Unlike
the three features used to train the SBI estimator, its value
strongly depends on the number of active cells. If the network
activity falls to a fixed point WTA state this quantity should
be zero (after removing a transient period). This occurs more
often when excitation, GE, is high and inhibition, GI , is low,
Supplementary Figure 1B(i). We removed all network simulations
from the SBI training with values <0.09 of this quantity. Notice
that the true values for the total fluctuation calculated from the
experimental slices, Supplementary Figure 1B(ii), crosses are much
higher than found in any simulations, Supplementary Figure 1B(i),
and much higher than the values calculated from the best fit
network simulations, Supplementary Figure 1B(ii), brown circles.
This is because the value of this quantity depends strongly on
the number of recorded active cells which is much lower in

experimental slices than in network simulations, and also varies
strongly across experimental slices. We found it was not feasible
to use this quantity as a summary feature for training the SBI
estimator because we would need to train the SBI estimator for each
experimental slice separately for its specific quantity of recorded
active cells (by sampling the appropriate quantity of the cells from
the network simulations).

We used Simulation Based Inference code available at:
https://sbi-dev.github.io/sbi/. Simulation-based inference offers a
powerful avenue for conducting Bayesian analysis without the
need for direct numerical evaluation of the likelihood function.
Instead, it relies on accessing simulations generated by the
underlying model. The core concept of Simulation-based inference
(SBI) involves creating a substantial dataset comprising pairs
of model parameters and corresponding simulated data. This
dataset then serves as training data for artificial neural networks
(ANNs), specifically designed to approximate complex probability
distributions. Here we used a Gaussian mixture model with
parameters comprising means, covariance matrices, and mixture
weights for each component. Training involves minimizing
the negative log likelihood of the parameterized distribution
evaluated at the training data. These ANNs, in turn, enable
the approximation of the likelihood, facilitating the generation
of posterior samples. SBI allows for the approximation of the
posterior distribution of parameters given observed data, using
only forward simulations. This circumvents the need to compute
potentially intractable log-likelihood functions and their gradients.
By incorporating a prior distribution over parameters, a stochastic
simulator, and observed data, SBI yields the posterior distribution
that best explains the observed data. Following training, these
neural networks are then deployed to analyze experimentally
observed data, providing an approximation of the posterior
distribution.

We used Neural Posterior Estimation (NPE) with the three
summary features described above for all 151 network simulations
with total fluctuation exceeding 0.09. Since results depend on the
initial conditions of the training we trained the estimator thirty
times on the same set of network simulations. Each time we left
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FIGURE 3

Time series examples from network simulations with di�erent levels of MSN-MSN mutual inhibition, GI, and MSN excitation, GE . (A) Best fit control,

CT, model, GI = 8.39× 10−3, GE = 1.06× 10−5. (B) Best fit decorticated, DEC, model, GI = 1.96× 10−2, GE = 1.02× 10−7. (C) Best fit Parkinsonian,

PD, model, GI = 6.77× 10−3, GE = 9.05× 10−6. (D) Best fit dyskinetic, DYS, model, GI = 8.5× 10−3, GE = 1.8× 10−5. (A–D) Analysis uses UMAP code

and methods directly taken from Serrano-Reyes et al. (2022) with identical parameter settings. Figure panels are as described in Figure 1. Model

generated 10 min long spike time series are converted to Ca activations with 250 ms time resolution (see Methods). Left panels show the first 6 min

for visibility of UMAP clustered cell activations, where the clustering is performed on all active cells (those which fire at least one spike during the

recording) over the first 6 min. Middle panels show the corresponding sequential cluster transition graphs. Far right panels shows the corresponding

3D UMAP projections.

out a random selection of twenty simulations as a test set. We
calculated the mean-squared error between the true inhibition, GI ,
and excitation, GE, parameter values for a given simulation and

the peak estimated values predicted by the trained SBI estimator,
(G∗

I − GI)2 + 9002(G∗

E − GE)2, and averaged this over the
twenty left-out simulations (the factor 900 is necessary because
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FIGURE 4

MSN-MSN mutual inhibition, G∗

I
, and cortical excitation, G∗

E
levels estimated using SBI for twelve randomly chosen simulations not used in SBI

training. The blue lines show the SBI generated marginal posterior distributions for inhibition G∗

I
and excitation, G∗

E
. The color plots show the joint

posterior distribution. Actual network parameter values, GI, and GE , are shown by the red lines on the marginal distribution plot and the red circle on

the joint distribution plot.

GI and GE vary over different ranges). We selected the winning
trained SBI with the minimummean-squared error from the thirty
obtained. Estimated posterior distributions calculated for 12 of

the 20 test-simulations for this winner SBI estimator are shown
in Figure 4. This trained estimator was applied to the Ca data
(Figure 5), using the same summary features to obtain the posterior
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FIGURE 5

MSN-MSN mutual inhibition, G∗

I
, and cortical excitation, G∗

E
levels estimated using SBI for (A) four control Ca imaging mouse slice data samples taken

from Serrano-Reyes et al. (2022) (CT), (B) two examples from another cohort of six control Ca imaging mouse slice data samples (MICE), (C) two

samples of a decorticated preparation (DEC), (D) two samples of a 6OHDA Parkisonian preparation (PD), (E) two samples of a dyskinetic preparation

after addition of L-DOPA (DYS). (A–E) The blue lines show the SBI generated marginal posterior distributions for inhibition G∗

I
and excitation, G∗

E
. The

color plots show the joint posterior distribution. Red lines and points show the maximum location.
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density over the parameters. One million samples were drawn for
the posteriors shown in Figures 4, 5.

To find the best fit network simulation corresponding to
each experimental slice condition we calculated the mean-squared
error, (G∗

I − GI)2 + 9002(G∗

E − GE)2, between the peak estimated
parameters for an experimental condition and the true parameters
for each network simulation out of the 151 network simulations
and used the simulation with the minimum of this quantity for
each condition.

Previously published calcium imaging data
The current work utilizes two data sets: (1) data published

by Pérez-Ortega et al. (2016), (2) unpublished data from mice
(see below). Here for easy reference we briefly describe the
previously published data, for full details see Pérez-Ortega et al.
(2016). (CT) Control slices. Horizontal corticostriatal slices (300
µm thick) were obtained from postnatal day (20–36) Wistar rats.
Microcircuit activity in the control striatum was activated using 5–
8 µM NMDA as the excitatory drive. Without an excitatory drive,
the striatal circuit is generally silent in the sense that significant
peaks of coactive neurons are virtually absent (Jáidar et al., 2010;
Plata et al., 2013a). However, in pathological states, the striatal
microcircuit is very active in the absence of any excitatory drive
(Jáidar et al., 2010; López-Huerta et al., 2013; Plata et al., 2013b).
Pathological conditions examined here were: (DEC) Decorticated
striatal microcircuits in which the cortex was detached from
the striatum in horizontal slices. In these preparations NMDA
was still used as excitatory drive (Pérez-Ortega et al., 2016).
(PD) Parkinsonian striatal microcircuits. These preparations were
obtained from the striatum of rats lesioned ipsilaterally in the
substantia nigra pars compacta with 6OHDA. These preparations
were tested for dopamine depletion with behavioral techniques.
Rats were tested for evoked turning behavior 8 days after the
surgery at postnatal day > 23. Animals rotating 450 turns or
more were selected for further studies. This behavior corresponds
to at least 90% of dopamine depletion. NMDA was not used here
as the activity is higher than in the controls in the absence of
any excitatory drive (Jáidar et al., 2010; López-Huerta et al., 2013;
Plata et al., 2013a,b; Pérez-Ortega et al., 2016). (DYS) L-DOPA
induced dyskinetic striatal microcircuits. Animals with severe
hemiparkinsonism, which increases the risk of development of LID,
were selected. Chronic L-DOPA treatment was administered for
15 days. The development of Abnormal Involuntary Movements
(AIMs) was monitored. Rats were considered dyskinetic when
they exhibited the main AIMs after chronic application of L-
DOPA. These preparations were also recorded in the absence of any
excitatory drive (Pérez-Ortega et al., 2016).

New unpublished calcium imaging data
Additional calcium imaging data were obtained from brain

slices from mice (C57BL/6J background) from unpublished
experiments using forementioned methodology and preparation
according to previous works (Aparicio-Juárez et al., 2019; Calderón
et al., 2022) with Calcium Orange (8.2 µM, 0.1% DMSO, 0.67%
Pluronic Acid) as calcium indicator. Squared recording sites were
in striatum tissue of 750 µm size during spontaneous activity.

We detected the rise times of calcium imaging transients, related
to burst of action potentials (Carrillo-Reid et al., 2008; García-
Vilchis et al., 2019), to obtain the binary spikes raster. For every
region of interest (ROIs) we obtained signals, 1F, corresponding
to the average fluorescence of the soma in every frame. Then we
applied the following signal processing pipeline (Calderón et al.,
2022): (a) estimation of a canonical fluorophore response as a
third-degree autoregressive process, (b) noise estimation by wavelet
analysis, (c) detrending of fluorescence signals by filtering, and (d)
deconvolution by LASSO construction to infer spike activity above
1 standard deviation of the noise: https://github.com/vladscript/
finderspiker.

Results

Network model displays switching cell assemblies
on very long timescales very similar to slice data

Here we aimed to estimate striatal MSN network model
parameters from slice data. Some examples of the previously
published Ca imaging slice data we used, obtained from Pérez-
Ortega et al. (2016) and Serrano-Reyes et al. (2022), are reproduced
in Figure 1. These slices are many minute recordings from control
(CT), decorticated (DEC), Parkinsonian (PD), and dyskinetic
(DYS) preparations. DEC slices have cortical-striatal transmission
removed. PD slices come from rats which had previously been
6OHDA lesioned and developed Parkinsonian symptoms. DYS
slices come from 6OHDA lesioned rats which were subsequently
treated with L-DOPA until they developed Abnormal Involuntary
Movements symptomatic of LID. CT and DEC slices are activated
by the addition of NMDA, but PD andDYS slices are spontaneously
active without this (see Methods and Pérez-Ortega et al., 2016 for
details).

As described in Serrano-Reyes et al. (2022) the non-linear
clustering algorithm UMAP has been used to visualize the
dynamical structure of the Ca imaging data with time resolution
250 ms. Each time series shows all the active cells in the given
slice colored according to their cluster assigned by UMAP. The
lower left panels show the temporal development of the total
activity across all active cells. The UMAP formalism can also be
used to project the clusters into three dimensional space. The
projection corresponding to each time series is shown in the far
right hand panels. Each point is a cell colored according to its
assigned cluster. Some distinct clusters in distinct parts of the three
dimensional space can be seen. In particular the clusters appear
to reactivate repetitively on exceedingly long timescales of many
minutes. Sequential reactivation of clusters can be visualized using
the circular projections (middle panels). Here each point represents
a UMAP cluster while the colored lines between points represent
temporal transitions between sequentially activated clusters (see
Serrano-Reyes et al., 2022 for details of how the cluster activation
levels at any given time point are determined). The lines start at
the cluster of their own color and end in a differently colored
cluster. The thickness represents how often the particular transition
is observed.

While all slices seem to show sequentially activating cell
assemblies, the different pathological conditions appear to show
quite different types of patterning and cluster structures (Figure 1,
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Pérez-Ortega et al., 2016; Lara-González et al., 2019; Serrano-
Reyes et al., 2022). Activity in the CT slice (Figure 1A), seems to
alternate fairly rapidly between repeated cell assembly activations,
for example the red and cyan ones. On the other hand, the DEC
slice (Figure 1B), seems to show much lower activity levels with
longer lived, less repetitive cluster activations. For example the
grey, blue, red, dark green and purple clusters each only activate
once, each for a couple of minutes. In the PD slice (Figure 1C),
activity is weakly repetitive but the quantity of clusters seems
somewhat reduced compared to the CT slice (Figure 1A), and
the network appears to get locked into a few dominant states
for long periods of many minutes, as described in several studies
(Jáidar et al., 2010, 2019; Pérez-Ortega et al., 2016; Aparicio-Juárez
et al., 2019; Lara-González et al., 2019). For example very slow
alternation appears to exist between yellow and green clusters.
Activated bursts for individual cells last longer than those in CT
slice (Figure 1A), which are much shorter lived. In contrast DYS
slices seem to show higher but more “fractured” activity patterns
(Figure 1D). Activity is somewhat similar to CT (Figure 1A), but
individual cells activate in shorter bursts with less sequential
cluster repetitions. Clusters seem to switch more rapidly than CT
slices but also more randomly between many different clusters,
as previously described (Pérez-Ortega et al., 2016; Lara-González
et al., 2019).

To reproduce these dynamics we extended a previously
published model of the striatal MSN network (Ponzi and Wickens,
2010, 2013, 2022; Ponzi et al., 2020) to include short-term plasticity
between the MSNs. We used a well validated MSN cell model
(Ponzi et al., 2020) with a full complement of ion-channels which
has been shown to accurately reproduce characteristics of MSN
spiking activity, such as the long delay to first spike (Figure 2A).
We investigated a 400 cell network and took the synaptic short-
term plasticity and connectivity parameters from a recent detailed
striatal connectome study (Hjorth et al., 2020; see Methods). We
varied the two most important factors which are known to control
network model cell assembly dynamics (Ponzi and Wickens, 2010,
2012, 2013, 2022; Ponzi et al., 2020). These are the strength
of recurrent inhibition between MSNs, here denoted GI , which
controls the postsynaptic IPSP size when a presynapticMSN spikes,
and the MSN excitation level, here denoted GE. Accordingly we
varied these two parameters around their physiological values
to investigate the dependence of striatal network dynamics on
them.

Four example 10 min simulations of model generated calcium
activity time series (see Methods), at different levels of GE and GI ,
are shown in Figure 3. The cell Ca activity time series are clustered
and ordered using the UMAP algorithm, with exactly the same
parameters as used for the slice data (Figure 1). As in the slice
data various cell cluster activations can be seen. This demonstrates
that this MSN network model is capable of generating exceedingly
slowly varying dynamics, whereby clusters repetitively switch on
timescales of many 10’s of seconds. Not all 400 cells are present
because cells which do not activate at all during the time period are
not shown. The network simulation time series (Figure 3), tend to
look denser than the slice time series (Figure 1), becausemanymore
cells are shown. The four different examples, at different levels ofGI

and GE, show quite different types of dynamical activity, assembly
patterns, and clustering (see below).

Simulation Based Inference accurately predicts
network parameter values

Next, we used Simulation Based Inference (SBI) with sequential
neural posterior estimation (SNPE; see https://sbi-dev.github.io/
sbi/) to fit the MSN network parameters to Ca slice data. A mixture
of Gaussians density estimator was trained to map summary
features calculated from MSN network generated time series data
to the network parameters (see Methods). We performed 200
network simulations of 10 min each, where the strengths of lateral
inhibition, GI , and excitation, GE, were varied. Some simulations
were rejected due to highly pathological behavior (see Methods).
We trained the SBI density estimator on the remaining MSN
network simulations after leaving out a further 20 simulations as
a test set. Figure 4 shows the SBI parameter estimation for twelve
simulations randomly chosen from this test set. The blue lines
show the marginal posterior distributions for lateral inhibition, G∗

I ,
and cortical excitation, G∗

E, (here and in the following ∗ denotes
estimated value, as opposed to actual simulation parameter value)
the color plots show the joint posterior density, and the red lines
and points indicate the true parameter values, GI and GE, for the
given network simulation. In most cases the joint posterior density
is quite sharply peaked around the true parameter values, and close
to zero elsewhere, despite the wide range of different parameter
settings shown, including simulations close to the borders of the
prior parameter ranges. This suggests the SBI parameter estimation
procedure is highly effective.

Estimated IPSP sizes from control slices are close
to physiological values

Finally, we calculated the same summary features from the
Ca slice data and used the trained SBI density estimator to map
these features to correspondingMSN network parameters. Figure 5
illustrates the results of applying this procedure to the Ca slice
data. Here the blue lines indicate the marginal posterior density
estimates and the red lines and points indicate the maxima of the
posterior estimates. The posterior densities for the four control
slices (Figure 5A), are all very sharply peaked. Remarkably, they all
indicate very similar tightly clustered levels of estimated inhibition
G∗

I , of around 0.008. These maximal posterior estimate values are
shown in Figure 6A, CT. Interestingly the estimated inhibition
level G∗

I , is very close to its physiologically correct value. Indeed,
as shown in Figure 2B, peak IPSP sizes around 0.45 mV, the
physiologically observed value (Planert et al., 2010; Hjorth et al.,
2020), occur between about GI = 0.006 and GI = 0.01.

The observation that best fit networkmodels had IPSPs of about
the physiologically correct size is highly non-trivial because the SBI
density estimator was trained on a wide range of inhibition levels
from GI = 0.002 to GI = 0.02, which generate a large spread in
IPSP sizes (Figure 2B). To investigate this further, we used SBI to
estimate the MSN network model parameters from unpublished
Ca slices from a different cohort of multiple mice, under the
same NMDA activated control conditions. The estimated posterior
densities from two of these six slices are shown in Figure 5B,
“MICE.” Again the densities are sharply peaked. Figure 6A, MICE
shows maximal posterior estimated inhibition G∗

I , levels in this
extra group of six Ca slices. Estimated G∗

I levels are again fairly
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tightly clustered between about G∗

I = 0.007 and G∗

I = 0.011
corresponding to peak IPSP sizes of around 0.4 and 0.7 mV which
are again close to, but slightly larger than, physiologically observed
values (Planert et al., 2010; Hjorth et al., 2020).

Excitation levels for the control groups (Figure 6B, CT, MICE),
are more widely spread. The CT group includes three quite closely
clustered around G∗

E = 1.25 × 10−5, while one has lower
excitation. The MICE group includes five clustered with very
low excitation, around G∗

E = 1.5 × 10−6, but one with higher
excitation. Unlike inhibition, it is not possible to compare these
estimated values with empirical physiological cortical-striatal (or
thalamic-striatal) EPSP sizes because we are here investigating a
slice preparation. All slices are activated by the bath addition of
NMDA, since the striatum is purely inhibitory and shows almost
no activity without it. Therefore we did not include cortical-
striatal synapses or spiking cortical input to the striatum network
model. MSN cells are excited purely by somatic current injection
(see Methods) modeling the bath addition of NMDA. Moreover,
MSNs can change their intrinsic excitability levels depending on
various modulatory and pathological factors so that they can
spike with different rates for any given level of cortical (or
thalamic) excitation. Our parameter GE also reflects these effects.
However, since the mean activity is one of the features used
to estimate network parameters (see below), providing that the
estimated level of inhibition is roughly correct, as we in fact
found it to be, the excitation level should also be reasonable since
between them these two factors determine the mean spiking rate.
Differences in NMDA application could also cause large differences
in excitation levels across the two groups, CT and MICE, and
within groups. It is to be expected that excitation will be more
variable across experiments than inhibition since the inhibition
level is a structural characteristic of the striatumwhile the excitation
level can strongly depend on the experimental conditions. During
behavior in live animals, levels of excitation arising from cortical
and thalamic driving would also be expected to vary strongly,
while the strength of lateral inhibition between MSNs is thought
to be more determined by fixed synaptic properties and should be
less variable.

Pathological slices clustered in di�erent
parameter regions

To see if our findings in control slices are not simply a chance
result of the SBI estimation procedure, we also estimated network
parameters from the pathological slice preparations. Posterior
distributions generated by the trained SBI density estimator for
two DEC slices, two PD slices, and two DYS slices, obtained from
previously published work (Pérez-Ortega et al., 2016; Serrano-
Reyes et al., 2022), are also shown in Figure 5. Densities are again
quite sharply peaked, except for the decorticated preparations
(Figure 5C). Interestingly posterior densities tend to be quite
similar within each group, but can differ quite strongly between
groups. Remarkably, like the control slices (Figure 6A, “CT,”
“MICE”), we find that maximal posterior inhibition values G∗

I

(Figure 6A, “DEC,” “PD,” and “DYS”), are quite strongly clustered
within each group, but differ between most groups. Peak excitation
values, G∗

E (Figure 6B), are more widely spread but clustering

within groups, with different levels of excitation between groups,
is still evident.

DEC preparations (Figure 5C), show very high inhibition, G∗

I ,
and very low excitation, G∗

E, as confirmed by peak values for
these quantities [Figures 6A, B, “DEC”; the inhibition values, G∗

I ,
for the two samples (Figure 6A, “DEC”), are indistinguishable
in the figure]. Although colocalized across samples, their
estimated densities are much broader than the other preparations
(Figure 5C), and they are also close to the borders of the parameter
priors we used to train the SBI, suggesting lower confidence in the
estimated peak values.

Estimated densities from PD preparations (Figure 5D), are as
sharply peaked as control ones (Figure 5A), with similar peak
excitation values, G∗

E (Figure 6B, “PD”), but peak inhibition values,
G∗

I (Figure 6A, “PD”), are lower. In fact estimated peak inhibition
values for both PD slice preparations (Figure 6A, “PD”), are lower
than all ten estimated peak inhibition values for control slices,
CT and MICE (Figure 6A, “CT,” “MICE”), as well as all four DEC
and DYS slices (Figure 6A, “DEC,” “DYS”), suggesting that reduced
inhibition in 6OHDA slices is a significant finding.

Estimated densities fromDYS preparations (Figure 5E), are also
quite sharply peaked, although in one sample estimated excitation
is on the border of the prior parameter range used to the train the
SBI density estimator. Peak inhibition values (Figure 6A, “DYS”),
are clustered, but in contrast to the PD slices, are similar to
those from control animals (Figure 6A, “CT,” “MICE”). On the
other hand, both DYS peak estimated excitation values (Figure 6B,
“DYS”) are higher than all of the CT, MICE, PD, and DEC slices
(Figure 6B, “CT,” “MICE,” “PD,” and “DEC”), suggesting their
excess excitation is also a significant finding.

Predicted network simulation dynamics
resembles experimental slices

Given that estimated parameter values were quite strongly
clustered within groups, but varied between groups (Figures 6A,
B), we wondered what network dynamics these parameter values
predict for each of the groups. For each group we calculated the
average of the maximal estimated inhibition, G∗

I and maximal
estimated excitation,G∗

E, levels across all the slices in the group, and
searched our 200 network simulations for the simulation with most
closely matching parameter values for each group using the mean-
square distance (see Methods). The “winner” simulations for CT,
DEC, PD, and DYS preparations are the ones shown in Figure 3.

The cluster activation patterns shown by these network
simulations admit many similarities with the corresponding
experimental slice data (Figure 1). Compared to the best fit CT
simulation (Figure 3A, left panel), the best fit DEC simulation
(Figure 3B, left panel), shows much sparser activity. Cell clusters
are still seen but they activate much more rarely with large
silent periods, and without strongly apparent sequential patterns.
Some cell clusters, such as the dark blue colored one around cell
index number 150 (Figure 3B, left panel), activate strongly only
once during the 6 min period shown. Cluster transition graphs
(Figure 3B,middle panel), appear to show fewer strong “loops” than
the best fit CT simulation (Figure 3A, middle panel). For example
the best fit CT simulation (Figure 3A, middle panel), shows a fairly
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FIGURE 6

(A, B) MSN network parameters estimated from Ca data using SBI for CT, MICE, DEC, PD, and DYS slices. (A) Inhibition, G∗

I
. (B) Excitation G∗

E
. (C–E)

Activity features used in SBI density estimation procedure. (C) Mean activity (log scale). (D) Mean interval between activations. (E) Coe�cient of

variation of intervals between activations. (i) Dependence of activity features on network simulation parameters inhibition GI and excitation GE .

Colored points indicate the average estimated parameters (G∗

E
,G∗

I
), for the di�erent experimental conditions, blue: CT, orange: MICE, green: DEC,

red: PD, purple: DYS (DEC only half visible in top-left corner). (ii) Colored crosses: true feature values calculated directly from the individual

experimental slice preparations. Brown circles: feature values calculated from the corresponding best fit simulations shown in Figure 3.

strong recurrent “circuit” composed by the dark blue cluster and
purple cluster. These observations are to a certain degree evident
in the experimental data (Figures 1A, B). Several fairly strong
recurrent loops can be seen in the CT experimental slice (Figure 1A,
middle panel), but not in the DEC preparation (Figure 1A, middle
panel), while the DEC activity is much sparser than CT activity with
large silent gaps between cluster activations, as described above.

Compared to the best fit CT simulation (Figure 3A, left
panel), the best fit PD simulation (Figure 3C, left panel), shows
larger, longer-lived persistent, and “locked-in” clusters. When
such clusters are active the rest of the network is mostly silent.
The transition graph is dominated by a strong recurrent loop
(Figure 3C, middle panel, red, and green). These findings are
recapitulated in the experimental slices. The PD experimental
transition graph (Figure 1C, middle panel), is also dominated by
a strong recurrent loop between yellow and green clusters, and the
PD clusters (Figure 1C, left panel), are much longer lived than the
CT experimental slice (Figure 1A, left panel). Finally the best fit
DYS simulation displays higher activity levels with many shorter
fractured bursts (Figure 3D, left panel), and many weak cluster
transitions (Figure 3D, middle panel), compared to the best fit CT
simulation (Figure 3A), and again these features are also found in
the experimental DYS slice (Figure 1D).

Control slices are close to a network activity
transition

The resemblance of sequential cluster structure of the best fit
network simulations to the corresponding experimental slices is a
highly non-trivial finding because we did not use any clustering
related features to train the SBI density estimator. In fact, because

the number of recorded cells varies strongly across experimental
slice preparations, we were only able to use features derived
from single cell activity, rather than cross-cell correlation based
features (see Methods). The features we used were: the mean
activity, the mean interval between subsequent activations, and the
coefficient of variation (CV) of the intervals between subsequent
activations. These quantites were averaged across all active cells
to provide the three features for SBI parameter estimation. If the
individual cell activation time series in a given network simulation,
or in a given experimental slice, are temporally shifted with
respect to each other, these feature values remain unchanged. This
demonstrates that the sequential cluster structure in the population
can be revealed by single cell activity characteristics in this
network model.

The dependence of these three features on network model
inhibition, GI and excitation, GE, parameters, is shown in
Figures 6C–E(i). The mean activity [Figure 6C(i)], decreases with
increasing inhibition GI , and at higher inhibition also with
decreasing excitation GE, albeit not as strongly. The mean interval
between activations [Figure 6D(i)], increases with increasing
inhibition and more weakly with increasing excitation. The
behavior of the interval CV [Figure 6E(i)], is non-monotonic
(Ponzi and Wickens, 2013, 2022; Ponzi et al., 2020). It increases
as inhibition is decreased from high values, before a transition
around GI = 0.006 occurs and it decreases suddenly to
very low values, or zero. In fact the transition occurs when
the network changes from a strongly fluctuating state with
high interval CV, to a WTA fixed point state with low or
zero interval CV. In the WTA state the network activity is
dominated by a set of regularly firing cells which permanently
suppress all the others into silence. An example of a such
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a “pathological” simulation in the WTA regime is shown in
Supplementary Figure 1A.

We found the three features [Figures 6C–E(i)], represent the
inhibition, GI and excitation, GE, space in different ways, and
are sufficient to train the SBI density estimator to accurately
map features to parameters (Figure 4). The colored circles in
Figures 6C–E(i) show the estimated inhibition G∗

I and estimated
excitation G∗

E, for the different experimental slices, averaged across
the slices in each condition. Most interestingly we find that the two
control conditions, CT, and MICE, and the dyskinetic condition,
DYS [Figures 6C–E(i)], blue, orange, and purple circles) all reside
in the regime with high interval CV just above the transition to
the WTA state [Figure 6E(i)], blue, orange, and purple circles).
The strong fluctuations found in this regime are generated by
the switching coherent cell assembly dynamics seen in the best fit
network simulations for CT andDYS conditions (Figures 3A, D). In
previous work (Ponzi and Wickens, 2012, 2013, 2022; Ponzi et al.,
2020) we have shown that this regime generates complex dynamics
which is optimal for neuronal computation (see Discussion). On
the other hand the decorticated condition, DEC [Figures 6C–E(i),
green circle] resides on the border of the GI , GE, parameter space,
at very low excitation and very high inhibition and, as described
above, its true parameter values may lie outside the prior parameter
distribution. Its very low excitation and very high inhibition are
responsible for the short lived bursts and very long silent periods
found in its corresponding best fit network simulation for the
DEC condition (Figure 3). Intriguingly, the reduction in estimated
inhibition G∗

I , we found in the PD experimental slices [Figures 6C–
E(i), red circle] situates the PD experimental slices much closer
to the border of the pathological WTA regime [Figure 6E(i), red
circle]. It is this proximity to the WTA regime which produces the
metastable cell assemblies which silence the rest of the network
for extended periods, as the system transiently visits the vicinity of
WTA states.

Figures 6C–E(ii), colored crosses show the true values of the
three features calculated directly from the experimental slices. The
brown circles [Figures 6C–E(ii), brown circles], show the feature
values calculated directly from the best-fit network simulations in
each condition, shown in Figure 3. True features values for the two
control conditions, CT and MICE [Figures 6C–E(ii), blue, orange]
are very close to the feature values indicated by their corresponding
estimated excitation, G∗

E, and inhibition G∗

I , levels [Figures 6C–
E(i), blue, orange circles], and to the values directly calculated
from the best-fit simulations [Figures 6C–E(ii), brown circles]. This
confirms that our model is able to accurately reproduce control
slice data.

True feature values calculated from the experimental slices in
pathological conditions [Figures 6C–E(ii), green, red, and purple],
however, can sometimes stray a little from the values indicated
by their corresponding estimated excitation G∗

E, and inhibition
G∗

I , levels [Figures 6C–E(i), green, red, and purple circles] and
from their best fit simulation values [Figures 6C–E(ii), brown
circles]. True experimental mean activity levels [Figure 6C(ii),
colored crosses] are always in good correspondence with their
corresponding best fit simulation values Figure 6C(ii), brown
circles]. But in the DEC condition, the true mean interval
[Figure 6D(ii), green], is much shorter than the corresponding
best-fit simulation mean interval [Figure 6D(ii), brown circle]. The

true interval CV for DEC [Figure 6E(ii), green] is also lower than
the corresponding best-fit interval CV [Figure 6E(ii), brown circle].
For the DYS condition, the true mean interval[Figure 6D(ii),
purple], is a bit lower than its corresponding best-fit estimated
value [Figure 6D(ii), brown circle]. On the other hand in the PD
condition the true interval CV [Figure 6E(ii), red], is actually higher
than its corresponding best-fit estimated value [Figure 6E(ii),
brown circle]. Indeed the interval CV in the experimental PD
condition acquires a very high value, around five, which is both
much higher than the other experimental conditions, and higher
than found in any of our network simulations [Figure 6E(i)]. And
indeed the PD interval CV estimated by SBI [Figure 6E(ii), brown
circle], is close to the maximum value, around four, which can be
found amongst the available network simulations (see Discussion).

Discussion

The findings presented in this paper shed light on the intricate
dynamics of the MSN network in the striatum and its modulation
under various conditions. Through the utilization of advanced
computational techniques, we aimed to elucidate how excitatory
and inhibitory neurotransmission governs dynamics generated by
this network. We employed a well-validated MSN cell model
(Mahon et al., 2000), incorporating a comprehensive array of ion
channels, to simulate spike time series. Leveraging the UMAP
algorithm, we compared the spiking activity of our model with
experimental data, demonstrating the model’s ability to faithfully
recapitulate the behaviors observed in the slice data. This highlights
the utility of our MSN network model as a valuable tool for
investigating striatal network dynamics.

Our previous striatal MSN networkmodel (Ponzi andWickens,
2008, 2010, 2012, 2013, 2022; Ponzi et al., 2020) was extended to
include short-term plasticity on the lateral connections between
MSNs. The network structure and parameters were taken from
a recent connectome investigation (Hjorth et al., 2020) which
represents the most thorough computational depiction of the MSN
network ever compiled. To keep simulations tractable we used
400 cells which is sufficient to accurately represent a local striatal
network (see Methods). We first showed that this detailed network
model was capable of generated slowly varying rate fluctuations
on exceedingly long timescales of several minutes, extending our
previous findings (Ponzi andWickens, 2010). Slow rate fluctuations
were composed by switching population cell-assembly dynamics.

We employed Simulation Based Inference (SBI) with sequential
neural posterior estimation to fit MSN network parameters to
calcium imaging slice data. Through simulations varying levels of
lateral inhibition and cellular excitation, the model was trained
to map summary features from slice data to corresponding
MSN network parameters. The resulting posterior distributions
Figure 4, exhibited sharp peaks, underscoring the precision of the
estimation process. However, decorticated preparations displayed
broader estimated densities on the boundaries of our parameter
ranges, suggesting reduced confidence in parameter estimates for
this condition.

The comparison of peak estimated parameter values across
different experimental preparations revealed intriguing insights
into the excitatory and inhibitory transmission in MSN
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networks under the different conditions. We were able to
find network simulations which were extremely good fits to the
control experimental slice data [Figures 6C–E(ii), blue crosses].
Interestingly we found that the peak IPSP size which provided the
best fit to control slice data was very close to the physiologically
known value of around 0.45 mV (Planert et al., 2010; Hjorth
et al., 2020). We were also able to find network simulations which
provided reasonable fits to the pathological slice data. We found
that IPSP sizes were well-grouped in distinct clusters for each of
the three manipulations in the slices from pathological animals.
PD slices showed substantially smaller IPSP sizes than control,
while decorticted slices had larger IPSP sizes. Excitation levels
had slightly larger spreads than inhibition across all groups, while
dyskinetic preparations showed substantially higher excitation and
decorticated preparations relatively low excitation.

Due to computational constraints we were only able to vary
two parameters, IPSP amplitude and excitation level. In reality
IPSP sizes depend on several factors such as presynaptic GABA
release and postsynaptic uptake. They also depend on the quantity
or location of synapses made by a presynaptic cell on a postsynaptic
one. However a change in IPSP size is not equivalent to a change in
connection probability. Here, on average, and MSN is presynaptic
to about 160 otherMSNs. If the IPSP size were halved, all 160 would
receive an smaller IPSP when the presynaptic MSN spiked. On the
other hand if connection probability is halved, 80 would receive
a full sized IPSP and the other 80 nothing. These can have quite
different effects at the level of network dynamics. In future studies
it will also be important to vary connection probability. We also
varied the excitation strength. An increase in this quantity means
that the MSN cell would spike at a higher rate for any given level of
MSN lateral inhibition. This could reflect an increase in the spike
rate from cortical or thalmic excitatory neurons. It could also reflect
a decrease in feedforward inhibition from striatal interneurons.
Alternatively it could reflect a change in excitability of the cell,
for example caused by activation of D1 and D2 receptors when
dopamine levels change. Any increase in excitation we found could
reflect an upregulation of D1 receptors or down regulation of D2
receptors, for example.

Our model is of course simpler than the real striatal MSN
network. In particular we do not include D1 and D2 cell types
whose differential dysfunction is known to be highly relevant in
both Parkinsonian 6OHDA lesioned animals and LID animals
(Blesa et al., 2017; Shen et al., 2022). Unfortunately since the slice
data does not include D1 versus D2 labeling, even if the model
included these two cell types, we would not be able to use features
derived from their differential activations to estimate network
parameters. Under normal conditions DA modulates intrinsic
MSN excitatability and synaptic connections between MSNs, as
well as bidirectional corticostriatal synaptic plasticity. It is thought
that DA reduction in PD at first causes an inbalance between the
BG direct and indirect pathways which then sets of a cascade of
multiple complex homeostatic adaptations to help normalize this
inbalance. For example decreased dopamine levels in models of
PD alter dendritic spines on MSNs (McNeill et al., 1988; Ingham
et al., 1989; Stephens et al., 2005; Zaja-Milatovic et al., 2005; Day
et al., 2006; Villalba et al., 2009; Zhang et al., 2013; Fieblinger
et al., 2014; Suárez et al., 2014; Toy et al., 2014; Suarez et al.,

2016). D2 MSNs become hyper-excitable without dopamine since
D2R activation has a suppressing effect. In response they reduce
cortical and thalamic synapses to reduce excitatory transmission,
and decrease intrinsic excitability. Increases in the density of D2
receptors by dopamine depletion is also reported (Falardeau et al.,
1988; Graham et al., 1990; Decamp et al., 1999; Aubert et al.,
2005; Chefer et al., 2008; Sun et al., 2013). On the other hand, D1
MSNs become hypo-excitable without dopamine and in response
up-regulate their somatic excitability. D1 and D2 receptors control
LTP and LTD in the presence of DA, and DA absence strongly
alters these mechanisms to affect cortical-striatal excitatory drive
(Centonze et al., 1999, 2001).

Despite this model limitation several of our findings are in
striking agreement with experimental observations. We found a
reduction in IPSP size in the PD rats. Studies have found reduced
MSN-MSN connection strength in PD (Taverna et al., 2008; Flores-
Barrera et al., 2010; López-Huerta et al., 2013; Zhai et al., 2018).
Taverna et al. (2008) found marked reductions in connection
probability between MSNs, IPSP peak size and area, and strong
increases in failure rate, within and between both D1 and D2
cells in 6OHDA lesioned rats. They suggested the reduced IPSP
size was largely attributable to reduced GABA release. Short-term
plasticity is also known to be affected in 6OHDA mice (Barroso-
Flores et al., 2015; Wei et al., 2017) which would also produce
changes in IPSP size.

Although we found a reduction in network inhibition, we did
not find much change in activity levels in PD compared to control
slices (Figure 6C). Indeed activity rate changes occur in opposite
ways in D1 and D2 cell types. The most extensive study to date
(Parker et al., 2018) found that 1 day after 6OHDA lesion activity
rates during rest were increased in D2 MSNs and decreased in
D1 MSNs by approximately the same amount. Interestingly 14
days after lesion resting state activity levels were still decreased
and increased in D1 and D2 MSNs respectively, in almost exactly
equal amounts, but the difference from pre-lesion baseline had
decreased somewhat. Thus in good agreement with our findings
on average across both cell types activity was not changed from
baseline either 1 or 14 days post-lesion during rest. On the other
hand, some differences were found during animalmotion. However
since motion is likely to be associated with dynamic changes in
cortical excitation, the slices investigated here are more likely to be
representative of the resting state activity. The same study (Parker
et al., 2018) also investigated D1 and D2 activity in 6OHDA rats
after a large dose of L-DOPA to induce dyskinesia. In this case they
found that during rest D2 MSN activity was suppressed compared
to pre-lesion baseline while D1 activity was increased, i.e., the
opposite of what was found after 6OHDA lesion.

We did not find strong changes in estimated excitation levels,
G∗

E, in the PD rats. Although initially after 6OHDA lesion, loss of
dopamine in the striatum increases the excitability of D2 MSNs
and decreases the excitability of D1 MSNs, by a month post-lesion
homeostatic mechanisms have kicked in to restore the balance (Day
et al., 2006; Fieblinger et al., 2014; Shen et al., 2022). D2MSNs prune
cortical and thalamic excitatory synapses to decrease their intrinsic
excitability. On the other hand, D1 SPNs do not prune synapses
and up-regulate their somatic excitability. These complementary
changes restore the excitability balance between the two pathways.
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In dyskinetic slices we found enhanced exitability without
much change in inhibition, compared to control slices. This
is in good agreement with experimental studies. Enhanced
glutamatergic input is associated with hyperkinetic disorders
(Robelet et al., 2004; André et al., 2010; Sgambato-Faure and
Cenci, 2012; Scarduzio et al., 2022). While PD is associated with
decreased striatal glutamate, animals treated with L-DOPA to
induce dyskinesias displayed a marked increase (Dupre et al.,
2011; Nevalainen et al., 2013; Scarduzio et al., 2022). Indeed,
the only FDA-approved treatment for LID is amantadine, a drug
with NMDA receptor antagonist properties. mGluR5 antagonism
and NAMs attenuate LID in both preclinical models and patients
(Sebastianutto and Cenci, 2018; Pourmirbabaei et al., 2019).
Persistent LTP, loss of LTD and depotentiation at corticostriatal
synapses has also been found in LID (Belujon et al., 2010; Fieblinger
et al., 2014; Thiele et al., 2014; Calabresi et al., 2016). Furthermore
chronic L-DOPA administration causes hyperphosphorylation of
striatal NMDA receptors (Oh et al., 1998, 1999; Dunah et al., 2000).

Also very interestingly we found that the control slices, CT
and MICE, were situated in a strongly fluctuating regime, close
to a transition to WTA like activity. In our previous work (Ponzi
and Wickens, 2012, 2013, 2022; Ponzi et al., 2020), we, and others
(Angulo-Garcia et al., 2016), have shown that such MSN network
dynamics is optimal because it consists of slow large coherent
fluctuations which are complex and fairly high dimensional, but
also highly reproducible if the network is driven by repeated
sequences of stimuli. These coherent network dynamics manifest
as sequences of cell assemblies which can be utilized in behavior,
for example as liquid central pattern generators (CPGs), and for
explore/exploit behavior, useful in reinforcement learning tasks.
The proximity to the WTA like regime gives network dynamics
the appearance of metastable switching between fixed points
(Rabinovich and Varona, 2011). Experiments have shown that such
recurrent alternating assemblies correlate with behavior (Carrillo-
Reid et al., 2008, 2015) and similar activity has been observed in
CPGs (Grillner, 1985, 2006).

Intriguingly we found that the reduced inhibition, G∗

I ,
estimated from PD slices positioned these slices even closer to
the full WTA regime. Thus network dynamics gets stuck close
to fixed points for longer periods, which manifests as longer
lasting dominant cell assemblies, which suppress the rest of the
network. Multiple studies have shown PD to be characterized
by such striatal hyperactivity and a highly recurrent dominant
assembly which monopolizes the microcircuit, reminiscent of what
happens when patients cannot move (Jáidar et al., 2010, 2019;
Plata et al., 2013b; Pérez-Ortega et al., 2016; Lara-González et al.,
2019). We note that this pathological activity could be normalized
not only by increasing the inhibition back to normal levels, but
also by increasing the excitation (Figure 6E), while maintaining
the reduced level of inhibition. Such manipulation would move
the activity back into a regime with interval CV similar to
control activity (Figure 6E). Indeed it is known that D1 agonists
‘dissolve’ the dominant locked in state, without normalizing the
enhancement of spontaneous activity (Jáidar et al., 2010). On the
other hand L-DOPA, before prolonged application, restores activity
to normal conditions (Lemaire et al., 2012; Plata et al., 2013b). It
may be that L-DOPA restores the balance between the direct and

indirect pathways, not only by normalizing cortical-striatal balance
on the direct and indirect pathways but also by normalizing the
collateral inhibition (Taverna et al., 2008).

We found that DYS slices exhibited levels of inhibition
somewhat between PD and control (CT, MICE) preparations, but
also strongly enhanced excitation. This moved the DYS slices away
from the WTA regime. The interval CV was normalized closer
to CT compared to the PD slices (Figure 6E), but at the expense
of increased activity compared to control CT (Figure 6C). This
produced short-lived fractured assembly dynamics with multiple
transitions (Figure 3D). Such neural assembly multiplication with
increased transitions is shown in L-DOPA induced hyperkinetic
conditions (Pérez-Ortega et al., 2016; Calderón et al., 2022)
again reminiscent of patients showing enhancement of stereotyped
hyperkinetic involuntary movements.

We found control slices were close to a transition from a
strongly fluctuating dynamical regime to a fixed point WTA like
dynamical regime. This regime may optimize its computational
properties (Ponzi andWickens, 2012, 2013, 2022; Ponzi et al., 2020)
as a neural reservoir. The complex dynamical patterns generated
by recurrent network ‘reservoirs’ have been utilized for various
computational purposes (Buonomano andMerzenich, 1995; Jaeger,
2001; Maass et al., 2002; Jaeger and Haas, 2004). Computational
properties are often found to be optimal when such reservoirs
operate close to the “edge of chaos” (Bertschinger andNatschläager,
2004; Legenstein and Maass, 2007; Sussillo and Abbott, 2009; Ponzi
and Wickens, 2012, 2013). There are many indications that strong
coherent internally generated brain fluctuations are needed for
various cognitive and learning processes and may be generated by
determinstic brain network chaos. Resting state activity throughout
the brain shows strong coherent spontaneous fluctuations driven
by the coordinated activity patterns of many cells (Pachitariu et al.,
2015; Stringer et al., 2016). Multiple studies have suggested neural
dynamics is “critical” (Beggs and Plenz, 2003; Chialvo, 2004) and
resides in a regime close to losing stability. Our work suggests
that pathology like PD may move the network out of an optimal
regime for computation, and while L-DOPA normalizes activity to
some degree by normalizing inhibition, it can also “overshoot” and
generate too much excitation.

The successful application of SBI in this study highlights its
utility in inferring complex model parameters from experimental
data. Leveraging advances in deep learning, SBI overcomes
challenges associated with likelihood function estimation,
providing a robust framework for parameter inference in
biophysically detailed models. Moreover, SBI offers the advantage
of estimating full distributions over model parameters, offering
insights into parameter interactions and uncertainties.

The efficacy of SBI has been demonstrated in various studies
across neuroscience research domains. Noteworthy examples
include its application in identifying mechanistic models of neural
dynamics (Gonçalves et al., 2020), whole-brain network modeling
of epilepsy (Hashemi et al., 2022), computational connectomics
(Boelts et al., 2023), spectral graph modeling for brain oscillations
(Jin et al., 2023), parameterization of multi-compartmental neuron
models (Kaiser et al., 2023), and neural posterior estimation
in neural mass models (Rodrigues et al., 2021). These studies
attest to the versatility and effectiveness of SBI in addressing
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diverse research questions and modeling challenges within the field
of neuroscience.

The main drawback of the current work is that it does not go
far enough. In particular due to computational constraints we were
not able to vary further network and cellular parameters. Although
we were able to find excellent fits to the control experimental slice
conditions from within the current parameter ranges, there are
multiple parameters which could be varied in future work, such
as the connection probability between MSNs, synaptic timescales
and short-term plasticity parameters, as well as MSN cellular ion-
channel peak conductances known to be affected by dopamine.
These modifications may potentially provide better fits in the
pathological conditions. The most important extension for future
work is the inclusion of D1 and D2 MSNs with different levels
of mutual collateral inhibition (Taverna et al., 2008), and different
levels of cortical excitation, and their differential modulation
by dopamine.

In summary, our findings contribute to a deeper understanding
of MSN network dynamics and highlight the potential of SBI
as a powerful tool for parameter inference in complex neural
models. By elucidating the intricate interplay between model
parameters and experimental observations, this study lays the
groundwork for a pipeline for future investigations into striatal
function and dysfunction.
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