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Many studies have shown that the human visual system has two major

functionally distinct cortical visual pathways: a ventral pathway, thought to be

important for object recognition, and a dorsal pathway, thought to be important

for spatial cognition. According to our and others previous studies, artificial

neural networks with two segregated pathways can determine objects’ identities

and locations more accurately and e�ciently than one-pathway artificial neural

networks. In addition, we showed that these two segregated artificial cortical

visual pathways can each process identity and spatial information of visual

objects independently and di�erently. However, when using such networks

to process multiple objects’ identities and locations, a binding problem arises

because the networks may not associate each object’s identity with its location

correctly. In a previous study, we constrained the binding problem by training the

artificial identity pathway to retain relative location information of objects. This

design uses a location map to constrain the binding problem. One limitation of

that study was that we only considered two attributes of our objects (identity and

location) and only one possiblemap (location) for binding. However, typically the

brain needs to process and bind many attributes of an object, and any of these

attributes could be used to constrain the binding problem. In our current study,

using visual objects with multiple attributes (identity, luminance, orientation, and

location) that need to be recognized, we tried to find the best map (among

an identity map, a luminance map, an orientation map, or a location map) to

constrain the binding problem. We found that in our experimental simulations,

when visual attributes are independent of each other, a location map is always a

better choice than the other kinds ofmaps examined for constraining the binding

problem. Our findings agree with previous neurophysiological findings that show

that the organization or map in many visual cortical areas is primarily retinotopic

or spatial.

KEYWORDS

retinotopic, cortical maps, two-streams hypothesis, feature integration, visual

perception, convolutional neural network, deep learning

Introduction

Many neuropsychological, lesion, and anatomical studies have shown that the human

visual system has two major functionally distinct cortical visual pathways (Ungerleider

and Mishkin, 1982; Mishkin et al., 1983; Felleman and Essen, 1991): a ventral pathway,

thought to be important for object recognition (Logothetis and Sheinberg, 1996), and a

dorsal pathway, thought to be important for spatial cognition (Colby and Goldberg, 1999).

Many studies have shown that artificial neural networks with two segregated pathways

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1397819
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1397819&domain=pdf&date_stamp=2024-07-02
mailto:han594@purdue.edu
https://doi.org/10.3389/fncom.2024.1397819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1397819/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Han and Sereno 10.3389/fncom.2024.1397819

(e.g., identity and location) can achieve higher performance in

visual tasks than artificial neural networks with a single pathway

(Rueckl et al., 1989; Scholte et al., 2018; Han and Sereno, 2022).

Specifically, artificial neural networks with two segregated pathways

can identify and localize objects with higher accuracy and efficiency

than single-pathway neural networks (Han and Sereno, 2023a).

However, when there is more than one object in a visual image, the

binding problem can arise because the network may not be able to

correctly associate each object’s identity with its location (Feldman,

2013; Greff et al., 2020). The binding problem is one of the

fundamental challenges in the field of artificial intelligence because

it prevents artificial neural networks from forming a compositional

understanding of the world, which is crucial for symbolic reasoning

and human-level generalization (Greff et al., 2020; Zheng et al.,

2022).

Some previous studies proposed that the binding problem

could be solved using temporal synchrony binding using spike

timing information of neurons (Milner, 1974; von der Malsburg,

1999; Zheng et al., 2022). However, some studies failed to find

experimental evidence that supports the binding by synchrony

model (Dong et al., 2008). Other studies found that when

animals were performing perceptual tasks related to binding,

the behaviorally relevant information was carried by firing rates,

and spiking synchrony carried no information (Shadlen and

Movshon, 1999). Therefore, here, we explore constraining the

binding problem in the other ways. In our previous study, we

constrained the binding problem by retaining relative location

information of objects while training an artificial identity pathway

in a two-pathway network (Han and Sereno, 2023a). As a result,

the differently and independently retained location information in

the two pathways could be used to bind each object’s identity with

its absolute (not relative) location. This solution may be considered

as using a relative location map to constrain the binding problem

because both the identity pathway (relative locations) and the

location pathway (absolute locations) were trained to report the

results according to objects’ locations. However, this previous study

only considered two attributes (identity and absolute location) of

objects and only one possible constraint map (relative location

map), but ordinarily there may be other attributes to process and

bind, and any of these possible attributes could be used as the

constraint map. In our current study, we generalized our study to

include four attributes of objects: identity, luminance, orientation,

and location. Furthermore, under these conditions and constraints,

we looked for the best map(s) to constrain the binding problem

when different pairs of these attributes are combined. Any usage or

claim of “best” or “optimal” or “always” is limited to the conditions

and simulations we have conducted in our current study. Because

our previous studies have shown that two-pathway networks are

better than one-pathway networks when we need to bind or conjoin

two attributes of each object at the same time, we always used

two-pathway networks in our current study. Since our previous

study also showed that it was possible to bind each object’s identity

with its absolute location with the help of a relative location map,

we want to find out whether it is also possible to use a similar

method with other attributes to constrain the binding problem

(e.g., relative identity map) when pairs of attributes are being

bound. Theoretically, there could be several different choices for

using a map to constrain the binding problem with two attributes.

For example, we could use a relative location map to constrain the

binding problem (as we did originally), or we could use a relative

identity, luminance, or orientation map to constrain the binding

problem. Preliminary modeling results for our given conditions

and constraints suggest that even though it is possible to constrain

the binding problem using different kinds of maps, a location map

will always achieve higher accuracy than an identity, luminance, or

orientation map, even when neither network pathway is trained to

recognize location (Han and Sereno, 2023b).

In this study, we used feed-forward convolutional neural

networks to simulate different visual pathways. All neural networks

are trained using supervised learning, and all artificial visual

pathways have the same structure and size. We use stochastic

gradient descent with back-propagation to update the weights in

the neural networks during training.We train the different artificial

visual pathways (branches) separately with different goals so that

they will be specialized to recognize different attributes of objects

(including identity, luminance, orientation, or location). We use

two-pathway networks to simultaneously determine any two of

these visual attributes of the objects, where each pathway in the

two-pathway network is pre-trained to determine one attribute of

the objects.

Black and white images consisting of different kinds of shirts,

pants, shoes, and bags are used as the objects in the images (see

Figure 1). Multiple objects are randomly selected and put in front

of a black background at one of the nine possible locations. These

images with multiple objects are used as input images to the

neural networks (see Methods section for details). We chose to use

relatively simple images because it is easier to conduct controlled

experiments and make comparisons between the many different

models.

According to our simulations, using the location map to

constrain the binding problem is able to achieve the highest

accuracy in most cases, but there are exceptions. The exceptions

occur when there might be interactions between different visual

attributes. According to our simulations, when the dependency

between different attributes is removed, using the location map to

constrain the binding problem (for any two of our four attributes)

in these experiments always achieves a higher accuracy than using

another map (identity, luminance, or orientation). In addition,

when different attributes are independent, the advantage of using

the location map is unrelated to the number of classes in an

attribute or whether the objects share the same value in an

attribute.

Our results agree with experimental evidence that shows the

visual system in our brain is primarily using spatial maps to

encode different attributes of objects (Kaas, 1997; Lennie, 1998).

Our results also generally agree with some previous theories about

the binding problem that propose the brain is using space to

bind different attributes together (Treisman, 1998). However, in

our study, we used local (distributed) and relative location maps,

not a master and absolute location map that was proposed in

Treisman (1998). Topographic maps in sensory cortex are widely

documented. However, the functional roles of the topographic

maps are still unclear (Kaas, 1997; Weinberg, 1997; Arcaro and

Livingstone, 2021). According to our study, we speculate that one
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functional consequence of topographic maps in the visual system

is the efficient binding of various visual attributes and the ability to

form integrated objects.

Methods

Objects and visual images

Black and white images of different kinds of t-shirts, pants,

shoes, and bags obtained from the data set Fashion-MNIST were

used as the objects in the visual tasks (Xiao et al., 2017). There

are 200 kinds of t-shirts, 200 kinds of pants, 200 kinds of

shoes, and 200 kinds of bags. To make sure that the orientations

of the bags were clearly defined, only bags with handles were

selected to be used in the visual tasks. Some examples of

the objects are shown in Figure 1. Each object was embedded

in a black background and randomly presented at different

locations in a 140 × 140 (pixels) black square background.

There are three objects in each black background visual image.

These visual images with objects and black background were

used as visual inputs. Two examples of these visual images

are shown in Figure 1A. Six thousand visual images were

randomly created unless stated otherwise. Two-thirds of these

visual images were used as training data, one-sixth of them were

used as validation data, and one-sixth of them were used as

testing data.

Four attributes of objects

In this study, we considered four attributes of objects: identity,

luminance, orientation, and location.

Identity
There are four kinds of object identities: t-shirt, pant, shoe, and

bag. An example of an visual image containing a t-shirt, a pant,

and a shoe is shown in Figure 1A, left panel. An example of an

visual image containing a bag and two pants is shown in Figure 1A,

right panel.

Luminance
The luminance value of each object is defined as the average

value of all the pixels in the object image. The maximum

possible value of each pixel is 255 (white), and the minimum

possible value of each pixel is 0 (black). Note there are some

black background pixels within each object image (as shown in

Figures 1B, C), and these black background pixels are also included

when calculating the object’s luminance value. Each object’s

luminance value is then classified into one of four luminance

levels: high (luminance value ≥ 3 * 255/8), medium high (2

* 255/8 ≤ luminance value < 3 * 255/8), medium low (255/8

≤ luminance value < 2 * 255/8), and low (luminance value

< 255/8). Examples of different luminance levels are shown in

Figure 1B.

Orientation
Each object has four possible orientations: up, left, down, and

right. An example object in different orientations is shown in

Figure 1C.

Location
Object locations are shown in Figure 1D. Specifically, each

object can be centered at one of nine possible locations (locations

numbered from 1 to 9; see Figure 1D). The objects in a given visual

image never overlapped with each other.

Neural networks

The different visual pathways in the brain were modeled

using feed-forward convolutional neural networks. All neural

networks were implemented using Tensorflow and were trained

using supervised learning, the cross-entropy loss function, gradient

descent with back-propagation, and Adam optimization method.

Each neural network consists of convolutional layers, pooling

layers, and fully connected dense layers. A ReLU activation function

was used at each layer except the final output layer, in which a

softmax activation function was used to output the classification

results. The artificial neural networks in this study have structures

similar to the networks that we used in our previous studies (Han

and Sereno, 2022, 2023a).

A batch size of 256 was used while training, and the

initial learning rate of Adam optimization was 0.001. The other

hyperparameters are specified in Figure 2. A 30% random dropout

was applied to the dense layers in all neural networks during

training for regularization. All networks were trained until they had

reached the highest possible validation accuracy.

The structure of neural networks used to model different visual

pathways is shown in Figure 2A. All of the neural networks used

to model different visual pathways share the same structure, with

the only difference between them being their final output layer.

All visual pathway networks take the same set of visual images as

inputs but are trained to do one of four different tasks, so their

output layers have different sizes. These visual pathway neural

networks were trained and then served as one of the two pathways

in a two-pathway network (Networktwo pathways) to simultaneously

determine any two attributes of all the objects in the visual images.

The four visual pathway networks were trained to determine

the four different attributes of objects: identity (Networkidentity),

luminance (Networkluminance), orientation (Networkorientation), and

location (Networklocation). These visual pathway networks were

trained in different ways when different kinds of maps were used

to constrain the binding problem. The binding problem could

be constrained using the location map, the identity map, the

luminance map, or the orientation map.

The structure of Networktwo pathways is shown in Figure 2B.

Networktwo pathways was trained to determine two attributes of all the

objects in each image simultaneously by processing the visual image

in two segregated pathways and then combining them together.

Networktwo pathways took the visual images as inputs and sent this
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FIGURE 1

Explanations of visual images. (A) Two examples of visual images. (B) An example of a t-shirt with low luminance, a t-shirt with medium low

luminance, a t-shirt with medium high luminance, and a t-shirt with high luminance. (C) An example of a shoe with orientations up, left, down, and

right. (D) Nine possible locations of the objects in the visual image.
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FIGURE 2

(A) The structure of Networkidentity , Networkluminance, Networkorientation, and Networklocation. (B) The structure of Networktwo pathways.

information into the two pathways. The two independently pre-

trained visual pathway networks (excluding their output layers

and with their weights fixed) were used as the two pathways in

Networktwo pathways. The two segregated pathways processed the

input images separately; then, the network concatenated the final

layers of the two pathways together and processed the information

jointly with some additional common dense layers. In sum, after

the two pathways had been independently trained and their weights

fixed, the common dense layers in Networktwo pathways were trained

to report the two attributes of all objects using one-hot encoding.

When the location map was used to constrain the binding

problem and Networktwo pathways needed to recognize identities

and locations of all objects, the identity pathway was trained to

report all objects’ identities in a certain order that depended on

the relative locations of the objects. Specifically, it was trained to

report the identities of the objects at the top first. If objects were

at the same horizontal line, then the network needed to report

the identities of the objects from left to right. The specific order

described here is an assumption without loss of generality: that

is, any consistent order would suffice. The location pathway was

trained to report all objects’ absolute locations regardless of their

other attributes. After training, both the identity pathway and

the location pathway should retain some location information of

objects and this location information can be used to constrain the

binding problem. An important difference between the location

information in the identity pathway and the location information

in the location pathway is that the identity pathway was trained to

retain the relative location information of objects (which object is

at the top left relative to other objects), but the location pathway

was trained to retain the absolute location information of objects

(locations numbered from 1 to 9).

On the other hand, when the identitymapwas used to constrain

the binding problem and Networktwo pathways needed to recognize

identities and locations of all objects, the identity pathway was

trained to report all objects’ absolute identities (i.e., t-shirts, pants,

shoes, and bags). The location pathway was trained to report all

objects’ absolute locations in a certain order that depended on the

relative identities of the objects. Specifically, the location pathway

was trained to report the locations of the t-shirts first, then report

the locations of the pants, then report the locations of the shoes,

and finally report the locations of the bags. If two objects had

the same identity (e.g., see Figure 1A, right panel), and then, the

location pathway was trained to report the locations of them in

any order. The specific order described here is also an assumption

without loss of generality: that is, any consistent identity order

would suffice (e.g., reporting the locations in the order of locations

of bags, locations of pants, locations of t-shirts, and locations of

shoes would also work).

It is important to note that for the example we have been using

(Networktwo pathways needing to recognize identities and locations

of all objects), it is also possible to use a third map (the luminance

map or the orientation map) to constrain the binding problem.

In this case, we train the identity and location pathways to report

objects’ identities and locations in a certain order that depends

on the relative luminance or relative orientations of the objects.

Specifically, when the luminance map is used, we train the identity

and location pathways to report the identities and locations of

objects, respectively, with low luminance first, then report the

identities and locations of objects with medium low luminance,

then report the identities and locations of objects with medium

high luminance, and finally report the identities and locations

of objects with high luminance. This specific order is again an
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assumption without loss of generality: that is, any other consistent

order would also suffice (e.g., reporting identities and locations of

objects in the order of high, medium high, medium low, and low

luminance would also work). Finally, when the orientation map

was used for the example we have been using (Networktwo pathways
needing to recognize identities and locations of all objects), we

trained the identity and location pathways to report the identities

and locations of objects with orientation up first, then report the

identities and locations of objects with orientation left, then report

the identities and locations of objects orientation down, and finally

report the identities and locations of objects with orientation right.

This specific order is again an assumptionwithout loss of generality:

that is, any other consistent order would also suffice (e.g., reporting

identities and locations of objects in the order of up, right, down,

and left would also work).

Importantly, any third map may be used to constrain the

binding problem for any other Networktwo pathways trained to

determine any other two attributes. For example, it is possible

to use the location map when Networktwo pathways needed to

recognize luminance and orientations of all objects. In this case,

we trained the luminance pathway and the orientation pathway to

report objects’ luminance and orientations in a certain order that

depended on the relative locations of objects. Likewise, we also

used the identity map, the luminance map, and the orientation

map to constrain the binding problem. In sum, we trained

Networktwo pathways to determine all possible pairs of attributes with

all different kinds of maps as the constraint.

Each visual pathway and two-pathway network was trained

three times, and the testing accuracy from each of the three training

sessions was recorded. The testing accuracy was obtained by

dividing the number of correct classifications by the total number

of testing samples during the testing session. The accuracies that

are used to compare different networks in this study are always

referring to the testing accuracies. The percentage gains of accuracy

for different tasks when the location map as opposed to the identity

map, the luminance map, or the orientation map was calculated

by Gain =
Location Map Accuracy−Other Map Accuracy

Other Map Accuracy
× 100%. Where

Location Map Accuracy is the average Networktwo pathways accuracy

obtained using the location map, Other Map Accuracy is the

average Networktwo pathways accuracy obtained using the identity

map, the luminance map, or the orientation map.

Results

Welch’s two-sample t-tests were used to compare different

testing accuracies and determine the significance of the differences.

The difference between testing accuracies is considered to be

significant if the corresponding p-value < 0.05.

Visual pathway networks

The average testing accuracies of different neural networks

for modeling different visual pathways are shown in Table 1A.

According to these results, the accuracy of the network was the

highest when it was trained to determine an attribute and the map

was based on the same attribute (gray cells), or when the map

was based on location (yellow cells). For example, the accuracy

of Networkidentity was the highest when the identity map or the

location map was used for training. Similarly, the accuracy of

Networkluminance was the highest when the luminance map or

the location map was used, the accuracy of Networkorientation was

the highest when the orientation map or the location map was

used, and the accuracy of Networklocation was the highest when the

location map was used.

Two-pathway networks

The average testing accuracies of different Networktwo pathways
that were trained to determine different pairs of attributes are

shown in Table 1B. According to these results, the accuracy of

Networktwo pathways was the highest in most cases when the location

map was used to constrain the binding problem. For example, even

when the two attributes that needed to be determined were identity

and luminance, using the location map achieved a significantly

higher accuracy than using the identity map or the luminance map.

Similar results were also obtained in other situations when the

other pairs of attributes were determined using Networktwo pathways.

However, there were exceptions. When Networktwo pathways was

trained to determine identity and orientation, the accuracy of

Networktwo pathways with the location map was significantly lower

than the accuracy of Networktwo pathways with the identity map or

the orientation map.

Why the location map is a better choice
than the other maps used in this study

To test the hypothesis that the location map is a better choice

because there are more classes for location, that is, nine possible

locations, but only four possible objects, four possible luminance

levels, and four possible orientations, we repeated our experiments

with the same number of classes in each of the four attributes. In

these simulations, we only kept locations 1, 3, 7, and 9 as the four

possible locations. Some examples are shown in Figure 3A. As a

result, all four attributes would each have four classes.

The average testing accuracies of different neural networks

for modeling different visual pathways, when there were four

classes in each attribute, are shown in Table 2A. The average

testing accuracies of different Networktwo pathways that were trained

to determine different pairs of attributes, when there were four

classes in each attribute, are shown in Table 2B. According to these

results, it was still true that the accuracy of the network was the

highest when it was trained to determine an attribute and the

map was based on the same attribute, or when the map was based

on location. Similarly, the accuracy of Networktwo pathways was still

the highest when the location map was used, but there were two

exceptions. When Networktwo pathways was trained to determine

identity and orientation, the location map resulted in significantly

lower accuracy than the identity map and the orientation map.

When Networktwo pathways was trained to determine luminance

and orientation, the location map resulted in significantly lower

accuracy than the luminance map. In all other cases, the location
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TABLE 1 The original simulation. There are four kinds of objects (t-shirt, pant, shoe, bag).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 83.1± 2.9 47.1± 1.3 42.1± 3.5 75.7± 3.1

Networkluminance 36.0± 3.2 61.8± 3.6 27.3± 1.8 61.9± 4.6

Networkorientation 45.1± 2.6 34.7± 0.2 85.4± 0.8 74.0± 1.8

Networklocation 46.7± 0.5 64.9± 0.3 59.0± 1.3 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 44.6± 0.6 42.6± 0.4 36.2± 0.3 47.1± 1.1

Orientation, location 17.7± 0.6 15.6± 0.4 37.3± 0.4 41.2± 0.9

Identity, orientation 46.8± 0.8 33.4± 0.4 49.6± 0.7 37.7± 0.6

Identity, location 31.9± 0.8 26.9± 0.5 19.9± 1.0 44.8± 0.6

Luminance, orientation 20.7± 0.5 26.9± 1.0 27.6± 0.3 35.1± 0.5

Luminance, location 19.9± 0.2 34.3± 0.5 17.0± 0.5 42.2± 0.5

(A) Average testing accuracies in percentage (%) ± standard deviations (%) for networks modeling different visual pathways with different maps. There are four kinds of objects (t-shirt, pant,

shoe, bag), four luminance levels, four orientations, and nine locations. The row headers are the names of the networks. The column headers are the types of maps that were used for constraining

the binding problem. Networkidentity , Networkluminance , Networkorientation , and Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and

the location pathway, respectively. The accuracy of the network was the highest when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or when

the map was based on location (yellow cells). (B)Average testing accuracies in percentage (%)± standard deviations (%) for differentNetworktwo pathways that were trained to determine different

pairs of attributes. There are four kinds of objects, four luminance levels, four orientations, and nine locations. The row headers are the two attributes that Networktwo pathways was trained to

determine. The column headers are the types of maps that were used for constraining the binding problem. Cells are gray when the network was trained to determine two attributes and the

map was based on one of these two attributes, and cells are yellow when the map was based on location. WhenNetworktwo pathways was trained to determine identity and orientation, the location

map resulted in significantly lower accuracy than the identity map and the orientation map. In all other cases, the location map resulted in significantly higher accuracy.

map resulted in significantly higher accuracy. These results indicate

that constraining the binding problem using the location map is a

better choice in most cases but again there are some exceptions.

It is possible that these exceptions may also be caused by the

dependency between different attributes.

To test the hypothesis that the location map is better because

the objects always have different locations, but may have the

same identities, luminance levels, or orientations, we repeated our

experiments and ensured that the objects in each visual image

always had different identities, luminance levels, orientations,

and locations. In these simulations, we used again four possible

kinds of objects, four luminance levels, four possible orientations,

and nine possible locations. The average testing accuracies of

different neural networks for modeling different visual pathways,

when the objects always had different identities, luminance levels,

orientations, and locations, are shown in Table 3A. The average

testing accuracies of different Networktwo pathways that were trained

to determine different pairs of attributes for these simulations

are shown in Table 3B. According to these results, it was still

true that the accuracy of the network was the highest when it

was trained to determine an attribute and the map was based

on the same attribute, or when the map was based on location.

The accuracy of Networktwo pathways was the highest when the

location map was used and there were no exceptions. These results

indicate that under the experimental conditions examined in this

study, constraining the binding problem using the location map

is the best choice regardless of whether the objects’ attributes

were unique.

The exceptions mentioned above may be
caused by the dependencies between
orientation, luminance, and identity

It is possible that there are dependencies between orientation,

luminance, and identity and that these dependencies may cause the

exceptions in our results.

To determine the orientations of t-shirts, pants, shoes, and

bags, the neural network could use different ways (different kinds

of features). For example, the orientations of t-shirts may be

primarily dependent on the places of the sleeves whereas the

orientations of bags may be primarily dependent on the places

of the handles. Hence, it is possible that the identity information

contained in the identity map may be helpful for the orientation

task. Likewise, because the orientation map was obtained based

on the orientation task, it is possible that the orientation map

contains identity information. Therefore, it is possible that the

identity information in the orientation map may also help the

network complete the identity task. As a result, the neural

network would be able to determine identity and orientation with

higher accuracy when the identity map or the orientation map

was used.

In addition, t-shirts, pants, shoes, and bags have different

luminance. The average luminance of shoes (33.6 ± 14.9) was

significantly lower than the average luminance of pants (57.2

± 13.7). The average luminance of pants (57.2 ± 13.7) was

significantly lower than the average luminance of t-shirts (81.0

± 28.6) and bags (85.8 ± 26.2). Therefore, the neural network
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FIGURE 3

(A) Examples of the visual images with four classes in each of the four attributes. (B) Examples of the visual images with four kinds of tops: t-shirts,

pullovers, coats, and shirts.

may also retain identity information in the luminance map and

this identity information would be helpful for the orientation task.

However, the orientation map may not contain information about

luminance since the orientation task is not directly dependent

on luminance. As a result, the neural network would be able to

determine luminance and orientation with higher accuracy only

when the luminance map was used.

We conducted additional simulations to test these hypotheses.

We removed the dependency between orientation, luminance, and

identity by using similar kinds of objects in our input images. We

used 200 t-shirts, 200 pullovers, 200 coats, and 200 shirts as the four

kinds of objects. Then, we created the input images in the same

way as before. Though we still have four kinds of objects, all of

them are tops. Therefore, in this case, the neural network should

use almost the same way (same kinds of features) to determine the

orientations of objects. As a result, the identity information should

no longer be helpful for the orientation task. In addition, the four

kinds of tops have relatively similar luminance (t-shirts: 81.0± 28.6,

pullovers: 95.9 ± 33.2, coats: 100.9 ± 26.4, shirts: 86.9 ± 33.3), so

now identity should also be almost independent of luminance. Two

example visual images are shown in Figure 3B.

We repeated the three kinds of simulations that we did

above with the new objects. The results are shown in Tables 4A,

B–6A, B. To make the accuracies easier to compare, a larger

dataset (12,000 visual images) was used to obtain the results

in Tables 4A, B. Datasets with the same size as before (six

thousand visual images) were used to obtain the results in the

other tables.
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TABLE 2 The simulation with the same number of classes in each of the four attributes. There are four kinds of objects (t-shirt, pant, shoe, bag).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 95.9± 0.9 66.1± 2.2 73.0± 1.5 98.8± 0.2

Networkluminance 59.1± 1.0 84.0± 0.7 46.7± 0.6 86.9± 2.9

Networkorientation 76.5± 2.2 62.4± 1.3 97.6± 0.6 99.0± 0.3

Networklocation 94.3± 0.3 85.8± 0.6 95.0± 0.7 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 68.7± 0.6 70.4± 0.4 59.6± 0.7 71.9± 0.2

Orientation, location 32.0± 0.1 32.5± 1.4 96.3± 0.4 99.4± 0.1

Identity, orientation 81.4± 0.4 58.1± 1.0 77.9± 0.9 58.5± 0.2

Identity, location 95.1± 0.1 63.4± 0.9 30.5± 0.8 98.4± 0.2

Luminance, orientation 40.3± 0.9 63.4± 1.3 52.7± 1.8 56.5± 0.4

Luminance, location 53.2± 0.5 82.3± 0.1 37.1± 0.9 82.9± 0.1

(A) Average testing accuracies in percentage (%) ± standard deviations (%) for networks modeling different visual pathways with different maps. There are four classes in each of the four

attributes. There are four kinds of objects (t-shirt, pant, shoe, bag). The row headers are the names of the networks. The column headers are the types of maps that were used for constraining the

binding problem. Networkidentity , Networkluminance , Networkorientation , and Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and the

location pathway, respectively. The accuracy of the network was the highest when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or when the

map was based on location (yellow cells). (B) Average testing accuracies in percentage (%) ± standard deviations (%) for different Networktwo pathways that were trained to determine different

pairs of attributes. There are four classes in each of the four attributes. The row headers are the two attributes thatNetworktwo pathways was trained to determine. The column headers are the types

of maps that were used for constraining the binding problem. Cells are gray when the network was trained to determine two attributes and the map was based on one of these two attributes,

and cells are yellow when the map was based on location. When Networktwo pathways was trained to determine identity and orientation, the location map resulted in significantly lower accuracy

than the identity map and the orientation map. When Networktwo pathways was trained to determine luminance and orientation, the location map resulted in significantly lower accuracy than

the luminance map. In all other cases, the location map resulted in significantly higher accuracy.

According to the results, the accuracy of the visual pathway

network was still the highest when it was trained to determine

an attribute and the map was based on the same attribute, or

when the map was based on location. More importantly, in all

cases, the accuracy of Networktwo pathways was always the highest

when the location map was used. After removing the dependency

between different attributes, the location map is a better choice

than the other maps, without exception in the current study, for

constraining the binding problem. After removing the dependency

between different attributes, the percentage gains of accuracy for

different tasks when the location map was used compared to the

identity map, the luminance map, or the orientation map are

shown in Figure 4. The percentage gains of accuracy in Figure 4 are

calculated based on the data in Table 4.

Discussion

Previous studies have shown it is advantageous to use two-

pathway networks as opposed to one-pathway networks to bind

two attributes of an object in a multi-object display using a location

map (Han and Sereno, 2023a). In our current study, we generalized

our findings of multiple-object displays to include four possible

attributes of the objects (identity, luminance, orientation, and

location) and explored which kind of map is the better choice for

constraining the binding problem. We found that for any pairs of

two attributes examined in this study, which were independent of

each other, that the two-pathway network needed to recognize and

bind, it was always better in these experiments to use the location

map to constrain the binding problem to achieve the highest

accuracy. We also showed that under the conditions examined

here and when visual attributes were independent of each other,

the advantage of using the location map was independent of the

number of classes in each attribute and independent of whether

the objects could share the same value in a particular attribute.

As clarified in the introduction, any usage or claim of “best” or

“optimal” or “always” is limited to the conditions and simulations

we have conducted in our current study.

A location map is not always a better
choice if there are dependencies between
di�erent attributes

According to our simulations, the location map did not always

result in the highest accuracy when there were dependencies

between orientation, luminance, and identity. In Tables 1B, 2B,

the orientation map and the identity map resulted in significantly

higher accuracy than the location map when Networktwo pathways
was trained to determine identity and orientation. Also in Table 2B,

the luminance map resulted in significantly higher accuracy than

the locationmapwhenNetworktwo pathways was trained to determine

luminance and orientation. However, these exceptions might be

caused by the interactions between different visual attributes. For

example, the neural networksmight use different ways to determine

the orientations of t-shirts, pants, shoes, and bags. As a result, there
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TABLE 3 The simulation with all attributes being unique. There are four kinds of objects (t-shirt, pant, shoe, bag).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 90.3± 0.0 76.3± 1.6 76.3± 1.3 88.7± 0.7

Networkluminance 65.5± 2.2 85.5± 0.6 43.7± 4.1 80.3± 0.7

Networkorientation 78.0± 3.2 66.7± 2.0 90.1± 2.7 87.7± 0.9

Networklocation 81.1± 2.2 92.3± 0.5 87.7± 1.2 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 62.8± 0.3 66.8± 0.3 48.8± 0.4 71.8± 0.6

Orientation, location 15.7± 1.0 21.4± 1.0 65.8± 1.2 74.8± 0.7

Identity, orientation 69.1± 0.5 66.1± 1.0 73.4± 0.6 77.4± 0.1

Identity, location 62.3± 0.4 49.8± 1.1 18.2± 0.6 73.2± 0.6

Luminance, orientation 51.0± 0.3 56.8± 0.6 42.5± 0.6 71.6± 0.4

Luminance, location 29.8± 0.8 63.7± 1.0 17.3± 0.6 69.9± 0.9

(A) Average testing accuracies in percentage (%) ± standard deviations (%) for networks modeling different visual pathways with different maps. The objects in each visual image always had

different identities, luminance levels, orientations, and locations. There are four kinds of objects (t-shirt, pant, shoe, bag), four luminance levels, four orientations, and nine locations. The row

headers are the names of the networks. The column headers are the types of maps that were used for constraining the binding problem. Networkidentity , Networkluminance , Networkorientation , and

Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and the location pathway, respectively. The accuracy of the network was the highest

when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or when the map was based on location (yellow cells). (B) Average testing accuracies

in percentage (%) ± standard deviations (%) for different Networktwo pathways that were trained to determine different pairs of attributes. The objects in each visual image always had different

identities, luminance levels, orientations, and locations. There are four kinds of objects, four luminance levels, four orientations, and nine locations. The row headers are the two attributes that

Networktwo pathways was trained to determine. The column headers are the types of maps that were used for constraining the binding problem. Cells are gray when the network was trained to

determine two attributes and the map was based on one of these two attributes, and cells are yellow when the map was based on location. In all cases, the location map resulted in significantly

higher accuracy.

might be interactions between orientation and identity and these

interactions might cause the exception that using an identity map

or orientation map could achieve higher accuracy than using a

location map. All of the exceptions disappeared after we removed

the dependencies by using four kinds of tops as the different

objects in the input images. It suggests that the spatial location

map is not always better when there are dependencies between

different attributes. Interestingly, perhaps in agreement with these

findings, previous study in primates suggests that there are more

complex (e.g., combined attribute) selectivities in higher visual

areas (Tanaka, 2003) as well as evidence that there are less clear

spatial maps (retinotopy) in these higher visual areas (e.g., Rajimehr

et al., 2014).

When di�erent attributes are independent,
the spatial location map is a better choice
for binding in two-pathway networks, and
maps based on a trained attribute are not
better choices for visual binding

After removing dependencies between different attributes,

the accuracy of Networktwo pathways in these experiments was

always the highest when the location map was used to constrain

the binding problem, no matter which two attributes that

Networktwo pathways was trained to recognize. These results are

interesting because in our previous study, we have shown

that when Networktwo pathways was trained to determine identity

and location, it was able to associate each object’s identity

with its location using the related but differently retained

location information in the two pathways (relative location

information in the identity pathway and absolute location

information in the location pathway). Intuitively, one might

think that Networktwo pathways would have a similar performance

when it was trained to use the related but differently retained

identity information in the two pathways to associate each

object’s identity with its location. In addition, one might think

when Networktwo pathways needs to determine other attributes,

for example, identity and luminance, it would be better to

associate each object’s identity and luminance using the related but

differently retained identity or luminance information in the two

pathways. However, the simulation results in our current study

showed that Networktwo pathways associated any two attributes of

each object together better by using the related but differently

retained location information in the two pathways, even when

location was not one of the two attributes that was trained

to be recognized by either visual pathway network contained

in Networktwo pathways. In other words, in these experiments,

it was always better to use a location map to constrain

the binding problem when there is not dependency between

different attributes.
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TABLE 4 The original simulation. There are four kinds of tops (t-shirt, pullover, coat, shirt).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 33.9± 0.2 13.3± 0.8 12.4± 1.4 30.3± 5.1

Networkluminance 35.6± 3.0 79.9± 3.2 46.7± 0.8 82.8± 2.1

Networkorientation 45.4± 0.8 66.5± 0.9 97.3± 0.5 96.4± 0.4

Networklocation 42.6± 3.4 80.6± 1.4 85.8± 1.4 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 15.3± 0.4 12.3± 0.1 11.4± 0.6 22.8± 0.3

Orientation, location 29.1± 1.2 28.8± 0.9 70.9± 0.8 74.8± 0.3

Identity, orientation 18.6± 0.3 11.4± 0.1 14.0± 0.2 24.8± 0.7

Identity, location 15.7± 0.4 7.2± 0.1 6.6± 0.5 23.7± 0.8

Luminance, orientation 40.6± 0.8 59.9± 0.3 52.5± 0.5 75.6± 0.3

Luminance, location 29.5± 0.2 62.8± 0.2 29.4± 0.4 75.5± 0.4

(A) Average testing accuracies in percentage (%)± standard deviations (%) for networks modeling different visual pathways with different maps. There are four kinds of tops (t-shirt, pullover,

coat, shirt), four luminance levels, four orientations, and nine locations. The row headers are the names of the networks. The column headers are the types of maps that were used for constraining

the binding problem. Networkidentity , Networkluminance , Networkorientation , and Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and

the location pathway, respectively. The accuracy of the network was the highest when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or

when the map was based on location (yellow cells). (B) Average testing accuracies in percentage (%) ± standard deviations (%) for different Networktwo pathways that were trained to determine

different pairs of attributes. There are four kinds of tops, four luminance levels, four orientations, and nine locations. The row headers are the two attributes that Networktwo pathways was trained

to determine. The column headers are the types of maps that were used for constraining the binding problem. Cells are gray when the network was trained to determine two attributes and the

map was based on one of these two attributes, and cells are yellow when the map was based on location. In all cases, the location map resulted in significantly higher accuracy.

A location map better for visual
binding—neurophysiological evidence

Our study indicates that to process multiple attributes of

multiple objects in parallel segregated pathways and then bind

them together, it is better for the brain to use a spatial map

to encode the attributes of objects. Many experimental studies

have shown that there are topographic maps in the brain and

that these maps in the visual system are primarily spatial (Kaas,

1997; Lennie, 1998). For example, the orientation “pinwheels”

in primates and cats representing different orientations are

arranged radially around a central location with all orientations

represented in every patch of the retinotopic map (Ibbotson

and Jung, 2020). These orientation “pinwheels” at different

places in the retinotopic map suggest that orientation is

embedded in a location map. Our study, using a computational

approach, shows that a location map is computationally

advantageous to bind multiple attributes of multiple visual

objects, perhaps providing insight into the topography of visual

cortical areas.

A location map for visual
binding—mechanistic models

Many previous modeling studies, using more mechanistic

models, have also used spatially organized maps to bind different

kinds of visual information together. For example, studies

conducted by Layton et al. (2012, 2014) and Layton and

Yazdanbakhsh (2015) used spatial maps in their computational

models at the level of microcircuits to bind border ownership,

fragmented pieces of orientation, and camouflage pieces to explain

how the visual system performs figure-ground segregation. In

addition, Zhou et al. (2000) used spatially organized models of

early visual areas to bind different visual information and explain

the coding of border ownership in the brain. Park et al. (2022)

studied the impact of orientation interactions on visual illusions

using a model with orientation information encoded within a

retinotopic location map. The common use of spatial maps in these

studies suggest that spatial maps may be a propitious choice for

constraining the binding problem.

The retinotopic maps in the brain approximate logarithmic

maps, not Cartesian maps (Wu et al., 2012). The location map

used in our study is not a realistic retinotopic map (Ta et al.,

2022). However, because we use a relative location map in

our model (e.g., object A is on the top left of object B), the

specific layout (Cartesian, logarithmic, or based on the Human

Connectome Project) should not be important for our model

to work, that is, our model suggests that the relative location

information in the retinotopic maps is enough to constrain the

binding problem.

Why is a location map better for visual
binding?

Though we have shown that it is computationally advantageous

to embed feature maps in spatial location in the visual system, it is

unclear why the location map is better than other kinds of maps in

the visual system.
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TABLE 5 The simulation with the same number of classes in each of the four attributes. There are four kinds of tops (t-shirt, pullover, coat, shirt).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 51.1± 1.3 19.1± 0.6 14.8± 1.4 71.8± 4.6

Networkluminance 45.8± 1.0 89.8± 2.1 57.5± 1.7 94.7± 1.0

Networkorientation 50.3± 0.6 66.7± 1.3 97.9± 0.1 98.3± 0.3

Networklocation 72.1± 1.8 88.8± 0.9 97.1± 0.2 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 28.7± 0.5 20.9± 0.5 16.6± 0.4 57.3± 0.4

Orientation, location 34.8± 1.8 34.3± 1.7 97.9± 0.3 98.8± 0.0

Identity, orientation 33.2± 0.4 15.5± 1.0 17.0± 0.4 46.2± 0.6

Identity, location 51.1± 0.2 15.0± 0.3 9.3± 0.7 73.4± 0.7

Luminance, orientation 46.0± 1.5 68.8± 0.8 65.9± 0.3 77.7± 0.3

Luminance, location 50.1± 0.9 88.1± 0.5 67.6± 1.1 94.2± 0.4

(A) Average testing accuracies in percentage (%) ± standard deviations (%) for networks modeling different visual pathways with different maps. There are four classes in each of the four

attributes. There are four kinds of tops (t-shirt, pullover, coat, shirt). The row headers are the names of the networks. The column headers are the types of maps that were used for constraining

the binding problem. Networkidentity , Networkluminance , Networkorientation , and Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and

the location pathway, respectively. The accuracy of the network was the highest when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or when

the map was based on location (yellow cells). (B)Average testing accuracies in percentage (%)± standard deviations (%) for differentNetworktwo pathways that were trained to determine different

pairs of attributes. There are four classes in each of the four attributes. The row headers are the two attributes thatNetworktwo pathways was trained to determine. The column headers are the types

of maps that were used for constraining the binding problem. Cells are gray when the network was trained to determine two attributes and the map was based on one of these two attributes,

and cells are yellow when the map was based on location. In all cases, the location map resulted in significantly higher accuracy.

One possible reason for the spatial location map being a

better choice is that there are nine possible locations, but only

four possible identities, four possible luminance levels, and four

possible orientations for each object.Withmore number of possible

locations, the neural network may be able to differentiate different

objects better according to their locations and then bind multiple

attributes together. To test this hypothesis, we did additional

simulations with the same number of classes in each attribute. We

ensured that each object had four possible identities, four possible

luminance levels, four possible orientations, and four possible

locations. According to these simulations, Networktwo pathways still

achieved the highest accuracy with the location map. These results

indicate that the location map is the better choice in this study

regardless of the number of classes in each attribute.

Another possible reason for the spatial location map being

a better choice is that in our study, we assumed the locations

of objects are always different, but the identities, luminance, and

orientations of different objects could be the same. Though the

assumption is artificial, it generally agrees with real life experience,

that is, the locations of multiple objects are typically different,

but the other attributes of the objects may be repeated (the

same). The unique location of each object may provide a better

“clustered index” that can be used to bind multiple attributes

together. To test the importance of uniqueness, we did additional

simulations and ensured that all objects in the same visual

image also never had the same identities, luminance levels, or

orientations. According to these simulations, Networktwo pathways
also achieved the highest accuracy with the location map. These

results indicate that under the conditions that we examine, the

location map is the best choice even when the other attributes are

also unique.

Finally, it is possible that location might align better between

the world and the visual sensory epithelium, so it is better to

use a location map. Though sometimes refraction, reflection,

and diffraction could change the direction of light, light travels

along straight lines in most cases so that the light that comes

from objects at different locations will naturally arrive at different

corresponding locations on the retina. The brain can easily retain

this information with retinotopic mapping. However, it might

be more difficult for the visual system to determine identity,

luminance, and orientation of an object and hence would require

more complex information processing.

What is a better map for binding in other
sensory systems?

Though we have shown that it is computationally advantageous

to embed feature maps in spatial location in the visual

system, it is unclear whether this is also the better choice for

other sensory systems. Some studies have shown that some

other sensory systems do not primarily use a spatial map.

For example, tonotopic maps of sound frequency have been

documented in cortical auditory cortex (Talavage et al., 2000)

and maps of odors based on features in chemical space in the

olfactory system (Imai et al., 2010). Furthermore, in auditory

cortex, no explicit cortical spatial map of sound localization
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TABLE 6 The simulation with all attributes being unique. There are four kinds of tops (t-shirt, pullover, coat, shirt).

(A)
h
h
h

h
h
h

h
h
h
h

hh

Network
Type of map Identity Luminance Orientation Location

Networkidentity 46.7± 1.7 13.2± 1.3 17.6± 1.2 32.2± 1.7

Networkluminance 29.5± 0.9 94.7± 0.6 49.8± 1.1 89.9± 1.8

Networkorientation 35.6± 0.7 67.9± 2.0 91.6± 0.4 88.2± 2.1

Networklocation 41.2± 2.1 93.9± 0.8 90.5± 1.8 100.0± 0.0

(B)
h
h
h

h
h
h

h
h
h
h

hhTwo attributes
Type of map Identity Luminance Orientation Location

Identity, luminance 14.1± 0.2 12.1± 0.4 15.4± 0.7 28.8± 0.7

Orientation, location 15.7± 0.7 23.2± 1.0 72.1± 0.6 77.1± 0.4

Identity, orientation 18.1± 0.3 12.1± 0.5 16.8± 0.3 27.8± 0.7

Identity, location 16.4± 0.8 8.7± 0.2 7.7± 0.3 30.2± 0.6

Luminance, orientation 21.8± 0.5 66.7± 0.4 48.0± 0.3 75.2± 0.5

Luminance, location 19.6± 1.5 74.6± 0.7 16.9± 1.0 77.4± 0.3

(A) Average testing accuracies in percentage (%) ± standard deviations (%) for networks modeling different visual pathways with different maps. The objects in each visual image always had

different identities, luminance levels, orientations, and locations. There are four kinds of tops (t-shirt, pullover, coat, shirt), four luminance levels, four orientations, and nine locations. The row

headers are the names of the networks. The column headers are the types of maps that were used for constraining the binding problem. Networkidentity , Networkluminance , Networkorientation , and

Networklocation were trained to model the identity pathway, the luminance pathway, the orientation pathway, and the location pathway, respectively. The accuracy of the network was the highest

when it was trained to determine an attribute and the map was based on the same attribute (gray cells), or when the map was based on location (yellow cells). (B) Average testing accuracies

in percentage (%) ± standard deviations (%) for different Networktwo pathways that were trained to determine different pairs of attributes. The objects in each visual image always had different

identities, luminance levels, orientations, and locations. There are four kinds of tops, four luminance levels, four orientations, and nine locations. The row headers are the two attributes that

Networktwo pathways was trained to determine. The column headers are the types of maps that were used for constraining the binding problem. Cells are gray when the network was trained to

determine two attributes and the map was based on one of these two attributes, and cells are yellow when the map was based on location. In all cases, the location map resulted in significantly

higher accuracy.

has been found, despite 40 years of searching (Middlebrooks,

2021). Nevertheless, spatial features of auditory cortex such

as panoramic spatial coding of single cell responses, task-

dependent sharpening of spatial sensitivity, and direct projections

to space-mapped brain regions (e.g., parietal visual cortical

areas and subcortical oculomotor structures such as the superior

colliculus) suggest some sort of distributed code for sound-

source location likely exists in auditory cortex (for review, see

Middlebrooks, 2021). The fact that different attributes define

the primary topology in different sensory systems suggests that

the location map may not be the only better choice for all

sensory systems and that it is possible that the other sensory

systems might use maps based on other attributes to constrain the

binding problem.

Coding of specific attributes may differ in difficulty for different

sensory systems. For example, it might be the easiest for the

visual system to determine location because light travels along

straight lines in most cases, but it is not the case for sound

waves. Sound waves have much longer wavelength and usually

do not travel along straight lines because of diffraction. It might

be easiest for the human auditory system to determine sound

frequency as opposed to spatial location because the auditory

sensory epithelium is laid out by frequency. Similarly, it might

also be easiest for the olfactory system to determine features

of chemical space as opposed to spatial location. Therefore, the

auditory system and the olfactory system may bind attributes of

auditory or olfactory signals primarily using a frequency map

and a chemical space map, respectively. Furthermore, specific

attributes may differ in importance for different sensory systems.

Perhaps, sound frequency or odor is more important than

spatial localization in auditory processing or olfaction, respectively.

However, as these sensory systems all need to interact with

spatially mapped motor output, it may be that space is helpful

to align the maps (Rees, 1996). Future work is needed to clarify

these speculations.

Limitations and future directions

One limitation of our study is that to control conditions

we used relatively simple images and models to test our

hypotheses in simple artificial settings. In future, it would

be interesting to see whether these findings would be

similar for more complex natural images, for visual tasks

that involve more visual attributes, and for models that

recognize orientations and locations of objects across

a continuum.

In addition, in future, it would be interesting to test

whether the location map could improve not only the accuracy

but also the efficiency of the network. For example, in a

noisy environment, whether the network could recognize

and associate objects’ visual attributes faster using the

location map.
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FIGURE 4

(A) The percentage gains of accuracy when the location map was used compared to the identity map. (B) The percentage gains of accuracy when

the location map was used compared to the luminance map. (C) The percentage gains of accuracy when the location map was used compared to

the orientation map. The percentage gains of accuracy were calculated by Gain =
Location Map Accuracy−Other Map Accuracy

Other Map Accuracy
× 100%. Where

Location Map Accuracy is the average Networktwo pathways accuracy obtained using the location map, Other Map Accuracy is the average

Networktwo pathways accuracy obtained using the identity map, the luminance map, or the orientation map. The horizontal labels represent the tasks:

I_LU is recognizing identity and luminance, O_LO is recognizing orientation and location, I_O is recognizing identity and orientation, I_LO is

recognizing identity and location, LU_O is recognizing luminance and orientation, LU_LO is recognizing luminance and location.

Conclusion

Previous work has shown that it is advantageous (both in

accuracy and efficiency) to process attributes of objects using

artificial neural networks with two segregated pathways as opposed

to a single pathway. However, when using such artificial neural

networks to process and bind multiple objects’ attributes, there

is a binding problem, given that segregated pathways may not

recombine and associate each object’s attributes appropriately. In a

previous study, we successfully constrained the binding problem by

using a relative location map, but theoretically maps based on other

attributes should work as well. Here, we compare the performance

of the networks using maps based on different attributes (identity,

luminance, orientation, and location) to find out which kind ofmap

is a better choice for constraining the binding problem. Although

using amap based on a given trained attribute of a network could be

successful, we found that in our experiments, the location map was

always a better choice than other maps considered in this study to

constrain the binding problem when attributes were independent.

We also found that when attributes were independent, the location

map was a better choice regardless of the number of classes in each

attribute and whether the objects in the visual image could have

the same value in each attribute. Though our results agree with

the previous neurophysiological findings that show that the map

in many visual cortical areas is primarily spatial, the maps in other

sensory systems are not always primarily spatial. The underlying

general principle for choosing the better map in different sensory

systems requires future investigations.
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