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Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing

electroencephalography (EEG) is the main method neurologists use, but this

method is time-consuming. EEG signals are non-stationary, nonlinear, and

often highly noisy, so it remains challenging to recognize epileptic EEG signals

more accurately and automatically. This paper proposes a novel classification

system of epileptic EEG signals for single-channel EEG based on the attention

network that integrates time-frequency and nonlinear dynamic features. The

proposed system has three novel modules. The first module constructs the

Hilbert spectrum (HS) with high time-frequency resolution into a two-channel

parallel convolutional network. The time-frequency features are fully extracted

by complementing the high-dimensional features of the two branches. The

second module constructs a grayscale recurrence plot (GRP) that contains more

nonlinear dynamic features than traditional RP, fed into the residual-connected

convolution module for effective learning of nonlinear dynamic features. The

third module is the feature fusion module based on a self-attention mechanism

to assign optimal weights to different types of features and further enhance

the information extraction capability of the system. Therefore, the system is

named HG-SANet. The results of several classification tasks on the Bonn EEG

database and the Bern-Barcelona EEG database show that the HG-SANet can

effectively capture the contribution degree of the extracted features from

different domains, significantly enhance the expression ability of the model, and

improve the accuracy of the recognition of epileptic EEG signals. The HG-SANet

can improve the diagnosis and treatment efficiency of epilepsy and has broad

application prospects in the fields of brain disease diagnosis.
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1 Introduction

Epilepsy is a kind of brain disease caused by the abnormal hypersynchronous firing of
neurons in the brain, which poses a great threat to the life and health of patients (Acharya
et al., 2013). Therefore, an accurate epilepsy diagnosis is of great clinical significance in
reducing the harm caused by epileptic seizures to patients. Electroencephalography (EEG)
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is the most commonly used and effective procedure for diagnosing
epilepsy (Noachtar and Rémi, 2009). The diagnosis of epilepsy is a
continuous and long-term process (Sazgar and Young, 2019; Jang
and Lee, 2020). Moreover, the characteristic pattern of epileptic
seizures varies greatly among different patients and even within
the same patient (Ren et al., 2023). Therefore, the diagnosis of
epilepsy and the pattern analysis of epileptic seizures are usually
carried out by neurologists through the detailed analysis of a large
number of EEG data by visual detection and manual annotation
(Peng et al., 2022). Since EEG signals are nonlinear, non-stationary,
highly noisy, and tend to be of long duration, manual judgment
to analyze EEG signals is very time-consuming and subject to
the subjective judgment of the clinician (Andrzejak et al., 2001;
San-Segundo et al., 2019; Hamavar and Asl, 2021). Therefore,
more efficient automated detection and analysis methods have
received much attention recently. This work will explore automatic
and accurate recognition techniques of epileptic EEG signals to
assist neurologists in analyzing EEG signals, reduce the burden of
neurologists, and improve the efficiency of epilepsy diagnosis and
treatment.

For the classification methods of epileptic EEG signals, scholars
mainly use statistical analysis-based methods, traditional machine
learning and deep learning methods. Gao et al. (2018) propose
a statistical analysis-based method to detect seizures. First, they
compute joint time-domain features and use the auto-regressive
(AR) linear model to model the data. Then, based on the non-
parametric statistical test of random power martingale (RPM), the
decision is made. Das et al. (2018) extracted time-domain and
frequency-domain features of EEG signals based on variational
mode decomposition (VMD) and then detected epileptic seizure
events by thresholding. Chen et al. (2019) used various distance
measurement methods, such as Bhattacharyya distance, to solve
the feature similarity of the power spectrum features based on
short-time Fourier transform (STFT) of EEG signals at different
moments and then detected the EEG signals by null hypothesis test.
The above method has the advantages of easy implementation and
fast detection speed. Since EEG signals are non-stationary signals,
they are easily disturbed by noise generated by brain activity, and
the extracted features are easily statistically unstable, leading to
inaccurate detection results. In addition, scholars have conducted
a lot of research on the classification of epileptic EEG signals
based on machine learning and deep learning. Wang et al. (2017)
extracted time-domain, frequency-domain, and time-frequency-
domain features of EEG signals based on wavelet transform (WT),
extracted nonlinear features based on information theory, and
then combined the two types of features for epileptic seizure
detection by machine learning methods such as k-nearest neighbor
classification (KNN) and support vector machine (SVM). Lu et al.
(2021) extracted several nonlinear features, such as sample entropy
and Higuchi’s fractal dimension, and combined them with SVM
for epileptic EEG classification. Then, they found that phase space
reconstruction and Poincaré section can improve the recognition
accuracy of epileptic EEG signals. Jang and Lee (2020) use the
wavelet transform (WT) and phase space reconstruction (PSR) to
extract features and then input features to the neural network with
weighted fuzzy membership (NEWFM) to detect seizure. Sui et al.
(2021) proposed a time-frequency hybrid network (TFHybridNet)
based on STFT and a convolutional neural network (CNN) for
epileptic focus localization. Varlı and Yılmaz (2023) propose a

combined deep learning model based on CNN and long short-term
memory (LSTM) to detect seizures. This model uses continuous
wavelet transform (CWT) and STFT methods to input the signal
conversion time-frequency image to the CNN module and the
raw EEG signal to the LSTM module. Compared with traditional
machine learning models and statistical analysis-based methods,
deep learning models have stronger learning ability and better
performance. Current deep learning methods mainly focus on
the construction of deep network structures. Combining the non-
stationary and nonlinear inherent signal characteristics of EEG
with deep learning technology to improve detection accuracy needs
further research.

Empirical mode decomposition (EMD) is a non-stationary
signal analysis method widely used in the study of epileptic
EEG recognition (Mahjoub et al., 2020; Lu et al., 2023). EMD
decomposes EEG signals into several linear combinations of
intrinsic mode functions (IMF). However, due to the mode mixing
problem in EMD, false components in the obtained IMF will
adversely affect the EEG analysis. In our previous work, we
proposed an improved EMD method named adaptively optimized
masking empirical mode decomposition (AOMEMD) (Sun et al.,
2024). AOMEMD can effectively alleviate the mode mixing
problem of EMD so that the obtained IMFs can effectively capture
the underlying physics of EEG. By applying the Hilbert transform
(HT) to the IMFs, the Hilbert spectrum (HS) of the EEG can be
constructed for high-resolution time-frequency representation of
EEG signals. Compared with STFT and CWT methods, this method
does not need to set the basis function in advance and has high
adaptability and flexibility. Therefore, in this paper, time-frequency
features of EEG are represented based on AOMEMD and HT.

The recurrence plot (RP) is a nonlinear time series analysis
method that can reveal hidden dynamic characteristics in EEG
signals in the form of images (Eckmann et al., 1987; Huang
et al., 2023). The traditional RP is a binary symmetric square
matrix, usually using the recurrence quantification analysis (RQA)
method to extract the structural features of RP for classification
recognition. Since the traditional RP cannot reflect detailed time
series information, scholars have proposed various improved RP
methods. Hatami et al. (2017) skipped the threshold segmentation
step in the process of RP construction and combined the gray-
level texture image of RP with CNN to classify the time series.
Khosla et al. (2022) proposed an un-thresholded recurrence plot
(URP) and used the fractal weighted local binary pattern (URP-
FWLBP) method to extract the texture features to classify epileptic
seizure types. Experiments show that the URP-FWLBP method is
better than the traditional method based on RQA. Considering the
nonlinear, dynamic, and complex EEG signal, this paper combines
the time-frequency feature based on HT with the nonlinear and
non-stationary features based on RP to classify epileptic EEG
signals.

Therefore, in this paper, we propose a novel system combining
nonlinear dynamic features of EEG and time-frequency features
extracted by non-stationary time-frequency analysis methods
with deep learning techniques to classify epileptic EEG signals
automatically. The proposed system is based on a self-attention
mechanism to fuse time-frequency features of the HS and nonlinear
dynamic features of the grayscale recurrence plot (GRP) to detect
epileptic EEG signals for single-channel EEG. So, we call the
proposed system HG-SANet. Several classification tasks on the
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TABLE 1 The details of five sets in the Bonn EEG time series.

Set New
name

Subjects Conditions Electrodes

A EO Healthy
volunteers

Eyes open Surface

B EC Healthy
volunteers

Eyes closed Surface

C SOE Epilepsy patients Seizure-free interval
from outside the

epileptogenic zone

Intracranial

D SFE Epilepsy patients Seizure-free interval
from epileptogenic

zone

Intracranial

E ES Epilepsy patients Epileptic seizure Intracranial

Bonn EEG database and the Bern-Barcelona EEG database verify
the performance of the proposed system for the classification of
epileptic EEG signals.

2 Materials and methods

In this section, the public dataset used in this paper is first
introduced. Secondly, the proposed approach of seizure detection
in EEG signals is elaborated. Finally, the experimental setup of this
paper is introduced.

2.1 Dataset and data pre-processing

In this paper, two datasets are used. The first dataset is the Bonn
EEG time series (Andrzejak et al., 2001). The dataset consists of
five sets (denoted A, B, C, D, and E in the original reference) of
single-channel EEG segments from healthy volunteers and epilepsy
patients, with a signal sampling frequency of 173.61 Hz and a
duration of 23.6 s per sample. In order to better distinguish the five
subsets, the names of the five subsets are changed to A (denoted
EO), B (denoted EC), C (denoted SOE), D (denoted SFE), and
E (denoted ES). Each set has 100 recordings and is described in
Table 1. Some samples are shown in Figure 1. All EEG signals
are digitally band-pass filtered over a range of 0.53∼40 Hz. We
used all the samples in this database for experiments to verify the
effectiveness of the proposed method in epilepsy detection. We
split the data to expand the size of the dataset (Varlı and Yılmaz,
2023). The data is divided into a segment of 512 sample points; the
distance between segments is 128 sample points, the last one sample
points of the data are deleted, and the final data is divided into 29
segments.

The second dataset is the Bern-Barcelona EEG database
(Schindler et al., 2012). The dataset consists of focal and non-
focal EEG segments during seizure-free periods from five epilepsy
patients, with a signal sampling frequency of 1,024 Hz and a
duration of 20 s per sample. Each class has 3,750 samples. If
the channel is in the epileptogenic region, its label is focal;
otherwise, its label is non-focal. The database is preprocessed as
follows: (1) Samples are down-sampled to 512 Hz; (2) All EEG
signals are digitally band-pass filtered over a range of 0.5∼150 Hz

using a fourth-order Butterworth filter and phase distortions
are minimized using forward filtering and backward filtering
(Schindler et al., 2012). We used all the samples in this database
for experiments to verify the effectiveness of the proposed method
in epileptic focus localization. Some samples are shown in Figure 2.
According to the previous works (Fasil and Rajesh, 2019), the data
is divided into a non-overlapping segment of 1,024 sample points
to expand the size of the dataset, and the final data is divided into
10 segments.

All the EEG signals in two datasets are normalized by the
following Equation 1 to keep all data at the same scale, helping to
improve recognition performance.

x̃ =
x− µ
σ

(1)

where x is the input signal, µ is the mean of the signal, and σ is the
standard deviation of the signal.

2.2 The proposed framework

The overview of the system based on the proposed HG-SANet
is shown in Figure 3. The HG-SANet consists of three modules:
EEG time-frequency feature extraction module based on HS and
two-channel parallel convolutional neural network (HS-PCNet),
nonlinear dynamic feature extraction module based on GRP and
residual networks (GRP-ResNet), and multi-domain feature fusion
module based on self-attention mechanism (MF-SANet). Below, we
first introduce the construction method of HS and GRP and then
introduce the network structure of each module.

2.2.1 AOMEMD-based Hilbert spectrum
In this part, we use AOMEMD and HT to construct Hilbert

spectrum. For a single-channel EEG signal x(t), the AOMEMD is
first used to decompose x(t) into a finite number of IMFs and a
residue. Therefore, x(t) can be represented as Equation 2:

x(t) =
∑nimf

k = 1
ck(t)+r(t) (2)

where ck(t) (k = 1, 2,..., nimf ) is the kth IMF and r(t) represents
the residue. The frequency of the nimf IMFs decreases from the
first to the nimf th in order. In this work, we use the AOMEMD
without the optimization strategy, which can save computation
time while maintaining performance (Sun et al., 2024). The
AOMEMD obtains IMFs through the following sifting process and
the details of EMD are referred to the work of Huang et al. (1998).

Step 1: Input the signal x(t). Initialize k= 1 and rk−1(t)= x(t).
The number of phases is np.

Step 2: Determine the amplitude ak and frequency f k of the kth
group masking signal vk(t) with resulted IMFs by applying EMD to
rk−1(t).

Step 3: Construct the kth group masking signal
vkj(t) = akcos [2πf kt+2π(j− 1)/np], (j = 1, 2,...,np). Obtain
the kth IMF ck(t) = [

∑np
j = 1 EMD1(rk−1(t)+vkj(t))]/np, where

EMD1 (·) represents to obtain the first IMF using EMD.
Step 4: Update rk(t) = rk−1(t)- ck(t) and k = k+1. If rk−1(t)

fulfils termination criterion, r(t) = rk−1(t); otherwise, go to step 2
and execute the loop.
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FIGURE 1

EEG samples from the Bonn EEG database. (A) Example of set EO. (B) Example of set EC. (C) Example of set SOE. (D) Example of set SFE. (E) Example
of set ES.

FIGURE 2

EEG samples from the Bern-Barcelona EEG database. (A) Example of focal EEG signals. (B) Example of non-focal EEG signals.

For the obtained ck(t) (k = 1, 2,..., nimf ) by AOMEMD,
we use the HT to obtain the instantaneous frequency fk(t) and
instantaneous amplitude ak(t) of ck(t). The formula for yk(t)
obtained by applying the HT to ck(t) is shown in Equation 3
(Huang et al., 1998):

yk (t) =
1
π

p.v.
∫
+∞

−∞

ck (τ )

τ − t
dτ (3)

where p.v. is the cauchy principal value. Then, fk(t) and ak(t) are
solved as shown in Equations 4, 5:

fk(t) =
1

2π
·

d
dt
(arctan

yk (t)
ck (t)

) (4)

ak (t) =
√

c2
k (t)+y2

k (t) (5)

Then the amplitude distribution of x(t) with frequency and time is
the Hilbert spectrum (HS), denoted as HS(f, t), expressed as follows
Equation 6:

HS(f ,t) = Re(
∑nimf

k = 1
ak(t)ei

∫ t
−∞

2πfk(τ )dτ) (6)

Where Re represents the real part and i is the imaginary unit.
HS(f, t) is a two-dimensional matrix with a time resolution equal
to the sampling period (Molla and Hirose, 2007). Examples of HS
are shown in Figure 4. As shown in Figure 4, the time-frequency
distribution of samples from set EC and set ES is quite different.

2.2.2 Grayscale recurrence plot
For a single-channel EEG signal x(t) of length TEEG, the RP is

computed as the following. First, according to Takens’ embedding
theory (Takens, 1985), a phase space is reconstructed for x(t), and
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FIGURE 3

The overview of the proposed epileptic seizure detection system. The cortical model in the figure is from the literature (Andrzejak et al., 2001).

FIGURE 4

Hilbert spectra from the set EC and set ES of the Bonn EEG database. (A) Hilbert spectrum from the set EC. (B) Hilbert spectrum from the set ES.

a phase point in this space is denoted as sn and n = 1, 2, ..., TEEG –
Tps (m–1), where Tps is the time delay and m is the embedding
dimension. Tps and m can be selected using mutual information
(MI) and false nearest neighbor (FNN) methods, respectively (He
et al., 2023). Second, the RP is defined according to Equation 7
below:

RP
(
n,j
)
=

{
1, ε ≥

∣∣∣∣sn − sj
∣∣∣∣

0, ε <
∣∣∣∣sn − sj

∣∣∣∣ ,
n,j = 1, 2,...,TEEG − Tps(m− 1) (7)

where ε is the distance threshold and || · || is the Euclidean norm.
By assigning a black dot to the RP element (n, j) of RP(n, j)= 1 and
a white dot to the RP element (n, j) of RP(n, j)= 0, a binary square
image of an RP can be obtained, as shown in Figures 5A,C.

Binary square images constructed using the threshold method
lose a lot of information, so we convert the RP to a grayscale

intensity image (named grayscale RP, GRP). The examples of GRP
are shown in Figures 5B,D. The GRP is defined according to
Equation 8 below (Chen and Shi, 2019):

GRP
(
n,j
)
=

∣∣∣∣sn − sj
∣∣∣∣−min(

∣∣∣∣sn − sj
∣∣∣∣ )

max
(∣∣∣∣sn − sj

∣∣∣∣)−min(
∣∣∣∣sn − sj

∣∣∣∣ ) ,
n,j = 1, 2,...,TEEG − Tps(m− 1) (8)

2.2.3 Network structure of the HG-SANet
In this section, the network structure in each module of the HG-

SANet is described in detail.
The first HS-PCNet module inputs the HS built in section

2.2.1 into a parallel two-channel CNN network containing
different convolutional kernels. CNN overcomes the limitation of
insufficient feature extraction ability of machine learning methods
through simultaneous shift calculation of convolutional kernel in
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FIGURE 5

Examples of recurrence plots and grayscale recurrence plots from the set EC and set ES. (A) Recurrence plot from set EC. (B) Grayscale recurrence
plot from set EC. (C) Recurrence plot from set ES. (D) Grayscale recurrence plot from set ES.

the time and frequency dimensions of feature maps (Zhang et al.,
2015). It has been used in time-frequency feature extraction of
EEG signals (Sui et al., 2021). Therefore, in this section, we use
CNN to further extract the high-level time-frequency features
of HS. For HS, we design a parallel two-channel CNN network
containing different types of convolutional kernels for feature
extraction. Two types of convolution kernels are set as [Nkernel, 1]
and [Nkernel, Nkernel]. As EEG signals comprise time-series data, we
construct a convolution kernel of size [Nkernel, 1] to make feature
extraction pay more attention to changes in the time domain. The
convolution kernel of size [Nkernel, Nkernel] slides synchronously
in the time domain and frequency domain dimensions of the
HS to retain its original time-frequency characteristics. The time-
frequency features are fully extracted by complementing the high-
dimensional features of the two branches. The structure and details
of the HS-PCNet module are shown in Figure 6A. The structure and
parameter settings in each CNN block of the HS-PCNet module
are shown in Table 2. In Table 2, the serial number corresponds
to the serial number in Figure 6A. Each CNN block has a batch
normalization layer and a ReLU activation layer between the 2D
convolution (Conv 2D) and max pooling layers, which are omitted
to save space. For the HS-PCNet module, the batch normalization
layer normalizes the input data in small batches to speed up the
training of the HS-PCNet and reduce the sensitivity to the network
initialization. The max pooling layer performs downsampling by
dividing the feature map into rectangular pooling regions and
calculating the maximum value for each region, which helps reduce
overfitting. The dropout layer makes the activation value of a
certain neuron stop working with a certain probability, helping to
prevent the HS-PCNet from overfitting (Krizhevsky et al., 2017).

A large number of studies have proved the advantage of residual
networks in the field of image recognition (He et al., 2015).
Therefore, the second GRP-ResNet module inputs the GRP in
section 2.2.2 into a CNN with residual connections to fully learn the
nonlinear dynamic features in the GRP. The convolutional module
in the GRP-ResNet can use the receptive field of neurons to extract
high-level local feature representation of the GRP, and the residual
module allows cross-layer propagation, which can avoid overfitting
caused by too many layers in the network, and will not lose
important information in the feature (He et al., 2015). The overall
structure of the GRP-ResNet module is shown in Figure 6B. The
structure and parameter settings in each residual block and CNN
block are shown in Table 3, and the serial number corresponds

to the serial number in Figure 6B. In each block, there is a batch
normalization layer after the 2D convolution (Conv 2D) layers,
which is omitted to save space.

Research shows that the self-attention mechanism (Vaswani
et al., 2017) can help the network select important features and
assign higher weights to these important features to improve the
performance of downstream tasks (Lin et al., 2022; Yang Q. et al.,
2023). Therefore, in the third MF-SANet, a feature fusion module
based on a multi-head self-attention mechanism is proposed to
assign optimal weights to different types of features obtained
by the HS-PCNet module and GRP-ResNet module to enhance
the information extraction capability of HG-SANet further. The
feature fusion formulas are calculated as follows. First, the features
extracted from the HS-PCNet module and GRP-ResNet module
are concatenated and the concatenated features are denoted as
Feature_initial. In the self-attention mechanism, there are three
kinds of important input queries, keys and values, denoted as QUE,
KEY , and VAL, respectively. They are calculated as Equations 9–11
(Lin et al., 2022):

QUEj = Feature_initial × WQUE
j (9)

KEY j = Feature_initial × WKEY
j (10)

VALj = Feature_initial × WVAL
j (11)

where j= 1, 2, ..., Nhead and Nhead is the number of attention heads.
WQUE

j , WKEY
j , and WVAL

j are the parameter matrices. Then, the
features of the final output are calculated as Equation 12:

Featurefinal = Concat(HEAD1, HEAD2, ..., HEADNhead )W
o

(12)
where Wo is a parameter matric and Concat(·) is the concatenating
operation. The HEADj is calculated as Equation 13

HEADj = softmax(
QUEjKEY j

T
√

dKEY
)VALj (13)

where dKEY is the dimension of keys.
In the classification layer based on the full connection layer,

the activation function after the full connection layer is the
softmax function.
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FIGURE 6

The structure and details of the HS-PCNet module and GRP-ResNet module. (A) The overall structure of the HS-PCNet module. (B) The overall
structure of the GRP-ResNet module.

2.3 Experiment configurations

2.3.1 Evaluation metrics
In this paper, epileptic EEG recognition is evaluated using

precision (P), recall (R), accuracy (Acc), and specificity (SP)
(Sriraam and Raghu, 2017; Gao et al., 2018). The sensitivity and
recall are calculated using the same formula, so we no longer
calculate sensitivity separately. Precision focuses on evaluating
the percentage of true positive samples in all predicted positive
samples. Recall focuses on the percentage of all positive samples
that are successfully predicted to be positive. Accuracy is the
proportion of correctly classified samples in total samples. The
specificity is the proportion of all negative samples predicted
correctly to all actual negative samples. These metrics are calculated
as shown in Equations 14–17.

P =
NTP

NTP + NFP
(14)

R =
NTP

NTP + NFN
(15)

Acc =
NTP + NTN

NTP + NTN + NFN + NFP
(16)

SP =
NTN

NTN + NFP
(17)

where NTP is the number of true positive (TP) samples, NTN is
the number of true negative (TN) samples, NFP is the number
of false positive (FP) samples, and NFN is the number of false
negative (FN) samples.

In the decision stage, the HG-SANet gives prediction labels for
all short segments of each sample. Finally, based on the prediction
labels of short segments, the majority voting method is used to
make the final prediction for the category of each test sample.

2.3.2 Model parameter setting
Parameters of the HG-SANet in the training process are set as

follows. Adaptive moment estimation (Adam) optimizer is used to
train the HG-SANet. The epoch used for training is 30, and the
mini-batch size used for each training iteration is 32. The learning
rate is 0.001. The cross-entropy loss function is used as the loss
function. We reduce the overfitting of the HG-SANet by adding the
regularization term of the weight to the loss function. The number
of heads in the attention module is set to 2. In the testing process,
the testing sample is input into the proposed system trained by the
training set as shown in Figure 3 to obtain the final recognition
result. The ten-fold cross-validation is used to obtain an unbiased
evaluation of classification performance.
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3 Results and discussion

3.1 Analysis of the proposed model

In this part, we designed several ablation experiments to
analyze the effects of each module of the model. First, based
on clinical applications and experiments conducted by scholars
in the Bonn dataset (Ma et al., 2021), we selected three typical
detection tasks to analyze our approach. The three typical tasks
are: (1) Two-class detection task: distinguish between set EO and
set ES, comparing the performance of methods to distinguish
between healthy subjects and epileptic patients. (2) Two-class
detection task: distinguish between set SOE and set ES, comparing
the performance of methods to distinguish between non-epileptic
interictal EEG and seizures in epileptic patients. (3) Three-class
detection task: distinguish between normal (include set EO and
EC), interictal activities (include set SOE and set SFE), and epileptic
seizures (include set ES). This three-class task can be used not only
to find epilepsy patients but also to automatically diagnose their
symptoms, which is of great significance.

TABLE 2 The structure and parameter settings in each CNN block of
HS-PCNet module.

Index CNN block

1 Conv 2D: Size (3× 1), Stride (1× 1), Filters (8)

Max Pooling: Size (3× 1), Stride (2× 2)

2 Conv 2D: Size (3× 1), Stride (2× 1), Filters (16)

Max pooling: Size (3× 1), Stride (2× 1)

3 Conv 2D: Size (3× 1), Stride (2× 1), Filters (8)

Max pooling: Size (3× 1), Stride (2× 2)

4 Conv 2D: Size (5× 5), Stride (2× 2), Filters (16)

Max Pooling: Size (5× 5), Stride (1× 1)

5 Conv 2D: Size (3× 3), Stride (1× 1), Filters (32)

Max pooling: Size (1× 1), Stride (1× 1)

6 Conv 2D: Size (3× 3), Stride (1× 1), Filters (64)

Max pooling: Size (3× 3), Stride (2× 2)

7 Conv 2D: Size (3× 3), Stride (1× 1), Filters (32)

Max pooling: Size (2× 2), Stride (2× 2)

8 Conv 2D: Size (3× 3), Stride (1× 1), Filters (16)

Max pooling: Size (2× 2), Stride (2× 2)

In order to verify the performance of each module, we designed
the following experiments: (1) Use the RQA method to extract the
structural features of RP (Pham, 2020) and input these features
into a SVM to classify three-class detection task (denotes as RQA-
SVM). (2) A fully connected classification layer is added to the
back of the GRP-ResNet module to classify the three-class detection
task (denoted as GRP-ResNet). (3) A fully connected classification
layer is added to the back of the HS-PCNet module to classify
the three-class detection task (denoted as HS-PCNet). (4) The
Hilbert Spectrum of the HS-PCNet module is replaced with a CWT-
based scalogram (denoted as CWT-PCNet). Then, a fully connected
classification layer is added to the back of the CWT-PCNet module
to classify the three-class detection task. The Morlet wavelet is
used as the mother wavelet (Varlı and Yılmaz, 2023). CWT is an
important method for EEG signal analysis. We designed the fourth
experiment to compare AOMEMD method and CWT method.
(5) The features extracted from the HS-PCNet module and GRP-
ResNet module are concatenated and the concatenated features
are input to a fully connected classification layer to classify three-
class detection task, denotes as HG-SANet without self-attention
mechanism (HG-SANet-wo). (6) Use the HG-SANet to classify all
three typical tasks. The classification results are shown in Table 4
and Figure 7.

Figure 7 shows the results of the ablation experiments designed
in this section for the three-class detection task. The average results
of the ten-fold cross-validation method are shown in Figure 7.
As shown in Figure 7, each module can detect seizures, and the
HG-SANet gives the best results in terms of overall performance.
The best result of all the 10-fold cross-validation results is 100%.
Combining the nonlinear features based on GRP-ResNet with
the time-frequency features based on HS-PCNet improves the
average accuracy, precision, and recall of the model. Moreover,
the average accuracy, precision, and recall of the fusion model
with added attention mechanism are increased by 0.8%, 0.67%,
and 0.7%, respectively, compared with the fusion model without
added attention mechanism. The results in Figure 7 demonstrate
the validity of the proposed HG-SANet. The performance of RQA-
SVM is the worst. The dimension of the RQA features is only
eight. The information expression ability of RQA features is limited.
The performance of CWT-PCNet is worse than HS-PCNet. For set
ES, the recall of CWT-PCNet is the worst, only 86%. In Table 4,
we compare the average performance of the proposed HG-SANet
under different classification tasks. As shown in Table 4, in the two-
class detection task of identifying set EO and set ES, our method
achieves 100% recognition rate.

TABLE 3 The structure and parameter settings in each residual block of GRP-ResNet module.

Name Residual block 1 Residual block 2 Residual block 3 CNN block 1

Details Conv 2D: Size (3× 3), Stride
(1× 1), Filters (32)

Conv 2D: Size (3× 3), Stride
(2× 2), Filters (64)

Conv 2D: Size (3× 3), Stride
(2× 2), Filters (128)

Conv 2D: Size (3× 3), Stride (2× 2),
Filters (16)

ReLU ReLU ReLU ReLU

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (32)

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (64)

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (128)

Max pooling size (3× 3), Stride
(2× 2)

Name CNN block 2 CNN block 3 CNN block 4 –

Details Conv 2D: Size (1× 1), Stride
(1× 1), Filters (32)

Conv 2D: Size (1× 1), Stride
(2× 2), Filters (64)

Conv 2D: Size (1× 1), Stride
(2× 2), Filters (128)

–
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TABLE 4 Classification results of the proposed HG-SANet for the three typical tasks.

Cases Class P (%) R (%) Acc (%) Mean P (%) Mean R (%)

Set EO vs. Set ES Set EO 100 100 100 100 100

Set ES 100 100

Set SOE vs. Set ES Set SOE 99 100 99.50 99.50 99.55

Set ES 100 99.09

Set (EO, EC) vs. Set (SOE, SFE) vs. Set ES Set (EO, EC) 98 98.54 98.20 98 98.56

Set (SOE, SFE) 99 97.15

Set ES 97 100

FIGURE 7

Results of ablation experiments in the three-class detection task of the Bonn EEG time series. (A) Precision for each of the three classes. (B) Recall
for each of the three classes. (C) Overall results of the three classes.

TABLE 5 Comparison of different methods on the Bonn EEG time series database.

Case References Methods Acc (%) P (%) R (%) SP (%)

Set SOE vs. Set ES Zhao et al. (2020) Raw EEG + CNN 98.02 – – –

Zeng et al. (2019) Entropy of visibility heights of
hierarchical neighbors +LS-SVM

98.5 – – –

Türk and Özerdem
(2019)

CNN + Scalogram 98.5 – 98.01 98.98

Peng et al. (2021) Dictionary learning with homotopy 99 – 98 100

Proposed HG-SANet 99.50 99.50 99.55 99.50

Set EO vs. Set ES Jang and Lee (2020) Wavelet transform+ PSR+ neural
network with weighted fuzzy

membership

97.5 – 95 100

Varlı and Yılmaz
(2023)

2D CNN + CWT + LSTM 98.97 98.98 98.97 98.97

Fu et al. (2015) HHT+SVM 99.13 – – –

Türk and Özerdem
(2019)

CNN + Scalogram 99.5 – 99.0 100

Zhao et al. (2020) Raw EEG + CNN 99.52 – – –

Proposed HG-SANet 100 100 100 100

Set (EO, EC) vs. Set
(SOE, SFE) vs. Set ES

Ullah et al. (2018) Pyramidal one-dimensional CNN 96.27 97.00 95.00 98.00

Khan et al. (2021) Hilbert vibration decomposition
+LSTM

96.00 95.77 95 –

Zhao et al. (2020) Raw EEG + CNN 96.97 – – –

Varlı and Yılmaz
(2023)

2D CNN + CWT + LSTM 97.3 97.31 97.30 98.35

Proposed HG-SANet 98.20 98 98.56 98.55
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TABLE 6 Comparison of different methods on the Bern-Barcelona EEG database.

References Methods Acc (%) P (%) R (%)

Sharma et al. (2015) Entropy +EMD + SVM 87.00 87.20 90.00

Fasil and Rajesh (2019) Exponential energy features + SVM 89.00 – –

Sriraam and Raghu (2017) Multi-features + SVM 92.15 89.21 94.56

Gao et al. (2018) Joint time-domain features + auto-regressive linear model +
Randomized Power Martingale

– 93.75 93.75

Chen et al. (2019) STFT + Bhattacharyya distance – 88.68 94.00

Zhao et al. (2021) Multi-feature Fusion + FCNN 93.44 94.28 92.50

Sui et al. (2021) Time-Frequency Hybrid Network 94.30 94.30 94.30

Yang Y. et al. (2023) Multi-level temporal-spectral features + FCNN 94.50 94.20 95.00

Proposed HG-SANet 95.60 95.61 95.60

3.2 Comparison with SOTA methods for
the classification of epileptic EEG signals

To further validate the effectiveness of the proposed method,
we compare the proposed HG-SANet with other state-of-the-art
(SOTA) methods on the Bonn EEG time series and the Bern-
Barcelona EEG database. The results of the Bonn EEG time series
are shown in Table 5. All the comparison methods include deep
learning methods and traditional machine learning methods. The
results of the proposed HG-SANet in Table 5 are the mean of
the 10-cross validation results. As shown in Table 5, the proposed
HG-SANet performs best on all the tasks. The proposed HG-
SANet has a high recall value, which indicates that the method
proposed in this paper can detect the seizure signal as much as
possible, which is of great significance for diagnosing the disease.
The proposed model can distinguish not only the EEG data of
epileptic patients and non-epileptic persons but also the EEG
data from epileptic seizures and seizure-free intervals in epileptic
patients. When conducting comparative experiments, it was also
found that deep learning-based methods outperformed other types
of methods.

The results of the Bern-Barcelona EEG database are shown in
Table 6. A binary classification task is performed on this database
(focal vs. non-focal). The comparison methods include deep
learning, traditional machine learning, and statistical modeling
methods. The results of the proposed HG-SANet in Table 6
are the mean of the 10-cross validation results. As seen from
Table 6, the performance of the proposed method in epileptic
focal location is better than that of all the compared methods.
It is also seen on the Bern-Barcelona EEG database that deep
learning methods outperform other methods. The results of the
two datasets show that the proposed method can classify multiple
brain states associated with epilepsy. The proposed method can be
used in automatic epileptic seizure detection, the epileptic focal
location, and other related applications in diagnosing epilepsy
diseases.

4 Conclusion

In this study, a novel model named HG-SANet is developed for
the automated detection of epileptic EEG signals. This innovative

model proposes a multi-channel parallel feature extraction module
based on multi-domain features and a feature fusion module
based on an attention mechanism. Through many experiments,
the proposed network structure can capture the non-stationary
nonlinear properties of epilepsy EEG well and realize the automatic
and high-accuracy detection of epileptic seizures, epileptic focus
localization, and EEG classification. The method proposed in this
paper is of great significance to detecting and warning brain disease.
In the future, we will research other epilepsy-related issues, such
as seizure prediction, and further reduce the time complexity of
the method and make the method better applied to real-time
seizure prediction.
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