
TYPE Original Research
PUBLISHED 22 May 2024
DOI 10.3389/fncom.2024.1392655

OPEN ACCESS

EDITED BY

ShiNung Ching,
Washington University in St. Louis,
United States

REVIEWED BY

Aaron Sampson,
Johns Hopkins University, United States
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A mutual information measure of
phase-amplitude coupling using
gamma generalized linear
models

Andrew S. Perley and Todd P. Coleman*

Department of Bioengineering, Stanford University, Stanford, CA, United States

Introduction: Cross frequency coupling (CFC) between electrophysiological
signals in the brain is a long-studied phenomenon and its abnormalities
have been observed in conditions such as Parkinson’s disease and epilepsy.
More recently, CFC has been observed in stomach-brain electrophysiologic
studies and thus becomes an enticing possible target for diseases involving
aberrations of the gut-brain axis. However, current methods of detecting
coupling, specifically phase-amplitude coupling (PAC), do not attempt to capture
the phase and amplitude statistical relationships.

Methods: In this paper, we first demonstrate a method of modeling these joint
statistics with a flexible parametric approach, where we model the conditional
distribution of amplitude given phase using a gamma distributed generalized
linear model (GLM) with a Fourier basis of regressors. We perform model
selection with minimum description length (MDL) principle, demonstrate a
method for assessing goodness-of-fit (GOF), and showcase the e�cacy of
this approach in multiple electroencephalography (EEG) datasets. Secondly, we
showcase how we can utilize the mutual information, which operates on the
joint distribution, as a canonical measure of coupling, as it is non-zero and non-
negative if and only if the phase and amplitude are not statistically independent.
In addition, we build o� of previous work by Martinez-Cancino et al., and Voytek
et al., and show that the information density, evaluated using our method along
the given sample path, is a promising measure of time-resolved PAC.

Results: Using synthetically generated gut-brain coupled signals, we
demonstrate that our method outperforms the existing gold-standard
methods for detectable low-levels of phase-amplitude coupling through
receiver operating characteristic (ROC) curve analysis. To validate our method,
we test on invasive EEG recordings by generating comodulograms, and
compare our method to the gold standard PAC measure, Modulation Index,
demonstrating comparable performance in exploratory analysis. Furthermore,
to showcase its use in joint gut-brain electrophysiology data, we generate
topoplots of simultaneous high-density EEG and electrgastrography recordings
and reproduce seminal work by Richter et al. that demonstrated the existence
of gut-brain PAC. Using simulated data, we validate our method for di�erent
types of time-varying coupling and then demonstrate its performance to track
time-varying PAC in sleep spindle EEG and mismatch negativity (MMN) datasets.

Conclusions: Our new measure of PAC using Gamma GLMs and mutual
information demonstrates a promising new way to compute PAC values using
the full joint distribution on amplitude and phase. Our measure outperforms
the most common existing measures of PAC, and show promising results in

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1392655
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1392655&domain=pdf&date_stamp=2024-05-22
mailto:toddcol@stanford.edu
https://doi.org/10.3389/fncom.2024.1392655
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1392655/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Perley and Coleman 10.3389/fncom.2024.1392655

identifying time varying PAC in electrophysiological datasets. In addition, we
provide for using our method with multiple comparisons and show that our
measure potentially has more statistical power in electrophysiologic recordings
using simultaneous gut-brain datasets.

KEYWORDS

electrophysiology, cross-frequency coupling, generalized linear model,

goodness-of-fit, gut-brain coupling

1 Introduction

Neurons in the body operate by communicating with other

neurons, often in circuits. It’s been hypothesized that these neuronal

circuits can give rise to coupling of local field potentials (LFPs)

that are observed via various methods of electroencephalography.

This coupling phenomenon can manifest itself in the form of cross-

frequency coupling (CFC), in which different frequency bands

in the LFPs of certain brain regions modulate LFPs in the same

or different brain regions (Canolty and Knight, 2010). It has

further been hypothesized that CFC underlies modulation of neural

excitability and is a driver of long-range communication in the

brain (Canolty and Knight, 2010). One commonly observed form

of CFC is phase-amplitude coupling (PAC), and is characterized by

the modulation of the amplitude of a higher frequency signal by

the phase of a lower frequency signal. This is somewhat akin to the

common communication scheme, amplitude modulation (AM),

that is used in radio. Early reports of this phenomena showed that

the amplitude of the gamma band activity in the hippocampus of a

rat was tied to different phases of the theta band activity (Bragin

et al., 1995). PAC has also been seen as a powerful biomarker

to investigate stress, depression, Parkinson’s disease, and epilepsy

amongst other conditions (De Hemptinne et al., 2013; Edakawa

et al., 2016; Wang et al., 2021).

Recent work involving brain-viscera electrophysiologic

dynamics has demonstrated PAC between the gastric slow wave

(0.05 Hz) and the alpha band (8–12 Hz) of certain cortical regions,

including the right anterior insula and occipital-parieto regions

(Richter et al., 2017). This finding has potential to allow for

new characterizations of medical conditions involving changes

in the gut-brain axis, including depression, autism spectrum

disorders, and obesity (Fülling et al., 2019). However, despite

recent advancements and electrophysiological coupling being an

enticing early biomarker for studying health and physiology, the

current most common techniques for assessment of PAC have not

changed significantly (Hülsemann et al., 2019). Additionally, work

in development in PAC measures has traditionally been done in

the context of the brain and there are no studies that directly assess

the validity of such measures in very low frequency signals like

the gastric slow wave. These two facts lead us to survey existing

methods and develop our own metric of PAC.

The most commonly used method of PAC is the Modulation

Index (MI) (Tort et al., 2010). This measure has been shown to

be efficient, fast, and reliable in calculating PAC, but trades off

some statistical rigor for efficiency. Other work in development

of PAC measures includes normalized direct PAC (ndPAC), which

aims to keep such simplicity, but also include statistical thresholds

for assessing significant coupling (Özkurt, 2012). More recent

developments in PAC also include methods to assess time-resolved

PAC phenomena that utilize things such as block experiment

design, time-frequency methods, or state-space models (Voytek

et al., 2013; Munia and Aviyente, 2019; Soulat et al., 2022). In

addition, information theoretic quantities have also found their way

into PAC estimation. In particular, non-parametric estimation of

mutual information has become of interest and shows promise in

assessment of transient PAC, but tends to generate biased estimates

(Martinez-Cancino et al., 2019).

In this work, we develop a new mutual information measure

of PAC and validate it using simulated gut-brain signals and

intracranial EEG recordings. We use a convex parametric method

to fitting the joint probability distribution on the phase and

amplitude of two electrophysiologic signals and then subsequently

calculate the mutual information as our measure of PAC.

Specifically, we develop a gamma generalized linear model (GLM)

to model the conditional distribution of amplitude given phase and

use a Fourier basis of regressors as a natural basis to fit our model.

We use theminimumdescription length (MDL) principle to choose

the optimal number of bases to fit our model (Barron et al., 1998).

We utilize the Kolmogorov–Smirnov test as a method for assessing

the goodness-of-fit (GOF) of themodel and demonstrate exemplary

GOF on human EEG datasets (Massey Jr., 1951).

We calculate the mutual information using Bayes’ rule and

numerical integration over the circle, which allows for reliable

numerical estimates of the mutual information. Our use of

a parametric method allows for exact estimates of mutual

information given that we have adequate model fit (Ince et al.,

2022). We then validate our PAC statistic by generating synthetic

phase-amplitude coupled signals to mimic gut-brain coupling and

perform an ROC curve analysis against the prevailing common

methods of assessing PAC. Furthermore, we test our PAC statistic in

mouse intracranial electroencephalography (iEEG) data to replicate

past findings of PAC using comodulograms. To demonstrate

our technique’s potential in gut-brain electrophysiology, we also

generate topoplots of the PAC between simultaneous 128-channel

scalp EEG and electrogastrography (EGG) recordings. To further

understand time-varying dynamics of PAC, we extend our method

to consider information density as a time-varying measure of PAC

as in the seminal work by Martinez-Cancino et al. (2019), and

use that to evaluate event-related PAC, for event related potential

(ERP)-like phenomena as in Voytek et al. (2013). We evaluate

both of these methods on synthetically generated coupled data with

time-varying coupling. After validation in synthetic data, we then
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apply our methods to sleep spindle data and mismatch negativity

(MMN) ERPs and demonstrate the potential for our methods to

estimate time-varying PAC in human electrophysiology.

2 Methods

2.1 Preliminaries

2.1.1 Definitions
Let Y ∈ [0,∞) be a non-negative random variable that

represents the amplitude of the fast neural signal and 2 ∈ [−π ,π)

be a circular random variable that represents the phase of the slow

neural signal.We define themarginal probability densities onY and

2 as fY (y) and f2(θ). Furthermore, we assume that the density on

2 is uniform:

f2(θ) =
1

2π
, θ ∈ [−π ,π]. (1)

This makes intuitive sense because 2 represents the phase of a

narrowband oscillatory signal, which has approximately uniform

phase over its support. We will use this assumption later in our

calculation of our PAC metric. We also define t = 0, 1, . . . ,T − 1,

to be the time index of observed time series samples, and Yt and 2t

to be random variables with the same properties as Y and 2, but

observed at time t.

2.1.2 Calculation of phase and amplitude
Given a one-dimensional signal x(t), we can calculate both its

phase and amplitude using the Hilbert Transform. The Hilbert

Transform of any signal is given by the convolution

H{x(t)} =
1

π t
∗ x(t)

=

∫ ∞

−∞

1

π(t − τ )
x(τ )dτ .

This operation rotates the positive frequency components of

the Fourier Transform of x(t) by –90 degrees and the negative

frequency components by +90 degrees. This allows us to construct

the analytic signal, a complex representation of x(t), as

z(t) = x(t)+ jH{x(t)},

which preserves the exact same information as x(t), but only

using its positive frequency components. The power in this

representation is that it allows us to write z(t) as a complex

exponential

z(t) = A(t)ejφ(t),

where we call A(t) the instantaneous amplitude of x(t), and φ(t)

the instantaneous phase of x(t). In the case of a sinusoid of a

single frequency, A(t)sin(ωt + φ), these two quantities represent

the time-varying amplitude,A(t), and the argument of the sinusoid,

ωt + φ, respectively. These two quantities are commonly used

in computational neuroscience as estimates of the amplitude and

phase of a neural oscillation, and are the quantities we will use in

this paper.

2.1.3 Mutual information as a measure of PAC
In order to assess the PAC between two electrophysiological

signals, we consider the information theoretic quantity of mutual

information (Gray, 2011). The mutual information between two

random variables X and Y , with marginal distributions P and Q

and joint distribution Ŵ, is most commonly given by

I(X;Y) = DKL (Ŵ‖P⊗ Q) ,

where DKL (·‖·) is the relative entropy (a.k.a. the Kulback-Liebler

Divergence) between two distributions. The distribution P ⊗ Q

is the product of the marginal distributions and represents the

joint distribution if X and Y are statistically independent. Note

that the mutual information is always non-negative and exactly

zero if and only if the two random variables are independent.

This quantity is often interpreted as the amount of information

one gains about X by observing Y or vice versa. The mutual

information can account for nonlinearities in data, as opposed

to the more commonly known correlation coefficient, which only

captures linear relationships. These properties make the mutual

information an exemplary candidate for assessment of PAC. In the

following sections, we discuss how we use a parametric model to fit

these distributions to data.

2.2 Gamma GLM

2.2.1 Construction of the GLM
Generalized linear models (GLMs) are powerful tools often

used for regression when the independent and/or dependent

variables don’t follow a normal distribution. Their construction

is such that some function of the conditional expectation of

the independent variable is modeled as a linear function of the

dependent variable(s). This can be written as

g(E[Y|2 = θ]) = R(θ)⊤w, (2)

where g(·) is called the link function, R(2)⊤ is a vector of regressors

(function of dependent variables), and w is a vector of weights to be

estimated.

For GLMs, the conditional distribution must be of the

exponential family (which includes the normal distribution)

(McCullagh, 2019). Since the amplitude, Y , is non-negative, the

normal distribution is unnatural. We turn to a flexible distribution

of a non-negative random variable in the exponential family: the

gamma distribution. Figure 1 shows an exemplary plot of the

conditional distribution in iEEG data (from the hippocampal CA1

region in anesthetized mice) and its fit to the gamma distribution,

demonstrating this as a sensible modeling choice (Scheffer-Teixeira

et al., 2011). We generated the empirical conditional distribution

by first generating a 2D histogram of amplitude and phase, with

100 phase and 100 amplitude bins. Then we selected, at random, a

phase bin (in Figure 1 we selected bin 2) and took all the amplitudes

associated to that phase bin and used that as the data for which we

plotted a 1D histogram of amplitude given the specified phase bin.

The gamma distribution is a two-parameter distribution, with

parameters α and β , given by the following form:

fY (y;α,β) =
βα

Ŵ(α)
yα−1e−βy, (3)
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FIGURE 1

An exemplary plot of the empirical conditional distribution of the
amplitude given phase from anesthetized mouse iEEG data in the
hippocampal CA1 region. This shows that the gamma distribution is
a good candidate for our model fitting procedure.

with expectation given by

E[Y] =
α

β
. (4)

This implies that from Equations (2, 4), we can model our

problem with

g

(

α

β

)

= R(θ)⊤w.

Since Y is a non-negative random variable, to make it

compatible with a linear model that has support onR, we construct

the GLM using the log-link:

log

(

α

β

)

= R(θ)⊤w , L(w; θ). (5)

Therefore, we model the conditional distribution as

fY|2(y|θ;α,w) =
(αe−L(w;θ))α

Ŵ(α)
yα−1e−(αe−L(w;θ))y, (6)

by rearranging Equation (5) and substituting it into Equation (3).

2.2.2 Fourier basis of regressors
To construct the regressors, R(2), in our GLM we consider a

Fourier basis of regressors since they form an orthogonal basis over

[−π ,π). This can be formulated as follows:

R(2)⊤ =
[

1 cos(2πθ) sin(2πθ) cos(2π2θ) sin(2π2θ) . . .

cos(2πKθ) sin(2πKθ)
]

,

where we choose an order K to represent the number of Fourier

basis pairs we use to fit the conditional expectation.

2.2.3 Model fitting
Define

NLL(α,w) , −

T−1
∑

t=0

log
(

fY|2(yt|θt;α,w)
)

=

T−1
∑

t=0

logŴ(α)− (α − 1) log yt + αyte
−L(w;θt)

+ αL(w; θt)− α logα (7)

to be the negative log-likelihood, where t = 0, . . . ,T− 1 is the time

index of the time series sample of the amplitude, yt , and phase, θt ,

and T is the total number of samples in the data. To fit both α and

w, we take a two-step approach where we first fit w and then use the

optimal estimate of w to generate an estimate for α. This is because

the estimation of w is invariant to the value of α, since algebraic

manipulation of (7) leads to

ŵ[α] = argmin
w

NLL(α,w) = argmin
w

T−1
∑

t=0

yte
−L(w;θt) + L(w; θt).

(8)

This minimization problem is convex in w, which allows for us to

use common convex optimization solvers in order to easily solve for

the maximum likelihood estimate of w. Now define Lt , L(ŵ; θt).

The solution for α̂ is given by

α̂[ŵ] = argmin
α

T−1
∑

t=0

logŴ(α)−(α−1) log yt+αyte
−Lt+αLt−α logα,

(9)

which is also a convex problem. Our conditional distribution can

then be written in closed form by plugging in ŵ and α̂ into Equation

(6). Note that reliability in estimates of the model parameters

increases with sample size. So long as one samples above the

Nyquist frequency of the high frequency signal, then even over only

one cycle of phase of the low frequency signal, numerous samples

of the high frequency signal should be obtained at approximately

the same low frequency phase, resulting in reliable estimates.

2.2.4 Model selection
Model selection of the number of Fourier bases, K, was

performed by using the Minimum Description Length (MDL)

principle (Barron et al., 1998). That is, we now let our model

be parameterized by K ∈ K, where K ⊂ Z
+ is the set of

possible numbers of Fourier bases we can use in the model. We

then construct the penalized normalized negative log-likelihood

(PNNLL):

PNNLL(K) =
1

T
NLL(α̂, ŵ;K)+

1

T

2K + 1

2
log(T).

Our model order is then given by

K̂ = arg min
K∈K

PNNLL(K).
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2.3 Mutual information calculation

We first define the relative entropy between the posterior

(prior) distributions P2|Y=y (P2) with density f2|Y (·|y) (f2),

respectively, as:

D(P2|Y=y||P2) =

∫

θ

f2|Y (θ |y) log

(

f2|Y (θ |y)

f2(θ)

)

dθ . (10)

We define our new measure of PAC as the mutual information,

I, between Y and 2, which can be equivalently be defined as Gray

(2011):

I(Y;2) = EY

[

D(P2|Y=y||P2)
]

.

We use this specific expression for the mutual information

to take advantage of the fact that the relative entropy, given by

(Equation 10), can be computed by an integral over finite support

[−π ,π) which enables a provably good approximation by Riemann

sum. We note that the mutual information’s increase away from

zero can be interpreted as a degree of increase in PAC.

To calculate Equation (10), we can utilize Bayes’ rule to find the

posterior density on phase:

f2|Y (θ |y) =
fY|2(y|θ)f2(θ)

∫

θ ′
fY|2(y|θ ′)f2(θ ′)dθ ′

,

where f2(θ) is given by Equation (1) and fY|2(y|θ) is given by

Equation (6) after model fitting.

2.4 Information density as a time-resolved
measure of PAC

Previous work done by Martinez-Cancino et al. (2019),

shows the potential for the information density (“local” mutual

information) as a measure for PAC defined at every moment in

time. In their work they use a nonparametric estimator of mutual

information (KSG estimator), whereas here we propose to use our

parametric model to estimate the same time-varying quantities

without bias. We first define the information density as Gray (2011)

i(y, θ) = log

(

fY ,2(y, θ)

fY (y)f2(θ)

)

= log

(

fY|2(y|θ)

fY (y)

)

, (11)

where the lowercase y and θ represent specific observations of the

random variables Y and 2. We can interpret this as the relative

reduction in surprise we have about any particular y given that an

observation of θ . In other words, this quantity is giving a measure

of how much of an improvement we can predict a specific outcome

y by also having an observation of a specific outcome θ .

Given that we fit a joint distribution over the data Yt and2t , we

can then evaluate Equation (11) at every time point for the specific

data that we have. We can write this as

idPAC(t) = i(yt , θt) = log

(

fY|2(yt|θt)

fY (yt)

)

,

for every sample pair (yt , θt). We call this the information density

PAC, or idPAC for short.

2.5 Goodness-of-fit assessment

We assess the goodness-of-fit (GOF) of our model by

considering how well the data are described by their conditional

distributions fit by the GLM in Equation (6). This assessment is

crucial, since the measures obtained from the model, e.g., mutual

information, only describe the data to the extent that the model

fits the data. We do this by utilizing the so called probability

integral transform (PIT), otherwise known as the universality of the

uniform. The PIT states that if one inputs any random variable X

into its own CDF, then the new random variableU = FX(X) will be

uniformly distributed on [0, 1]. In the GLM case, we plug in the data

Yt into its conditional CDF, which can be calculated from Equation

(6) with optimized parameters given by Equations (8, 9). This is

given by

Ut = FY|2(Yt|2t; α̂, ŵ),

where we can find the CDF by integrating the PDF in Equation (6).

Note, we use the conditional CDF as opposed to the marginal CDF,

FY (y), because traditional GOF assessment requires identically and

independently distributed (i.i.d.) data. Although each individual

Yt ’s statistics may vary with t, our model assumes that the

conditional distribution of Yt given 2t is invariant to t, and thus

we use the conditional CDF approach.

Then we construct the empirical CDF of the Ut and compare it

to the CDF of a theoretical uniform random variable on [0, 1] which

we will call F(U). The empirical CDF is given by

F̂(u) =
1

T

T−1
∑

t=0

1{Ut≤u}. (12)

If the model does indeed fit the data well then the empirical

CDF and the true CDF should match up well. Note that 1{Ut≤u} is

the indicator random variable and evaluates to 1 if Ut ≤ u and 0

otherwise. Equation (12) is equivalent to counting the number of

Ut ≤ u for any chosen value of u and dividing by the total number

of samples.

To test our model fit we use mouse iEEG data provided by

Scheffer-Teixeira et al. (2011). There are two datasets provided in

their work: the first of which investigates high-gamma (HG, 60–

100 Hz) and theta band (5–10 Hz) coupling; the second of which

investigates high frequency oscillation (HFO, 120–160 Hz) and

theta band coupling. Each dataset is 300 s long. We fit our model to

all 300 non-overlapping one second segments in each dataset. These

results are reported as probability plots, which are parametric plots

with the empirical CDF of U, F̂(u), on the y-axis and the CDF of a

uniform distribution, FU (u) = u, on the x-axis.

2.6 Corrections for multiple comparisons

Often times in neuroscience, one is presented with the problem

of simultaneously testing multiple hypotheses. This is known as

the multiple hypothesis testing (or multiple comparisons) problem.

For example, in the case of PAC, one may be testing to see if any

of N low frequencies are coupled to any of M high frequencies.

Since the collected data is random, any functions of the data (e.g.
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proposed measures described in this manuscript), are also random

variables. In the classical setting, one would generate surrogate data,

by permuting the dataset, which should destroy PAC structure, to

compute the PAC metric under the null hypothesis. By computing

statistics on this after multiple generations of surrogate data, a null

distribution can be calculated to then determine the probability

of the PAC metric or anything more extreme occurring under the

null hypothesis. Finally, one may compare this to a threshold, say

α = 0.05, and declare significance if the p-value < α.

Since multiple hypothesis tests are implemented, and α is the

probability of rejecting the null hypothesis when the data was

drawn from the null distribution, if we then compare all of our tests

to the α = 0.05, then ∼5% of all tests on null data will generate a

false positive. To combat this, we turn tomultiple hypothesis testing

techniques that control the false discovery rate (FDR), defined

below

FDR = E

[

# false positives

# false positives + # true positives

]

.

Control of this quantity is much like in the single hypothesis

test case, where we might set α = 0.05, such that, FDR < α. In

this case, instead of 5% of tests associated with null data generating

a false positive, 5% of all results we declare positive will be false

positives. Unlike the single hypothesis testing case, the significance

threshold for each individual test becomes more strict.

2.6.1 Benjamini-Hochberg procedure
To control the false discovery rate, we use the well known

Benjamini-Hochberg (BH) Procedure (Hochberg and Benjamini,

1990) which guarantees that the expected value of the ratio false

positives to all positives is at most α. Note, that this guarantee

requires an assumption on the independence/positive dependence

of the p-values. This procedure is implemented by computing all of

the individual p-values for each of the hypothesis tests and then sort

them from low to high. Assuming N such tests, the line y = α ∗ i
N ,

where i = 1, . . . ,N is created after sorting the index of each test in

an increasing manner. The critical value is then calculated as

c = argmax
i

p(i) < α ∗
i

N
,

where p(i) is the ith smallest p-value. Note that there may be p-

values for indices below c that are above the test line that are

declared positive. This is a function of the procedure and it still

controls the FDR at rate α. Note that one can alternatively adjust

all of the sorted p-values by computing p(i) ∗ N
i and comparing the

adjusted p-values to the horizontal line at α. This is what we will

show in this paper for the experiments where we have a multiple

testing problem, since it is easier to visualize than using raw p-

values. Note, the sorted p-values after adjustment may not increase

monotonically, but will yield the same results.

Since the guarantees on this procedure rely on the

independence/positive dependence on p-values, one may also

choose to use a modified BH procedure, known as the Benjamini-

Yekutieli procedure, which makes this procedure more strict

by lowering the threshold by a constant factor (Benjamini and

Yekutieli, 2001).

TABLE 1 Signal parameters.

fhigh 10 Hz flow 0.05 Hz

fs 50 Hz χ [0, 0.3]

As 1 SNR 0 dB

2.7 Experiment

2.7.1 Synthetic data
In order to assess the ability of cross frequency coupling

(CFC) methods to correctly identify PAC in signals, we generated

instances of phase-amplitude coupled synthetic signals. The

generated signals x(t) were inspired by Tort et al. (2010) and are

defined as follows:

x(t) = Af (t) sin(2π fhight)+ As sin(2π flowt)+ η(t), (13)

where fhigh is the frequency of the fast signal, flow is the frequency

of the slow signal, Af (t) is the modulated amplitude, and η(t) ∼

N (0, σ 2) is Gaussian noise. The modulated amplitude is:

Af (t) =
χ sin(2π flowt)+ 2− χ

2
, (14)

whereχ ∈ [0, 1] is the coupling coefficient. Notice that larger values

of χ allow the slow sinusoid to more heavily affect the amplitude of

the fast signal.

2.7.2 Comparison to current methods
To test the discriminatory ability of our PAC method, we

generated a synthetic data set with parameters chosen to mimic the

gastric slow wave recorded by electrogastrography (EGG) and the

alpha band activity in the brain. We generated both coupled and

uncoupled signals with varying coupling coefficients. We generated

the dataset with the specifications in Table 1.

The noise variance, σ 2, was set to make the synthetic signal’s

signal-to-ratio (SNR) 0 dB to simulate low SNR signal recordings.

As is chosen as 1 for simplicity. We chose signal lengths of 20 s

to mimic one cycle of the gastric slow wave to compare how our

methods perform in time-resolved settings. The sampling rate fs
was chosen to be high enough to be above the Nyquist rate, but

also low enough to reduce computational time.

We use a 4th order zero-phase Butterworth filter on our

synthetic signal, x(t), on two separate passbands around fhigh ([8,

12] Hz) and flow ([0.03, 0.07] Hz), to obtain our respective fast and

slow signals, xf (t) and xs(t). We extract Af (t) and φs(t) as described

in Section 2.1.2.

We also compare our method to existing methods of CFC:

phase-locking value (PLV), mean vector length (MVL), and the

Modulation Index (MI). These are some of the most commonly
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implementedmethods of CFC analysis. They are defined as follows:

PLV =
1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

ei(φ1(t)−φ2(t))

∣

∣

∣

∣

∣

, (15)

MVL =
1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

a1(t)e
i(φ2(t))

∣

∣

∣

∣

∣

, (16)

ndPAC =
1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

ã1(t)e
i(φ2(t))

∣

∣

∣

∣

∣

, and (17)

MI =
D(P||U)

log(N)
,

(Tort et al., 2010; Özkurt, 2012; Hülsemann et al., 2019). For

Equations (15, 16, 17), the variables a and φ are subscripted by

a number to denote two different signals. In Equation (17) ã1(t)

refers to the normalized amplitude time series (mean subtracted

and variance made unity). D(U||P) is the relative entropy of the

conditional expectation, E[Y|2], binned by phase and normalized

to a distribution, P, with respect to the uniform distribution, U,

where N is the number of bins in the probability mass function

(PMF) of U and P. Note that PLV (15) does not take into account

amplitude information and is a phase-phase coupling method. This

allows us to have a negative control which should not be able to

distinguish between phase-amplitude coupled signals.

For each experiment, we generate a dataset of 50 uncoupled

signals (χ = 0) and 50 coupled signals (0 < χ < 1) and generate a

receiver operating characteristic (ROC) curve with corresponding

area under the curve (AUC)—see Figure 3. We choose K =

{1, 2, 3, 4, 5}. We then run 100 trials of each experiment with the

same coupling coefficient to generate a confidence interval for each

method.

2.7.3 Time-resolved measurements of PAC
In order to test the validity of our idPAC measure we construct

synthetic signals similar to those in Equations (13, 14), except we

let the coupling coefficient χ be a function of time. That is, we

construct χ(t) to be either a square wave or ramp function to test

our algorithm’s ability to capture the transient PAC phenomena.

As reported before in the seminal work by Martinez-Cancino et al.

(2019), the frequency of the phase signal tends to create artifacts

in the idPAC estimates. Therefore, we borrow from their work and

choose to lowpass filter the idPAC to below the frequency of the

phase signal. The idPAC also has the potential to produce negative

values, unlike the mutual information, so we also choose to set any

value of the idPAC < 0 to be equal to 0. We also mirror former

work and set the SNR = 10 dB to validate our method.

2.7.4 Event-related phase-amplitude coupling
In this work, we also showcase the ability of our method to

generate event-related PAC, as first demonstrated by Voytek et al.

(2013). An ERP is traditionally a characteristic short-time transient

electrophysiological response to a stimulus of some variety (visual,

auditory, etc.). Many trials of the same stimulus are given to a

subject to collect enough data to observe clear a ERP through

noise by averaging the trials together. Event-related PAC utilizes

the many trial paradigm of event-related potentials (ERPs) in order

to obtain an estimate of phase-amplitude coupling at each time

point in the overall ERP. To estimate PAC at every time point, we

utilize our time-resolved measure of PAC (information density).

Specifically, we organize our electrophysiology data into matrices

that are of shape number of trials × number of time points. Then

we calculate the phase matrix of the low frequency signal of interest

and the amplitude matrix of the high frequency signal—both of

same shape as the data, and filtering as needed. At each time point

we then collect a full cycle’s worth of phase and amplitude data and

compute the information density PAC for each trial, with the time

point of interest taken as the midpoint of the cycle. We define a

full cycle to be one period of the oscillation of the lower frequency

signal, in this case, the phase. We do this in order to ensure that

we sample the full range of phase values. To illustrate more clearly,

take T = 101 samples to be a full cycle, and assume we are interested

in the time point t = 1,000 samples. To estimate the ERPAC at

time t, we would take all data in the phase and amplitude matrices

associated with t = 950 to t = 1,050 for all trials, and then fit our

gamma GLM. Then, we would compute the idpac for all trials at

the datapoints associated with t = 1,000. Note that the output of

each of this computation is a single vector of length number of

trials associated with the time point of interest. To obtain the time

series of ERPAC per trial, we then perform this procedure for every

point in the data matrix. Note that for points near the beginning

and end times of the matrices, one will have to append a half cycles

worth of data to be able to perform the procedure at those time

points. After we obtain the ERPAC time series per trial, we then

address the frequency leakage problem by lowpass filtering at the

center frequency of the phase signal and truncating the lower end

of the output at zero for every trial individually. To obtain the mean

event-related PAC (ERPAC) for all of the trials we take an average

of the idPAC over the trial axis.

To demonstrate this, we generate data as in the previous section

for time-resolved PAC, however, in this case we generate 100 trials

of data. The data taken in real ERP settings also usually experiences

jitter in the stimulus and natural variation in the brain response

timings, so we uniformly choose a random jitter of 1–100 samples

for each trial. We choose to couple signals at 0.05 and 10 Hz as

in our ROC curve experiment. The sampling frequency here was

chosen to be 50 Hz to speed up computational time.

2.8 Demonstration in electrophysiological
data

We demonstrate the potential of our method in one-shot, time-

varying, and ERP analyses in electrophysiological data. Specifically

we validate using mouse intracranial EEG (iEEG) from a previous

study by Scheffer-Teixeira et al. (2011), with previously validated

PAC findings and compare their findings to findings using our

method. To evaluate the potential of our method in time-varying

cases we used sleep spindle data from the YASA Git repository

and mismatch negativity (MMN) data previously collected by our

lab (Vallat and Walker, 2021). In both cases we demonstrate the
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information density PAC evaluated on single spindles or ERP trials,

and the ERPAC that is fit using many trials at once.

2.8.1 Mouse intracranial EEG data
2.8.1.1 Detection of oscillations in mouse iEEG Data

After evaluation of the method on synthetic data we also

wanted to test our algorithm’s performance on electrophysiologic

recordings. We use the dataset provided in Scheffer-Teixeira et al.

(2011), which calculates information transfer from the medial

entorhinal cortex to the CA1 region of the hippocampus in rats

and evaluates PAC using the Modulation Index. The rats were

implanted with multi-electrode microwire arrays, which allows for

recording of intracranial EEG data, and anesthetized with both

ketamine and xylazine. This data has high signal-to-noise ratio

can thus can serve as a reference to compare our technique to the

modulation index and replicate past findings in electrophysiologic

data. The dataset is the same as the one used for GOF analysis in

Section 2.5. It consists of two separate 300 s recordings sampled at

1 kHz for different couplings: HG (60–100 Hz) to theta band (5–50

Hz) and HFO (120–160 Hz) to theta band.

2.8.1.2 Comodulogram

To assess PAC in the data we build what is called a

comodulogram, which allows one to scan over many different

frequency bands for the fast and slow signals to do exploratory

analysis on data to find PAC. This is the most common way

of reporting PAC findings in the literature. To calculate the

comodulogram, we first note that we filter one channel of the iEEG

data into low and high frequency bands. For the low frequency

bands we scan over 4 Hz frequency bands starting from 0.5

and ending at 20.5 Hz with shifts of 2 Hz to generate Slow =

{xl,1(t), xl,2(t), . . . , xl,m(t)}, which is the set of m low frequency

signals. We do this process analogously for the high frequency

signals in 10 Hz bandwidths with shifts of 5 Hz from 0.5 Hz to

fupper Hz to generate Shigh = {xh,1(t), xh,2(t), . . . , xh,n(t)}, the set

of n high frequency signals. Unlike in the low frequency case, to

determine the upper bound for the frequency range (fupper) we will

search over, we employ a technique developed by Donoghue et al.

(2020): fitting oscillations & one over f (FOOOF). This technique

allows us to detect the presence of oscillatory peaks in the power

spectra of the data, which allows us to separate real oscillations

from Gaussian and 1
f
noise. We use this to detect the highest

frequency peak present in the data and use its center frequency

plus half of its bandwidth as the upper limit over which we

scan. The parameters of the FOOOF algorithm for the HG-theta

data are: peak_width_limits=[1, 20], min_peak_height = 0.15. The

parameters for the HFO-theta data are: peak_width_limits = [1,

25], min_peak_height = 0.2. Both datasets had a frequency range

from [0, 200] Hz to scan over, and the inputs to the FOOOF

algorithm were Welch periodograms with a Hann window of size

1,024 samples and an overlap of 512 samples.

After the filtering and identification procedure, we then

calculate

PAC(i, j) = M(xl,i(t), xh,j(t)),

whereM : Slow×Shigh −→ R represents a function to calculate some

PAC measure (ours or Modulation Index) calculated between two

input signals. PAC(i, j) is then plotted and reported as a heatmap

for the real iEEG data—see Figure 6. We perform both the BH

procedure to correct for the multiple testing problem here. We

compute p-values by first generating 100 surrogate comodulograms

to approximate a null distribution for each PAC(i, j). Only 100

surrogates were used here because of limited computational

resources. Each surrogate was computed by shifting the phase of

the dataset—for each i, j pair—by a random amount of at least 1

second. This was to ensure that the phase still that of an oscillator

as opposed to a full permutation which would have destroyed all

structure. We then fit a gamma distribution to each of the 100

surrogate PAC(i, j)s, and compute the p-value as the probability

of observing a our actual PAC value under the null hypothesis.

We performed a Kolmogorov–Smirnov test between the surrogate

distribution and the fit gamma distribution to ensure that the

approximation was reasonable. On each of the comodulograms,

only the PAC(i, j) that were deemed significant are shown. All other

values are set to zero in the heatmap.

2.8.2 Joint high-density EEG and EGG topoplots
Resting-state simultaneous EEG and EGG data was used

to evaluate the ability of our PAC measure to recreate results

from Richter et al. (2017) that demonstrated the existence of

electrophysiological gut-brain PAC. The data were collected under

Stanford IRB 68900. We recorded high-density EEG data at 1 kHz

using a 128-channel EEG system from Electrical Geodesics.We also

collected EGG data at 250 Hz using an 8-channel OpenBCI Cyton

Board. Ten minutes of resting-state data was used for analysis.

To recreate these results we chose to look at the coupling of the

electrogastrogramwith the alpha band signal (8–12 Hz) of the EEG.

We synchronized both recordings with two experimenters starting

the recording simultaneously on separate devices. We approximate

the synchronization error to be on the order of 0.5 s, which is

significantly less than the period of 20s pertaining to the gastric

slow wave, suggesting a minor effect on stomach brain coupling

measures.

To remove artifacts, we preprocessed both the EEG and EGG

data using respective preprocessing pipelines. First, both datasets

were decimated to 125 Hz sampling rates to decrease the amount

of data and so that they could be paired point-wise in time. The

EEG data was then bandpass filtered to [1, 50] Hz using a zero-

phase 4th order Butterworth filter to remove drift and 60 Hz line

noise before artifact rejection. The MNE python package was then

used to perform electrooculogram (EOG) regression on the data to

remove eye blink and movement artifacts. At this point, the EEG

data were then filtered to the alpha band frequency, again using

a zero-phase 8th order Butterworth filter (implemented through a

forward and backward pass of a 4th order filter). For the EGG data,

a local adaptive wiener filter was used to remove motion artifacts as

in Gharibans et al. (2018). The EGG data was then filtered to [0.03,

0.07] Hz frequency band using a 8th order zero-phase Butterworth

filter (also by forward-backward filtering).

The “best” EGG channel was selected by first referencing the

EGG channels to all other channels (i.e., compute all pairs xi(t) −

xj(t)) and then computing the power around the gastric slow wave

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1392655
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Perley and Coleman 10.3389/fncom.2024.1392655

frequency band. The referenced EGG channel with the highest

power in the EGG frequency band was then chosen for analysis.

We then generated topographic plots of PAC between the

chosen EGG channel and all 128 EEG channels. Both the

modulation index and our PAC measure were computed between

the chosen EGG channel and all EEG channels separtely. Statistical

significance was evaluated through surrogate data analysis.

Surrogate data were generated by randomly shifting the phase of

the EGG signal in time and then recomputing the corresponding

PAC values. A total of N = 5,000 surrogates were generated for

each subject. Assuming that the EGG and EEG signal are coupled

at specific instances in time, this process allows us to disrupt

that coupling and generate samples of PAC values from the null

distribution. For each iteration of surrogate data, the EGG signal

was shifted by a random amount of at least 60 s to ensure disruption

of this coupling. This process, in contrast to surrogate analysis

where the phases are permuted, allows us to keep the shifted EGG

signal as a physically relevant oscillator. The z-scores for each

PAC measure were computed using their respective surrogate null

distributions, and the plotted as a heat map over a scalp model

using the MNE Python package—see Figure 7. Note, that null

distributions were generated separately for each EEG channel. p-

values were computed empirically from the surrogate samples by

computing the proportion of surrogate data greater than or equal

to the actual PAC measures. Corrections for multiple comparisons

are shown for both the BH procedure—see Figure 7.

2.8.3 Sleep spindle electroencephalography data
It has long been know that sleep spindles have thalamic

generators and occur during slow wave sleep, when slow

wave electrophysiologic oscillations are present (Destexhe and

Sejnowski, 2009). It has also been proposed that there may be

a mechanism of cortical to thalamic control of sleep spindle

generation, where slow wave oscillations may be one of the

culprits that organize these sleep spindles. Thus it is an interesting

question to understand, if and how, phase-amplitude coupling

between slow waves and faster oscillating sleep spindles may arise.

Polysomnography (PSG) data for use in analysis of sleep EEG

was obtained from the YASA Git repository – an open source

Python package for automated sleep staging of PSG data (Vallat and

Walker, 2021). Data used to train and test YASA was obtained by

Vallat et al., from the National Sleep Research Repository (NSSR)

and the Dreem open dataset (Dean et al., 2016; Guillot et al., 2020).

Initial preprocessing of the data was done first by utilizing

the YASA package to do sleep staging on the Cz electrode of the

PSG. N1,N2, and N3 stages of sleep were identified, and then we

further utilized YASA to identify sleep spindles in the data. Each of

the sleep spindles were collected by identifying the peaks of each

sleep spindle (also done using YASA) and then collecting 2 s of

data before and after the peaks of the spindles. All spindles were

then aligned against each other in an N × T matrix, where N is

the number of sleep spindles and T is the time window collected

around each sleep spindle. Any sleep spindles with peaks within 3 s

of each other were excluded from the downstream analysis in order

to prevent any possible leakage of one sleep spindle into the time

window of another sleep spindle.

We then analyzed the time-varying PAC in the sleep spindles

using both the idPAC and ERPAC methodologies. The frequency

bands of choice for analyzing sleep spindles using PAC were the

slow oscillation (SO, 0.1–1.25 Hz) and sigma band (12–16 Hz).

This follows the work done by Winer et al., where they show

that Tau and β-Amyloid burden was negatively correlated with

SO-sleep spindle coupling (Winer et al., 2019). In the idPAC

paradigm, we filter each sleep spindle into the corresponding low

and high frequency bands and then fit our gamma GLM on each

individual sleep spindle and calculate the information density at

each time point. In the ERPAC paradigm, we first take our phase

and amplitude data matrices as specified in the Methods section

above and then mirror the first and last 0.5 s of data and reflect

them about the beginning and end time points. This way we can

still generate estimates of the ERPAC phenomenon for the whole

length of time of each spindle. Alternatively, one can choose to

take their trial epochs to be of longer length and “sacrifice” the

edge data, however, here we choose to reflect data to mimic a

limited data scenario (e.g., experiments for which there is very

limited time between trials). The analysis of ERPAC is then exactly

as mentioned in the ERPAC setup in the Methods section. The

ERPAC trace for the whole dataset was reported as a single trace

and the idPAC associated with each time point was reported in

a heatmap.

2.8.4 Mismatch negativity event-related
potentials

The mismatch negativity data was collected at UCSD in

concordance with IRB number 130484. Subjects in this dataset were

given auditory stimuli and were subjected to an oddball paradigm

where they were given one tone to listen to every 500 ms and then

periodically given an oddball tone that elicited an ERP. Data from

one experiment using the Fp2 electrode was used in the analysis for

this study. The data were epoched around the oddball trials with

200 ms pre-stimulus and 800 ms post-stimulus and aligned using

the stimulus timings. The low frequency band was filtered to the

delta band (0.5–4.0 Hz) and the high frequency band was filtered

to the ERP frequency (8.0–15.0 Hz). We then performed both the

idPAC analysis on each ERP trial and also reported the average

across trials. For the ERPAC analysis, as in the sleep spindle data,

the first and last 0.5 s of the data were reflected about the beginning

and end time points to pad the data. Mirroring the sleep spindle

analysis, the ERPAC trace for the whole MMN dataset was reported

as a single trace and the idPAC associated with each time point was

reported in a heatmap.

3 Results

3.1 Goodness-of-fit

In Figure 2, we plot probability plots to demonstrate the GOF in

real neural data. We use the data provided in the Scheiffer-Texeira

et al. study that investigated theta band activity coupled to both

high gamma band (HG, 60–100Hz) and high frequency oscillations

(HFO, 120–160 Hz) and plot as described in the Methods section

above.We see that over all chosen one-second segments of data, the

model fits very well in the plots shown in Figure 2, where perfect fit
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FIGURE 2

Probability plots showing exemplary goodness-of-fit in the real neural data from Sche�er-Teixeira et al. The left plot represents data associated with
HG and theta band PAC. The right plot represents data associated with HFO and theta band PAC. Data were fit over consecutive non-overlapping 1
second chunks. The central solid black 45 degree line represents perfect model fit, and the blue curve represents the mean model fit. The dashed
black lines represent the 95% confidence interval for the data being generated by the model, and the blue shaded region represents 95% interval of
model fits. Larger distances from the 45 degree line represent worse model fit and vice versa.

FIGURE 3

Receiver operating characteristic curve of di�ering CFC methods across multiple di�erent coupling coe�cients.

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1392655
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Perley and Coleman 10.3389/fncom.2024.1392655

would correspond to the blue curve exactly on the 45 degreee line.

The dashed lines represent 95% confidence intervals for the data

actually coming from the model and the blue shaded region is the

95% interval of model fits. We see that for all data, the probability

plots stay mostly within our confidence intervals, with a modest

deviation from the dashed line (which is expected for physiologic

data). These results imply that our model fit is sensible and will

produce reliable estimates of the mutual information.

3.2 ROC analysis on synthetic data

Figure 3 shows the ROC curves generated for all five of the CFC

methods tested over six different coupling coefficients. Each curve

was generated using 60 total synthetic data signals (30 coupled and

30 uncoupled), and 95% confidence intervals for the ROC curves

were plotted as dashed lines with shading. We use small values of

the coupling coefficient to test how the algorithms can pick our

coupling in noisy environments. When the coupling coefficient

is very large, it becomes very easy to distinguish between PA

coupled and uncoupled signals with most PAC algorithms and is

therefore not interesting to study. In an ROC curve, we set different

thresholds of PAC values to classify uncoupled and coupled signals

and then plot the true positive rate (TPR) against the false positive

rate (FPR) for each threshold value. Any curve that falls along the

45 degree diagonal line is equivalent to random guessing. Curves

closer to the top left corner have higher classification performance

since they can achieve higher TPRs at the same FPR as compared

to a curve not as close to the top left corner. We quantify this

perfomance using the AUC of the ROC curve, which takes on

values between 0 and 1. We find that in simulation with a coupling

coefficient that is sufficiently small (≤0.1), none of the algorithms

are able to distinguish between coupled and uncoupled signals

at a rate greater than chance. However for small, but sufficiently

large, coupling (0.1 < χ ≤ 0.3), we see that our PAC metric

(in red) outperforms all other PAC metrics. We also see that,

as expected, the performance of all PAC metrics increases as the

coupling coefficient increases with our PAC metric achieving near

perfect AUC at a coupling coefficient of 0.3. Note that the PLV (in

blue) is a phase-phase coupling metric and serves as a control since

it should not be able to pick up PA coupled signals.

3.3 Time-resolved PAC experiments

In Figure 4, simulations for time-varying brain-brain and gut-

brain coupling are shown. The blue traces in each figure represent

the true underlying coupling coefficient, while the orange traces

represent the time-varying estimates of PAC. Both Figures 4A, B

we note that for square wave and sawtooth wave simulations of

the coupling coefficent, the idPAC was able to reliably estimate the

true coupling and react to fast and slow transient changes in the

underlying coupling coefficient. Between the brain-brain and gut-

brain coupling simulations, we also notice that in the brain-brain

case the idPAC was able to track changes in PACmore sharply than

in the gut-brain case most likely due to the faster time scales and

the more similar orders of magnitude of the frequencies involved

(i.e., 5 and 40 Hz vs. 0.05 Hz and 10 Hz). This suggests to us that in

understanding PAC for the gut-brain axis, it is imperative to study

and validate these phenomena for very low frequency signals.

3.4 Event-related PAC simulations

In our ERPAC experiment, Figure 5 shows that we achieve

performance similar to that in the idPAC case. The heatmaps

demonstrate that our method was able to find consistent PAC

associated with each time point in the simulation. The estimates of

ERPAC closer to the edges of the square wave coupling coefficient

are less sharp and the possible explanations are two-fold: (1) the

very low frequency of the gastric signal makes it difficult to estimate

sharp changes in PAC, and (2) the jitter introduced in the timing

of the simulated ERPs causes the alignment of the signals to be

imperfect outside of the center of the square wave.

3.5 Performance in mouse iEEG

Our results in testing our PAC method against the Modulation

Index in iEEG data show that we achieve very similar performance

in exploratory analyses of PA coupled signals. In Figures 6A, B,

the plots on the left half show comodulograms produced using

both the Modulation Index (left column) developed by Tort et

al., and our method (right column). The right half of the plots

show the corresponding multiple comparisons plots for rejection

of null hypotheses associated the no coupling for a specific pair

of frequencies. For any subfigure, Figures 6A, B, the top row of

plots corresponds to the theta-HG coupling and the bottom row

corresponds to the theta-HFO coupling. All pixels on the heatmap

corresponding to hypotheses that did not pass the multiple

comparisons test were set to 0. As we can see in the figure, our

method performs comparably to the Modulation Index when used

in electrophysiologic recordings in exploratory analyses to try and

discover coupling. Note that invasive electrophysiologic recordings

has higher SNR compared to noninvasive recordings and thus

we use this dataset to see if our method can reliably reproduce

coupling in these data. One finding of interest here is also that

when performing the multiple comparisons test, our PAC measure

always accepted fewer hypotheses in this case no matter the dataset

nor multiple comparisons correction procedure. This implies that

our method may be better and not accepting hypotheses for which

coupled frequencies are only tangentially in the frequency bands

being studied. For example, if one were assessing PAC and there

existed oscillators at 5–10 and 130–150 Hz, but the frequency bands

being studied are 5–10 and 120–140 Hz, our method may be better

at not accepting such cases as true coupling.

3.6 Joint EEG-EGG recordings

Electrophysiological gut-brain PAC was estimated from joint

recordings in two subjects at rest with eyes closed. Figure 7

demonstrates topoplots of gut-brain PAC using both MI and our

measure in both subjects. In any subfigure, the left half of the plots
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FIGURE 4

Demonstration of information density as a time-resolved measure of PAC. The blue signals in each plot represent time-varying coupling coe�cients
associated with synthetic data. The orange curves show the idPAC as a function of time to estimate coupling. (A) Time-resolved coupling
demonstrated using 5 and 40 Hz signals. (B) Time-resolved coupling demonstrated using synthetic data representing the gastric slow wave (0.05 Hz)
and alpha band EEG (10Hz) to simulate physiology. Time-varying coupling coe�cients for both square waves and ramp functions were well
represented by idPAC in both (A) and (B).

correspond to the MI and the right half of the plots correspond

to our PAC measure. In addition. Each plot is a heatmap of z-

scored PAC values, where the locations that did not pass multiple

comparisons testing were zeroed out for contrast. The multiple

comparisons plots are displayed next to each topoplot. Each

subfigure, Figures 7A, B, are separate subjects. These topoplots are

a top-down view on the brain, where the triangle on the top of

the plot represents the nose, thus the front of the brain, and the

lobes on the side represent the ears. Note that for visualization we

removed electrodes from the 128-channel system that correspond

to locations below the ear and nose respectively, which are not

significantly near cortical regions of interest.

Figure 7A demonstrates a subject for which the gut-brain PAC

at rest, as quantified by our measure and MI, differ significantly in

which regions of the brain are highlighted as regions of significant

coupling with the gastric slow wave. Note that in each row,

the topoplots are beside the corresponding multiple comparisons

procedure plot and any The MI demonstrates right parieto-

temporal regions of the brain, whereas our measure picked out a

small part of the right occipital lobe as a region of active coupling.

On the other hand, Figure 7B demonstrates a subject in which

there is stronger agreement between the MI and our measure. Both

measures pick out occipital regions as well as central frontal regions

of the brain as active areas of coupling. It is interesting to point

out that while across subjects the modulation index differed in its

selection of brain regions coupled to the gut at rest, our measure

was able to consistently pick out regions of the occipital lobe as

highly coupled to the gut. Note, that these findings are exploratory

and should be taken as such, since the limited existing data are

shown here. In the discussion we will further explore the potential

implications for these differences in finding.

3.7 Time-varying PAC in sleep spindle and
MMN data

Experiments assessing the potential for idPAC and ERPAC

using our method were done in sleep spindle and MMN data

as described in the Sections 2.7.3 and 2.7.4. We note here that

instead of a standard lowpass filter, we opt for a Gaussian filter
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FIGURE 5

Event Related PAC simulations in the gut-brain frequencies bands. (Top) A heatmap of the ERPAC time series by trial. The rows represent trials and
the columns represent time points. The color bar on the heatmap represents ERPAC value. Note that the ERPAC value per time series well represents
the coupling time series over time, and the changes in onset of coupling are representative of the introduced timing jitter. (Bottom) Mean ERPAC
time series plotted against the ground truth coupling coe�cients. The mean ERPAC time series tracks well with the shape of the coupling coe�cient.
The inability of the method to follow the sharp changes in coupling is likely due to the introduced jitter and filtering of the ERPAC to eliminate the
leakage from the low frequency oscillator.

with a standard deviation of 0.08s, to match the cutoff as desired in

Section 2.6.3. This is to mitigate edge effects, since the MMN data

was pre-epoched into small intervals. In Figure 8A we demonstrate

the successful application of idPAC to both the sleep spindle data

and the MMN ERPs. Each row of the heatmap in Figure 8A

represents one epoch/trial of spindle/ERP data and the color

intensity represents the idPAC value. For the sleep spindle data

(left) the peak of the spindle was located at time 0, and we note

that the idPAC consistently estimated high PAC values between the

SO and sleep spindle during the occurence of a sleep spindle. The

blue trace above the heatmap is a represenation of the mean idPAC

across all trials and demonstrates this same phenomenon. Similarly

in the MMN data (right) we notice that the peak in PAC value

for each trial occurs ∼100–150 ms post-stimulus, which is when

we expect the peak of the ERP to occur. The orange dotted line

shows the mean ERP across trials and the blue line shows the mean

idPAC(t) that highly correlates with the ERP and suggests that the

delta band phase may have a significant role in generating ERPs in

response to oddball stimuli.

In Figure 8B, we show similar plots for the ERPAC

methodology. For the sleep spindle data, we notice a very

similar response in the ERPAC as compared to the mean idPAC(t)

trace, which is also reflected in the heatmap showing the PAC for

each spindle associated with each time point. We note, however,

that the ERPAC case may be estimating some spurious PAC

pre-spindle as evidenced by the larger PAC values before the

spindle peak. On the right, the MMN data also show a peak

in ERPAC around the stimulus; however, the ERPAC heatmap

tends to show less spurious activation than its idPAC counterpart.

Upon close inspection, the idPAC does increase relative to

its surroundings when the ERP occurs, but suffers from large

edge effects at the end, which wash out the smaller changes in

the middle.

To explain the differences between the two techniques, we

note that while the heatmaps for idPAC and ERPAC look similar,

the philosophies behind the generation of each plot differ. In

the idPAC case, the idPAC is calculated for each trial/epoch and

is thus a one-shot estimation of the time-varying PAC for each

trial/epoch. However, in the ERPAC case, the idPAC is calculated

for each column/time point. Here aggregate statistics frommultiple

similar trials are taken to estimate one grand ERPAC for the

phenomenon and the heatmaps are the results from the aggregate

statistics around each time point being “projected” back onto each

trial/epoch. Note, that while these one-shot estimators may be

interesting in the case of data with transient phenomena that may

not be easily time-locked/replicable, in the MMN case it does

generate large spurious couplings and may be subject to edge

effects.
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FIGURE 6

Comparison of Modulation Index and our PAC measure in mouse iEEG data with corrections for multiple comparisons. (A) Comodulograms for
theta-HG coupling using Modulation Index (left column) and our measure (right column). Next to each comodulogram is te associated multiple
comparisons plot, showing the number of significant locations. The x-axis of the plots are sorted using the unadjusted p-values from low to high.
The dashed orange line is the α = 0.05 threshold for FDR control, and the vertical red dashed line is the critical value for the number of significant
tests. (B) (left) Comodulograms produced for theta-HFO coupling using Modulation Index (left column) and our measure (right column). This figure
plots only MI and PAC values for significant frequency pairs. Note, our method, after correction for multiple comparisons, results in less “leakage”.

FIGURE 7

Z-scored PAC values for Joint EEG-EGG recordings taken at rest with eyes closed after correction for multiple comparisons. All non-significant
channels were set to 0 for image contrast. In both figures, the left column of plots corresponds to the MI and the right column corresponds to our
PAC measure. (A) Example subject in which our measure and the MI do not match well and show di�ering areas of significant coupling. (B) A
di�erent subject in which regions of coupling match well with the MI and our measure. This may indicate a di�erential ability in our measure and MI
in detecting coupling.
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FIGURE 8

Time-resolved PAC measures applied on sleep spindle data. Each row in the heatmap represents the time-resolved PAC for a single sleep spindle,
where each spindle has its peak centered at time 0. The top line plots demonstrate the average time-resolved PAC for each of the ERPAC and idPAC
methods. (A) (left) idPAC using the gamma GLM was applied to the sleep spindles and demonstrates between sleep spindles (12–16 Hz) and slow
oscillations (0.1–1.25 Hz). (right) idPAC applied to the MMN data between the delta band (0.5–4.0 Hz) and the high-frequency component (8.0–15.0
Hz). (B) ERPAC calculated on the sleep spindle (left) and MMN data (right).

4 Discussion

In this paper, we demonstrate that by using a principled

method of fitting the joint distribution on amplitude and phase,

we can use mutual information as a reliable measure of PAC. This

builds upon our previous work to generate more representative

distributions on non-negative random phenomena: the gamma

distribution as opposed to the exponential distribution. This

allows for us to better capture the conditional distribution of

amplitude given phase, which has most of its mass away from

zero as compared to the exponential distribution (Perley and

Coleman, 2022). As shown in Figure 3, our method outperforms

the major gold-standard methods of PAC. We believe that

the added statistical rigor from explicitly modeling the joint

distribution allows us to more flexibly capture the nature and

strength of the relationships between phase and amplitude. Our

assessment of the GOF also gives us confidence in our model

design and validates our choice of a parametric method of

mutual information estimation, as this implies we can obtain

nearly unbiased estimates. This also demonstrates the need for

more advanced measures of CFC. In the future, we envision that

our modeling paradigm can be extended appropriately to other

forms of CFC such as phase-phase coupling, amplitude-amplitude

coupling, and phase-frequency coupling.

In neural data, we have also demonstrated our measure’s ability

to pick out known PAC and potentially discover new PAC. In the

invasive mouse EEG recordings, the high SNR in the makes it

easy to pick out PAC in data even using conventional methods.

Given these prior findings, we validated our method against the

conventional methods and found high correspondence between

the produced comodulograms from the data. We also show the

potential of our method to be less sensitive to leakage in frequency

bands since it accepts fewer hypotheses than the MI after multiple

comparisons. One point of discussion that we think is useful is on

our use of the FOOOF package to estimate the upper bound of

the range of frequnecies to scan over. We do this since we wanted

to replicate prior findings, however, a more powerful use of the

tool would be to estimate the locations of all the spectral peaks

and only compute PAC between pairs of frequencies that have

spectral peaks. One could then use some form of surrogate data

analysis to confirm the significance of those PAC findings. Since

comodulograms can be considered as a multiple hypothesis testing
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problem, using FOOOF in this way could reduce the number of

hypotheses to test. Combined with our more powerful method of

quantifying PAC, this may make it easier to more powerfully detect

positive results. On the other hand, in joint EEG-EGG recordings (a

low SNR setting) we find that there are inconsistencies between the

MI and our measure. Since our measure outperforms conventional

PAC in simulated data for modest coupling, this suggests that

the inconsistencies in our method and MI can potentially be

attributed to spurious findings in theMI. Preliminarily, ourmethod

also seems to show more consistency across subjects. This may

point to the ability of our method to pick out more robust

coupling “motifs” across human subjects. However, these claims

have yet to be validated in larger datasets and are the subject of

future work.

We also demonstrate the potential to use our model fitting

procedure to infer a measure of time point-by-time point resolved

PAC using information density, and an ERPAC-like paradigm

to estimate time-varying PAC for brain responses to the same

stimuli. Note that while both of these methods seem to be able to

estimate aggregate time-varying PAC for multiple trials of similar

phenomena, it may be prudent to opt for the ERPAC method to

avoid potential overfitting of the data which may cause spurious

PAC like the MMN data in Figure 8. On the other hand, the idPAC

phenomenon may be more appropriate for situations where one is

looking at long time recordings of coupled electrophysiology where

it may not necessarily be appropriate to epoch data into similar

chunks/phenomena.

On the practical end, our model fitting procedure is convex

and therefore easier to implement rigorous procedures for the

average user and therefore we envision the wide distribution of

our measure. However, it also loses some of the computational

efficiency of measures such as the Modulation Index with simpler

estimation procedures. As it stands now, our measure is more

suited for precise offline calculations of PAC done post-experiment.

Other methods might be more suited for online calculation of

PAC for potential use in real-time biofeedback, monitoring, or

stimulation. To close this gap, we plan to further develop our

method to forgo the use of traditional general convex solvers for

the iteratively reweighted least squares (IRLS) method to speed

up performance.

It may also be interesting to note that future implementations

of our method may extend to include gamma mixture models

to capture multimodal conditional distributions for a potentially

richer fit on the joint distribution. However, this method will likely

end up nonconvex and lose some of the associated advantages. As

an aside, we also note that in this work we use the uniform prior

on phase, but one can easily extend this to use an empirical prior

drawn from the data if the marginal distribution on phase does

indeed deviate significantly from a uniform distribution.

We would be remiss not to note some cautions when it

comes to the interpretation of idPAC and PAC more generally

in a neuroscientific context. One issue to note with the idPAC

measure is the one shown in Figure 8A on the right for the

MMN data. The idPAC shows large values of coupling across

each trial toward the end of the recording, even though it does

show a modest increase relative to its surroundings around the

timing of the ERP. This serves as an example for potential

issues with the technique. One of the issues as noted in Aru

et al., is that when trialwise data is limited to only a small

section around the trial, filtering may cause edge effects that

interfere with the results (Aru et al., 2015). However, another

reason may lie in the fact that using one-shot measures, may be

more sensitive to non-coupled phenomena. In light of this, we

recommend selecting the ERPAC measure of coupling in cases

where repeatable trial-wise data are collected. In such cases where

the data are not easily repeatable and time-varying transients in

coupling are of interest, we encourage users to employ some form

of surrogate data analysis to better confirm the effects of coupling

in data.

On the note of PAC analysis in general, it has been noted

by groups such as Aru et al. (2015) and Gerber et al. (2016),

that PAC analysis, when done without proper care, and lead to

spurious findings that may not have any neuroscientific basis. For

example, Gerber et al. (2016), showed that in simulation that non-

sinusoidal periodic activity can give rise to spurious coupling, while

in Aru et al. (2015), they show that interpretability of PAC heavily

depends on the care taken in preprocessing and inspection of the

data. Another point to discuss, is that the FOOOF tool is very

useful in determining the existence of spectral peaks and relevant

bandwidths of those peaks: criteria listed in Aru et al., for rigorous

analysis of PAC. In light of these findings, we urge readers to be

cognizant that, while we believe our method performs better in

detection of PAC as compared to other methods, it may still be

subject to detection of spurious results if care isn’t taken to inspect

the data closely. Aru et al., presents a non-exhaustive list of checks

that researchers should follow before being confident that one’s

analysis may be on the correct path.

In conclusion, we have demonstrated a promising method

for quantification of PAC in electrophysiological recordings.

In the future, we imagine that with the dissemination of

our method, we may enable the community to conduct

more rigorous studies in the discovery of basic and

clinical neuro-electrophysiology.
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