AUTHOR=Sokołowska Beata , Świderski Wiktor , Smolis-Bąk Edyta , Sokołowska Ewa , Sadura-Sieklucka Teresa TITLE=A machine learning approach to evaluate the impact of virtual balance/cognitive training on fall risk in older women JOURNAL=Frontiers in Computational Neuroscience VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2024.1390208 DOI=10.3389/fncom.2024.1390208 ISSN=1662-5188 ABSTRACT=Introduction

Novel technologies based on virtual reality (VR) are creating attractive virtual environments with high ecological value, used both in basic/clinical neuroscience and modern medical practice. The study aimed to evaluate the effects of VR-based training in an elderly population.

Materials and methods

The study included 36 women over the age of 60, who were randomly divided into two groups subjected to balance-strength and balance-cognitive training. The research applied both conventional clinical tests, such as (a) the Timed Up and Go test, (b) the five-times sit-to-stand test, and (c) the posturographic exam with the Romberg test with eyes open and closed. Training in both groups was conducted for 10 sessions and embraced exercises on a bicycle ergometer and exercises using non-immersive VR created by the ActivLife platform. Machine learning methods with a k-nearest neighbors classifier, which are very effective and popular, were proposed to statistically evaluate the differences in training effects in the two groups.

Results and conclusion

The study showed that training using VR brought beneficial improvement in clinical tests and changes in the pattern of posturographic trajectories were observed. An important finding of the research was a statistically significant reduction in the risk of falls in the study population. The use of virtual environments in exercise/training has great potential in promoting healthy aging and preventing balance loss and falls among seniors.