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Introduction:Constructing an accurate and comprehensive knowledge graph of

specific diseases is critical for practical clinical disease diagnosis and treatment,

reasoning and decision support, rehabilitation, and health management. For

knowledge graph construction tasks (such as named entity recognition, relation

extraction), classical BERT-based methods require a large amount of training

data to ensure model performance. However, real-world medical annotation

data, especially disease-specific annotation samples, are very limited. In addition,

existing models do not perform well in recognizing out-of-distribution entities

and relations that are not seen in the training phase.

Method: In this study, we present a novel and practical pipeline for constructing

a heart failure knowledge graph using large languagemodels andmedical expert

refinement. We apply prompt engineering to the three phases of schema design:

schema design, information extraction, and knowledge completion. The best

performance is achieved by designing task-specific prompt templates combined

with the TwoStepChat approach.

Results: Experiments on two datasets show that the TwoStepChat method

outperforms the Vanillia prompt and outperforms the fine-tuned BERT-based

baselines. Moreover, our method saves 65% of the time compared to manual

annotation and is better suited to extract the out-of-distribution information in

the real world.

KEYWORDS

large language models, heart failure, knowledge graph, prompt engineering,

TwoStepChat

1 Introduction

Medical knowledge graphs play an important role in clinical practice and

healthcare (Abu-Salih et al., 2023). They provide data search, decision support, and

visualization for diagnosis, treatment, and prognosis by integrating data from multiple

sources, such as clinical guidelines, expert consensus, professional papers, and electronic

health records (Xue and Zou, 2022; Wu X. et al., 2023). Among these medical knowledge

graphs, the disease-specific knowledge graph constructs more targeted schemas and more

comprehensive triples for specific diseases (Chandak et al., 2023). It is also more valuable in

actual clinical diagnosis and treatment (Wang H. et al., 2022) and can provide mechanisms

and explanations to aid in decision making (Hao et al., 2023; Yang et al., 2023).
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Previous work has mainly relied on the BERT (Devlin

et al., 2019) model and its variants for information extraction

to build knowledge graphs. BioBERT (Lee et al., 2020) and

ClinicalBert (Alsentzer et al., 2019) pre-train the text representation

on biomedical text and clinical text, respectively, and perform well

in medical NER and RE tasks. Gligic et al. (2019) explore the use of

a combination of BERT and CRF for named entity recognition in

electronic health records. (Luo et al., 2020) propose a joint learning

method that combines entity recognition and relation extraction,

using BERT as the basic model, and demonstrate its effectiveness

on biomedical texts. Several other works (Bacanin et al., 2021,

2022; Zivkovic et al., 2022) combine machine learning and swarm

intelligence methods and have shown promising results in various

fields, including NLP tasks. However, the above methods have the

following shortcomings: (1) To achieve good performance, these

models require tens of thousands of training data, but accurately

annotated medical entities and relations are scarce and time-

consuming. (2) For out-of-distribution (OOD) test data (which

comes from different text sources or contains new entities or

relations not included in the training), model performance is low

and unstable.

Recently, large language models(LLMs) have shown superior

performance and emergent capabilities in a variety of natural

language processing tasks. Autoregressive models such as

FLamingo (Alayrac et al., 2022), LaMDA (Thoppilan et al., 2022),

PaLM (Chowdhery et al., 2022), and ChatGPT (Achiam et al.,

2023) etc. are able to achieve more accurate answers through

techniques such as continual pre-training (Singhal et al., 2023),

fine tuning (Wornow et al., 2023), and prompt engineering (Wang

et al., 2024). LLMs have demonstrated competitive performance

in zero-shot and few-shot settings (Brown et al., 2020), and their

powerful reasoning and generalization capabilities make them well

suited for dealing with out-of-distribution scenarios (Naveed et al.,

2023). In addition, compared to traditional manual and model-

based KG construction methods, LLMs-based KG construction

methods have the following advantages: (1) LLMs are trained

on a large number of natural language texts, so it is able to

understand and generate natural language (Dong et al., 2019; Min

et al., 2023). This gives it the ability to extract information from

unstructured textual data (e.g., medical literature, electronic health

records). (2) LLMs can understand complex relations between

entities (Thirunavukarasu et al., 2023), allowing them to extract

complex triples from text, such as “Captopril is an ACE inhibitor

used to treat cardiovascular diseases such as heart failure.” (3)

LLMs can generate schemas, which are templates that define

entities and relations (Zhang T. et al., 2023). This is very useful

for building knowledge graphs because it helps us understand and

organize information.

According to the above insight, in this paper, we propose a

pipeline based on LLMs and prompt engineering to construct

a heart failure knowledge graph to support diagnosis and

treatment. Specifically, we divide the whole construction of the

knowledge graph into three core phases: 1. schema design, 2.

information extraction, including named entity recognition and

relation extraction, 3. knowledge graph completion, including

triple classification, relation prediction and link prediction. Next,

three cardiovascular experts refine the entity and relation triples

extracted by LLM to ensure the accuracy of the knowledge graph.

Figure 1 illustrates the pipeline of our proposed method. In the

information extraction phase, we maximize the potential of LLM

through the TwoStepChat prompt method. In the knowledge graph

completion phase, we cyclically verify the result triples of LLM

in the three tasks of triple classification, relation prediction and

link prediction to alleviate the hallucination of LLM. Experiments

conducted on the expert-annotated gold standard heart failure

dataset demonstrate that the TwoStepChat approach surpasses

the performance of the Vanilla prompt. In addition, results on

the public dataset show that its metrics outperform the fine-

tuned BERT-based baselines. Moreover, our method reduces

annotation time by 65% compared to manual annotation and

is more effective in extracting out-of-distribution information

in real-world scenarios. Our contributions can be summarized

as follows:

• We design a pipeline to realize automatic annotation

(including schema design, information extraction, and

knowledge graph completion) through LLM and promt

engineering, combined with expert refinement to build a

specialized disease knowledge graph.

• We propose the TwoStepChat prompt to improve the

performance of LLM in information extraction. Moreover, the

hallucination of LLM can be effectively alleviated by our cyclic

verification in knowledge graph completion.

• We construct a complete heart failure knowledge graph based

on the above method. Experiments on two datasets show that

the TwoStepChat method outperforms the Vanillia prompt

and outperforms the fine-tuned BERT-based baselines.

Compared to manual annotation, 65% of the time cost can

be saved.

2 Related work

2.1 Medical knowledge graph

The main purpose of the previous medical knowledge graph

construction work (Yu et al., 2017; Chandak et al., 2023; Xiong

et al., 2023) is to intuitively represent the relation between medical

concepts, thereby improving the user experience when retrieving

medical knowledge. Shanghai Shuguang Hospital developed a

traditional Chinese medicine knowledge graph (Tong et al.,

2016), but faced challenges in automatically constructing recipes

for clinical applications. TCMKG (Zheng et al., 2020; Yang

et al., 2022) extract traditional Chinese using medicine literatures

and electronic medical records for diagnosis and treatment of

traditional Chinese diseases. Yuanyuan and Zhongmin (2022)

summarize the progress of research and application of Chinese

medical knowledge graphs. Wu T. et al. (2023) use BERT-

based models to build a knowledge base for early screening

and diagnosis of autism spectrum disorder. In contrast to the

above work, we aim to construct a complete knowledge graph of

heart failure that can support decision making for actual clinical

diagnosis and treatment. In addition, our method uses LLM via
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FIGURE 1

The construction pipeline of our heart failure knowledge graph (HFKG). The LLM annotation consists of three main phases: schema design,

information extraction, and knowledge graph completion.

prompt engineering to implement the main phases of knowledge

graph construction.

2.2 LLMs for information extraction

LLMs perform well and have potential in information

extraction (IE) tasks. Wu et al. (2024) implements structured entity

extraction with LLMs. Zhou et al. (2023) uses LLMs for generalized

named entity recognition, highlighting their versatility. Wei et al.

(2023) propose amethod using ChatGPT for zero-shot information

extraction. The work (Agrawal et al., 2022; Driess et al., 2023;

Singhal et al., 2023) explores the application of LLMs for medical

information extraction. Our approach divides the information

extraction process into three phases, named entity recognition

(NER), relation extraction (RE), and entity disambiguation (ED),

which effectively improves the accuracy of medical IE.

2.3 LLMs for knowledge graph completion

A recent comprehensive survey (Zhao et al., 2023) on the use of

LLMs in knowledge graph application evaluates knowledge graph

completion as a fundamental task. Two related papers (Zhu et al.,

2023; Xie et al., 2023) use ChatGPT on a link prediction task

in the knowledge graph and evaluate its effectiveness. Zhang Y.

et al. (2023) discuss the incorporation of structural information

from knowledge graphs into LLMs to achieve structural-aware

reasoning. Inspired by the above work, we design three different

triple completion tasks to effectively control hallucination and

ensure the accuracy of LLMs through cyclic verification.

2.4 Chain-of-thought prompting

Chain-of-Thought (CoT) prompting, propose by Wei et al.

(2022), requires LLMs to generate coherent intermediate reasoning

steps leading to a final answer. As demonstrated by Kojima et al.

(2022), in the few-shot scenario, LLMs reflect the CoT reasoning

process. Manual CoT achieves superior performance through

manually designed prompts, but recent research has focused

on reducing human-intensive design efforts. Trends include

decomposing complex problems into multiple sub-problems and

solving them sequentially (Zhou et al., 2022) or by voting over

multiple reasoning paths (Wang X. et al., 2022; Zelikman et al.,

2022). Inspired by the CoT prompt, we implement NER and RE

with multiple steps to improve the prediction performance of LLM.

3 Methodology

We use LLMs with few-shot label samples to construct a heart

failure knowledge graph through three main steps: schema design,

information extraction, and knowledge graph completion. This

work highlights the potential of LLMs in the zero-shot or few-shot

settings to significantly reduce manual annotation workload while

maintaining expert-quality results.

3.1 Schema design

Heart failure is a complex and comprehensive disease that

can be triggered by a variety of etiologic factors and may be

associated with multiple comorbidities. Its treatment includes a

variety of synergistic therapeutic options such as pharmacological,
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interventional and surgical therapies. To construct a more fine-

grained heart failure knowledge graph schema, we combine the

CoT prompt (Wei et al., 2022) with the CRISPE framework (Shieh,

2023; Wang et al., 2024), and get the entity types and relation types

step by step. Figure 2 illustrates our prompt template.

In building the heart failure knowledge graph, we first

define the entity schema and relation schema through LLM (see

Tables 1, 2 for the resulting instances). Then, according to the

schema, we automatically extract entities and relations in the

document through LLM, and fill the knowledge graph with specific

instance data. Figure 3 shows an example of the structure of our

knowledge graph.

3.2 Information extraction

Medical guidelines, expert consensus, and professional papers

are long documents. We break these documents into text chunks

based on paragraph breaks, end of sentence markers, and line

breaks to ensure that each text chunk is within the maximum input

length of the model. Then, the text chunks are used as input and

go through three processes of named entity recognition (NER),

relation extraction (RE), and entity disambiguation (ED) to obtain

output triples, as shown in Figure 4.

We decompose the NER task and the RE task into two

steps to improve the accuracy of the LLM response, which we

call TwoStepChat. Each step consists of one or more rounds of

conversation with the LLM. In the first step, our goal is to find out

the existing entity types and relation types in the NER and RE tasks,

respectively. In the second step, we further extract the entities in the

NER task and the (head entity, relation, tail entity) triples in the RE

task based on the types extracted in the first step using appropriate

task-specific prompt templates.

3.2.1 Named entity recognition
For the NER task, the first step is to determine the entity type

contained in the text chunk, given a list of all entity types. In the

second step, the goal of each round is to extract one entity type. The

total number of rounds in the second step is equal to the number of

entity types contained in the text chunk obtained in the first step.

If no entity type is obtained in the first step, the second step is

skipped. We do not use BIO annotations because it is difficult for

autoregressive language models in a zero-shot setting. See Figure 5

for an example of our method with respect to NER.

3.2.2 Relation extraction
We define the input text chunk as x, the question prompt as q.

The RE task is to predict triples T = {(h1, r1, t1), · · · , (hn, rn, tn)},

where n donates the number of triples, type((hi, ri, ti)) ∈ R and R is

the set of all the relation types. The two steps of RE process can be

formulated in Equation 1.

p((h, r, t)|x, q) = p(r|x, q1)
︸ ︷︷ ︸

step 1

p((h, t)|qr)
︸ ︷︷ ︸

step 2

(1)

where q1 is the question generated in step 1 using all the relations

R to fill the template of LLM and get the relation types r existing in

the text. qr is a question generated in step 2 using the corresponding

template based on the existing types r in step 1 to generate

triples. We omitted x in step 2 because ChatGPT can automatically

maintain the session for each round of QA. See Figure 6 for an

example of our method with respect to RE.

3.2.3 Entity disambiguation
When building a knowledge graph, triples from different

documents inevitably have entity ambiguity problems. We design

prompt templates and interact with LLM to guide it to perform

entity disambiguation based on entity-related triples. For example,

in medicine, “Heart Failure” and “Congestive Heart Failure” are

often considered the same entity because they both refer to a

condition in which the heart is unable to pump blood effectively.

“Atrial Fibrillation” and “Ventricular Fibrillation” are different

entities, they are arrhythmias that occur in different parts of the

heart and have different clinical characteristics and consequences.

We first compute the Jaccard similarity of all head entities

based on the mined triples to filter out candidate entity pairs for

disambiguation. Given two entities A and B with relation sets RA
and RB, and tail entity sets TA and TB, the Jaccard similarity J(A,B)

is computed in Equation 2.

J(A,B) =
|RA ∩ RB ∩ TA ∩ TB|

|RA ∪ RB ∪ TA ∪ TB|
(2)

where |RA∩RB∩TA∩TB| denotes the cardinality of the intersection

of relations and tail entities between entities A and B. |RA ∪ RB ∪

TA ∪ TB| represents the cardinality of the union of all relations and

tail entities associated with entities A and B. The Jaccard similarity

measure J(A,B) quantifies the degree of similarity between entities

A and B based on their shared relations and tail entities.

Next, we fill in the candidate entity pairs in the prompt template

as input to LLM for entity disambiguation. Figure 7 shows two

cases, one positive and one negative. LLM performs reasoning and

interpretation based on the information provided, helping us to

disambiguate entities and provide merged results. Merging and

unifying duplicate entities ensures that entities in the knowledge

graph are unique and improves the accuracy and consistency of the

knowledge graph.

3.3 Knowledge graph completion

In this subsection, we discuss how to complete the heart failure

knowledge graph with the above triples mined by the LLM. We

implement triple completion through the following three tasks:

triple classification, relation prediction, and link prediction. For

each of the three tasks, we design different prompts for the LLM.

3.3.1 Triple classification
Given a triple (head entity, relation, tail entity), the binary

classification task is aim to classify the triple as true or false. For

example, given (hypertension, increases_risk_of, heart failure), the
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FIGURE 2

Prompt template for schema design of the heart failure knowledge graph. We get the final schema step by step through the CoT prompt.

TABLE 1 Part of the entity schema generated by the LLM (ChatGPT3.5).

Entity type Attribute name Attribute type Description

Disease Name String Name of the disease

Description String Description of the disease

Cause Name String Name of the cause

Description String Description of the cause

RiskFactor Name String Name of the risk factor

Description String Description of the risk factor

Symptom Name String Name of the symptom

Description String Description of the symptom

Sign Name String Name of the sign

Description String Description of the sign

LaboratoryTest Name String Name of the laboratory test

Description String Description of the laboratory test

ImagingTest Name String Name of the imaging test

Description String Description of the imaging test

Complication Name String Name of the complication

Description String Description of the complication

Medication Name String Name of the medication

Description String Description of the medication

Dosage String Dosage of the medication

InterventionalTherapy Name String Name of the interventional therapy

Description String Description of the interventional therapy

SurgicalTherapy Name sTring Name of the surgical therapy

Description String Description of the surgical therapy

Prognosis Name String Name of the prognosis

Description String Description of the prognosis
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TABLE 2 Part of the relation schema generated by the LLM (ChatGPT3.5).

Relation type Source entity type Target entity type Description

Cause RiskFactor Disease Risk factor causes disease

ManifestsAsSymptom Disease Symptom Disease manifests as symptom

ManifestsAsSign Disease Sign Disease manifests as sign

DiagnosedByLab Disease LaboratoryTest Disease diagnosed by laboratory test

DiagnosedByImg Disease ImagingTest Disease diagnosed by imaging test

LeadsTo Disease Complication Disease leads to complication

TreatedByMedication Disease Medication Disease treated by medication

TreatedByIntervention Disease InterventionalTherapy Disease treated by interventional therapy

TreatedBySurgery Disease SurgicalTherapy Disease treated by surgical therapy

PrognosisOfDisease Disease Prognosis Prognosis of disease

FIGURE 3

Example of the heart failure knowledge graph structure. The circles represent entity types, and the contents in parentheses are entity examples. The

labels on the arrows represent relation types. The arrow points from the head entity type to the tail entity type.

prompt template for LLMs is as follows: “Based on the medical

knowledge of cardiovascular specialists, hypertension increases risk

of heart failure? Please answer true or false.” and the desired output

for LLMs is “True”.

3.3.2 Relation prediction
Given a head entity and a tail entity, the task is to predict

the relation between them. For example, given the head entity

“hypertension” and the tail entity “heart failure”, the task is

to predict whether their relation is “caused”. We design the

following prompt template: “What is the medical relation

between hypertension and heart failure? Please select the best

answer based on your medical expertise from the following

option list: [‘causes’, ‘is_associated_with’, ‘increases_risk_of ’,

‘diagnosed_as’, ‘diagnosed_using’, ‘symptoms_include’,

‘treated_with’, ‘prevented_by’, ‘causes_side_effects_of ’, ‘affects’,

‘leads_to’, ‘caused_by’, ‘affects_prognosis’, ‘affects_mortality’].” The

expected answer is “increases_risk_of”.

3.3.3 Link prediction
Given a head entity and a relation, the goal of the task is

to predict the tail entity related to the head entity. Given a tail

entity and a relations, the task is to predict the head entity. For

example, given the head entity “hypertension” and the relation

“increases_risk_of”, the task is to predict the tail entity “heart

failure”. We define the following prompt templates for LLMs:
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FIGURE 4

The process of extracting information with LLMs. NER, named entity recognition; RE, relation extraction; ED, entity disambiguation.

“Hypertension increases risk of what disease?” is used to ask the

tail entity, “What disease increases risk of heart failure?” is used to

ask the head entity.

The three tasks can complement and confirm each other, which

we call triple cyclic verification. For example, we can use the triple

classification task to verify that the results of the relation prediction

task are correct; we can also use the relation prediction task to verify

the results of the link prediction; the twomethods of link prediction

can also confirm each other, as shown in Figure 8. We use triple

cyclic verification to try to avoid the hallucinations(Ye et al., 2023)

of LLMs.

3.4 Expert refinement

To build a medical knowledge graph, especially a disease-

specific knowledge graph, manual annotation is essential. Manual

annotation requires medical expertise and professional training,

and the process is time-consuming and expensive. Because

annotation typically involvesmarking text areas in long documents,

it requires a high level of concentration on the part of human

annotators to avoid errors. As a result, annotators are prone

to fatigue. However, relying on model predictions alone cannot

guarantee the accuracy of the results, which is critical for disease-

specific knowledge graphs.

Based on the above considerations, we first use LLM to quickly

design the schema and extract the entities and relations of the

knowledge graph through prompt engineering. Each part of the

knowledge graph is then manually verified by experts, which we

call “expert refinement”, as shown in Figure 1. We believe that

verifying and supplementing the triples extracted by the model

saves more manpower, time, and money than relying entirely

on manually annotating triples from scratch. Our human team

consists of 10 members, each with a background in cardiovascular

medicine and experience in medical NLP annotation. The team of

10 is divided into two groups. The first group consists of medical

residents or graduate students specializing in cardiovascular

medicine and is called the “annotation group”. They are

responsible for collecting important heart failure guidelines, expert

consensus and professional papers and manually annotating the

entities and relations in them to serve as a control group in the

experiment for comparison with the extraction results of LLM. The

second group consists of three cardiovascular directors andmedical

experts and is called the “refinement group”. Their tasks include

schema revision and quality control, evaluation of the entities and

relations marked by LLM and the “annotation group”, correction

of incorrect annotations, and completion of missing annotations.

4 Experiment

4.1 Datasets and base LLM

4.1.1 BioRED dataset
BioRED (Luo et al., 2022) is a widely used public dataset for

entity and relation extraction. The dataset contains multiple entity

types (e.g., gene/protein, disease, chemistry) and relationship pairs

(e.g., gene-disease; chemistry-chemistry) at the document level.

In addition, BioRED annotates whether each relation describes

a new discovery or known background knowledge, allowing

automatic extraction algorithms to distinguish between novel and

background information. The dataset merges similar relation types

to reduce management complexity while increasing the number

of instances of each relation type. The BioMED dataset annotates

600 PubMed National Center for Biotechnology Information

(2024) abstracts, including 400 for the training sets, 100 for the

development sets, and 100 for the test sets. The dataset contains

4 types of entities, namely disease (D), gene (G), chemical (C), and

variant (V). In terms of relationships, it contains eight biologically

meaningful non-directional relationship types, such as positive

and negative correlations, which are used to characterize the

relationship between pairs of entities.

4.1.2 HF dataset
The HF dataset is a private dataset of heart failure entities

and relations that we have constructed. We divide the collected

heart failure document data from guidelines, expert consensus,

professional articles, and medical websites into text chunks, with
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FIGURE 5

Description of the Vanilla prompt vs. our TwoStepChat prompt in the NER task. The text highlighted in orange represents the prompt template.

each chunk containing 500–700 words. We end up with a total of

287 text chunks. The dataset is annotated by three cardiovascular

experts from the refinement group, and an incremental evaluation

is used to ensure the authority of the annotation results. 187 text

chunks in the dataset are used for the training set, 50 for the

development set and 50 for the test set. The HF dataset contains 12

types of entities and 10 types of relations, as shown in Tables 1, 2.

4.1.3 Base LLM
We use ChatGPT3.5 (OpenAI, 2023) as the base LLM

for automatic annotation in the following experiments.

The GPT-3.5-turbo-16k API is chosen, it extends

the token limit to 16,000 tokens and is useful for

handling longer contexts and allows us to test more

few-shot samples.
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FIGURE 6

Description of the Vanilla prompt vs. our TwoStepChat prompt in the RE task. The text highlighted in orange represents the prompt template.

4.2 Expert annotation

All the three experts in “refinement group” have extensive

clinical and academic research experience in cardiovascular

medicine. Among them, Expert A is the Director of the Department

of Cardiovascular Medicine in a tertiary hospital with thirty years

of clinical and scientific research experience; Expert B is the

Director of Cardiovascular Surgery with rich cardiovascular clinical

experience and bioinformatics research background; Expert C is

the Deputy Director of the Department of CardiovascularMedicine

with rich cardiovascular clinical experience and very familiar with

knowledge graph and artificial intelligence.

We adopt an incremental evaluation method, that is, for each

triplet, if two of the three experts give the same result, the result

is taken as the ground truth. This method can effectively reduce

the bias of a single evaluator and improve the reliability of the

evaluation results. To evaluate the consistency of the experts’

annotation results, we calculate the standard deviation and Cohen’s
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FIGURE 7

Positive and negative cases for entity disambiguation using LLM. The text highlighted in orange represents the prompt template.

FIGURE 8

Knowledge graph completion (KGC) with LLMs. We ensure the accuracy and professionalism of knowledge graph completion through cyclic

verification of three tasks.

kappa coefficient of the three experts. The results show that

the three experts’ evaluation of the triplet has a high degree of

consistency, with a standard deviation of 0.34 and a Cohen’s Kappa

coefficient (Cohen, 1960) of 0.85, indicating that the evaluation

results among the experts have high reliability.

4.3 Model comparison

4.3.1 Model performance on the HF dataset
First, we compare the performance of our TwoStepChat

prompt to the vanilla prompt on the HF dataset. Table 3 shows

the result metrics under the zero-shot and few-shot settings. Under

the zero-shot setting, TwoStepChat’s F1 score increases by 1.5%

compared to vanilla. Under the few-shot setting, we provide 6, 10,

and 20 shot examples, respectively. The number of positive and

negative examples is the same, and all shot examples are taken

from the gold standard annotated by the three experts. Using

the TwoStepChat prompt, which provides 20 shot examples, the

F1 score is 4% higher than zero-shot. Overall, the F1 score of

TwoStepChat is higher than that of Vanilla, and the F1 score of

few-shot is higher than that of zero-shot. This further confirms

the rationality of our TwoStepChat design, and also shows that

adding more golden examples to the prompt context can effectively

improve the performance of LLM.

4.3.2 Model performance on the BioRED dataset
To further verify the feasibility of our proposed method, we

compare ChatGPT3.5 based on TwoStepChat prompts and the

fine-tuned BERT-based baselines on the public BioRED dataset.We

choose BERT-GT and BiomedBERT as our baseline models. BERT-

GT (Lai and Lu, 2020) is an improved BERT model that combines

the bidirectional encoder representation of the transformer and

the graph transformer. BERT-GT is applicable to other biomedical

relation extraction tasks. BiomedBERT (Gu et al., 2021) is a pre-

trained BERT model specifically for the biomedical domain. It uses

abstracts and full-text articles from PubMed and PubMedCentral
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TABLE 3 Performance comparison between our TwoStepChat prompt and the Vanilla prompt on the HF dataset.

Model NER RE

Shots Precision Recall F1 Precision Recall F1

Vanilla-zeroshot 0 80.05 88.00 83.83 74.67 80.78 77.61

TwoStepChat-zeroshot 0 82.33 88.50 85.31 78.26 84.50 81.27

Vanilla-fewshot 6 80.87 90.00 85.18 75.50 82.32 78.77

Vanilla-fewshot 10 87.58 86.75 87.16 79.25 82.60 80.89

Vanilla-fewshot 20 88.45 91.25 89.83 80.80 85.10 82.90

TwoStepChat-fewshot 6 85.94 89.10 87.49 78.35 82.52 80.38

TwoStepChat-fewshot 10 87.35 91.35 89.31 80.68 84.33 82.47

TwoStepChat-fewshot 20 88.59 90.20 89.39 82.72 83.75 83.23

Bold text indicates the highest score.

TABLE 4 Performance comparison of our method and baseline models on the BioRED dataset.

Model NER RE

Precision Recall F1 Precision Recall F1

BERT (Devlin et al., 2019) 70.57 68.82 67.09 54.03 51.58 52.78

BERT-GT (Lai and Lu, 2020) 75.38 73.04 72.15 56.70 56.60 56.57

BiomedBERT (Gu et al., 2021) 76.64 73.58 75.07 60.38 57.58 58.93

TwoStepChat (ours) 83.50 80.45 81.96 68.25 67.67 67.96

for training and performs well in biomedical entity recognition and

relation extraction tasks.

From the experimental results in Table 4, it can be seen

that our TwoStepChat method performs significantly better than

other baseline models in both tasks. Specifically, in the NER

task, the TwoStepChat method achieved an accuracy of 83.50%,

a recall rate of 80.45%, and an F1 value of 81.96%, which is

nearly 22% higher than the F1 value of 67.09% in the BERT

model. Compared to BiomedBERT, although the latter has achieved

relatively good performance in the biomedical field, TwoStepChat

still has an F1 value nearly 6 percentage points higher. This fully

demonstrates the accuracy and robustness of TwoStepChat in

entity recognition. In the RE task, TwoStepChat also performed

excellently, achieving accuracy, recall and F1 values of 68.25,

67.67, and 67.96%, respectively. Compared to the F1 value of

52.78% in the BERT model, the improvement was more than 25%.

Compared to BiomedBERT, TwoStepChat also increased its F1

score by almost 9 percentage points. This significant performance

improvement demonstrates the effectiveness of TwoStepChat in

relation extraction tasks.

4.4 Evaluation of ED and KGC

The performance of entity disambiguation and knowledge

graph completion on the HF dataset can be seen in Table 5. The

role of entity disambiguation in our graph construction process

is to maintain the consistency of entities in the knowledge graph.

Through extensive evaluation by three experts, the precision of

ED on our HF dataset is 92.75%, and the recall can reach 88.60%,

TABLE 5 Performance of entity disambiguation and knowledge graph

completion on the HF dataset.

Model Precision Recall F1

Entity disambiguation 92.75 88.60 90.44

Cyclic verification 95.33 85.72 90.25

Triple classification 90.15 91.37 90.75

Relation prediction 88.67 88.81 88.74

Link prediction 86.58 87.74 87.05

reflecting the value of LLM in entity disambiguation, especially in

identifying aliases and abbreviations.

For knowledge graph completion, the precision of our

cyclic verification is 95.33%. This can reflect that the cyclic

verification can effectively reduce the hallucination of LLM.

Through knowledge graph completion, we can mine potential

triples through the reasoning ability of LLM, which can improve

the efficiency of knowledge graph construction on the open data.

4.5 Quality evaluation

In this subsection, we will compare the manual annotation

results from “annotation group” and the automatic annotation

results from ChatGPT3.5. Inspired by the work (Uzuner, 2009), we

adopt a phrase-level evaluation method to evaluate the quality of

the model. At the token level, each token in the text is counted

individually, while at the phrase level, they are counted as a whole.

For example, [“100”, “mg”] and “100 mg” represent token-level and
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TABLE 6 Performance comparison between LLM annotation and manual annotation.

Model NER RE

Precision Recall F1 Precision Recall F1

LLM Annotation 87.35 91.35 89.30 80.68 84.33 82.46

Manual Annotation 88.70 88.16 88.43 81.24 80.67 80.95

The scores in the table use the golden annotations of the expert group as ground truth and are calculated from the extracted entities and relationships from all 287 text chunks.

FIGURE 9

Box plot evaluating the e�ciency of knowledge graph construction for heart failure. The graph on the left compares the total time spent on manual

annotation + refinement and LLM annotation + refinement. The figure on the right shows the detailed time cost of each step. The blue box

represents manual work and the green box represents LLM work.

TABLE 7 Heart failure knowledge graph entity type statistics and related

triplet statistics.

Type Number of
entities

Number of
triples

Disease 152 1,210

Cause 98 1,524

RiskFactor 128 1,810

Symptom 204 2,006

Sign 86 510

LaboratoryTest 159 806

ImagingTest 105 508

Complication 52 404

Medication 150 708

InterventionalTherapy 74 456

SurgicalTherapy 40 288

Prognosis 54 612

phrase-level entities, respectively. Extracted entities are evaluated

in the NER task, while the RE task evaluates both entities and

relations. We choose ChatGPT3.5 with TwoStepChat-fewshot-10

prompt as the LLM model. During manual annotation, all text

chunks are evenly distributed among the seven members of the

“annotation group”.

The results can be seen in Table 6, the precision of

Munal Annotation is slightly higher than that of LLM

Annotation. However, LLM Annotation achieves higher

recall rates and F1 scores in both NER and RE task, which

is very important for knowledge graph construction. This

result shows that LLM can match or even outperform

human annotators with only a few shots of 10 samples.

Further analysis shows that neither LLM Annotation nor

Manual Annotation is accurate enough compared to the

gold standard (ground truth), reflecting the importance of

expert-level refinement.

4.6 E�ciency evaluation

To quantify the time cost savings of our pipeline, we

separately count the time for manual annotation and expert

refinement as well as the time for LLM annotation and

expert refinement on all 287 text chunks and plot them as

box plots.

Results in Figure 9 shows that the integration of LLM

leads to a significant reduction in the time cost of knowledge

extraction from the knowledge graph. The horizontal axis in

the figure represents time in minutes, counting the time it

takes different methods to extract heart failure-related medical
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FIGURE 10

Demonstration of a sub-graph in our heart failure knowledge graph (HFKG). To facilitate the use of Chinese scenes, we translate the extracted triples

into Chinese and verify them.

TABLE 8 Example of instance comparison between our HFKG Q&A system and open source counterparts.

Question 1: Treatment drugs for right heart failure?

Ling-Yi (Xia et al., 2022) Laboratory tests for right heart failure include electrocardiography, cardiac color Doppler ultrasound, etc. The main diagnosis of heart failure
relies on clinical data, signs, and impaired function.

MedicalKG (Liu, 2024) I’m sorry, no relevant information found.

Ours Treatment drugs for right heart failure: digoxin, dopamine, isosorbide dinitrate, nitroglycerin, sodium aescinate, etc.

Question 2: What are the surgical treatments for heart failure?

Ling-Yi (Xia et al., 2022) Surgical treatments for heart failure include cardiac resynchronization therapy and heart transplantation.

MedicalKG (Liu, 2024) I’m sorry, no relevant information found.

Ours Surgical treatments for heart failure: valve repair or replacement surgery, coronary artery bypass grafting, cardiac assist devices,
radiofrequency ablation, coronary artery bypass surgery, heart transplantation, implantable cardioverter-defibrillator.

entities and relations from a text chunk containing 500–700

words. The average time to generate the final knowledge graph

triplet from text chunks using LLM is reduced by 65% from

92.6 to 32.1 min. The right subgraph provides a detailed view

of the time cost of the annotation and refinement phases. Due

to the need to annotate from scratch, Manual Annotation has

the highest time cost with an average time of 63.3 min per

text chunk. Since the time of LLM Annotation on a single

chunk of text is very short, about 1 minute, we ignore this

time cost. The time cost for refinements after manual annotation

and LLM annotation is 30.7 and 32.1 min per text chunk,

respectively. These results reflect the efficiency benefits of LLM

automated annotation.

4.7 Knowledge graph visualization

Since heart failure may caused by various diseases and often has

other comorbidities, our knowledge graph focus on heart failure

and expand to other diseases. These diseases include common

cardiovascular diseases such as hypertension, atrial fibrillation,

arrhythmias, and coronary artery disease. We use Neo4j software

to store and visualize our Heart Failure Knowledge Graph (HFKG).

The HFKG contains a total of 1,258 entities and 10,734 triples.

Table 7 shows the statistics for different types of triples, respectively.

To facilitate the use of Chinese scenes, we translate the extracted

triples from English to Chinese using Google Translate. Figure 10

shows a subgraph instance of HFKG. The above data visualizes
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the diversity and richness of knowledge related to the diagnosis,

treatment, and prognosis of heart failure in our knowledge graph.

4.8 Question and answering application

We curate a professional Q&A dataset from medical experts

containing 100 clinical questions related to diagnosis, treatment,

and prognosis of heart failure, including simple queries and multi-

hop queries. Using this dataset as a benchmark, we compare

our Chinese heart failure knowledge graph with its open source

counterparts. For this purpose, we construct a simple KBQA

system to query the knowledge graphs and respond via templates.

Compared with the following open source counterparts, our HFKG

is able to respond more professionally and can handle a variety of

complex clinical queries related to heart failure, as shown in Table 8.

Ling-Yi (Xia et al., 2022): A question-answering system

based on a Chinese Medical Knowledge Graph (CMKG) and

a large Chinese Medical Conversational Question-Answering

(CMCQA) dataset.

MedicalKG (Liu, 2024): A question-answering system built on

a disease-centered knowledge graph in the medical field.

5 Conclusion

In this paper, we use LLM and prompt engineering to

quickly build a heart failure knowledge graph to provide decision

support for actual medical diagnosis and treatment. We design a

novel pipeline to realize automatic annotation of medical entities

and relations through LLM, and to ensure the accuracy of the

knowledge graph through expert refinement. Experiments on

two datasets show that the TwoStepChat method outperforms

the Vanillia prompt and outperforms the fine-tuned BERT-based

baselines. Moreover, our pipeline can save 65% of the time cost

compared to manual annotation from scratch.

Our main goal is to build and demonstrate a complete process

pipeline, and in the experiment we only extract medical triples

based on ChatGPT3.5, which is a practical limitation. In future

work, we will explore the use of professional medical LLMs or

fine-tune the base LLM on medical corpus to further improve

the model’s performance on NER, RE, and knowledge graph

completion tasks.
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