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Capturing biomarkers associated 
with Alzheimer disease subtypes 
using data distribution 
characteristics
Kenneth Smith  and Sharlee Climer *

Department of Computer Science, University of Missouri – St. Louis, St. Louis, MO, United States

Late-onset Alzheimer disease (AD) is a highly complex disease with multiple 
subtypes, as demonstrated by its disparate risk factors, pathological manifestations, 
and clinical traits. Discovery of biomarkers to diagnose specific AD subtypes 
is a key step towards understanding biological mechanisms underlying this 
enigmatic disease, generating candidate drug targets, and selecting participants 
for drug trials. Popular statistical methods for evaluating candidate biomarkers, 
fold change (FC) and area under the receiver operating characteristic curve 
(AUC), were designed for homogeneous data and we demonstrate the inherent 
weaknesses of these approaches when used to evaluate subtypes representing 
less than half of the diseased cases. We introduce a unique evaluation metric 
that is based on the distribution of the values, rather than the magnitude of the 
values, to identify analytes that are associated with a subset of the diseased cases, 
thereby revealing potential biomarkers for subtypes. Our approach, Bimodality 
Coefficient Difference (BCD), computes the difference between the degrees 
of bimodality for the cases and controls. We demonstrate the effectiveness of 
our approach with large-scale synthetic data trials containing nearly perfect 
subtypes. In order to reveal novel AD biomarkers for heterogeneous subtypes, 
we applied BCD to gene expression data for 8,650 genes for 176 AD cases and 
187 controls. Our results confirm the utility of BCD for identifying subtypes of 
heterogeneous diseases.
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1 Introduction

Advances in precision medicine (PM) for cancer patients are extending the healthspan for 
countless lives by tailoring treatments to heterogeneous cancer subtypes. PM utilizes specific 
biomarker information to diagnose each specific subtype of the disease and enable customized 
treatments, prognoses, and monitoring. Candidate biomarkers may include genetics, 
demographics, lifestyle, and/or physiological observations such as imaging or omics data (e.g., 
levels of gene expression, proteins, lipids, or metabolites). An additional benefit of PM is that 
it facilitates understanding of underlying biological mechanisms by teasing apart biomarkers 
into subtype groups. Knowledge of distinct biomarkers associated with each subtype empowers 
drug discovery as well as selections of participants for drug trials.

Heterogeneous subtypes of late-onset Alzheimer disease (AD) are exhibited by the 
disparate genetic and environmental risk factors and clinical outcomes observed for this 
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enigmatic disease. Efforts are underway to enable PM for AD, 
including the Accelerating Medicines Partnership® for AD 2.0 
(Accelerating Medicines Partnership, 2022), which began in 2021, and 
Alzheimer Precision Medicine Initiative (Hampel et al., 2019), which 
began in 2016.

Imaging methods and CSF total tau (tTau) have been used to 
discriminate typical and atypical AD subtypes associated with brain 
regions. While positive amyloid PET indicates AD status in general, 
fluorodeoxyglucose PET (FDG-PET), and tau ligand binding 
suggest five subtypes: typical amnestic syndrome, logopenic variant 
of primary progressive aphasia, posterior cortical atrophy, 
corticobasal syndrome, and frontal AD (Dubois et  al., 2023). 
Furthermore, Pillia et  al. observed an association between the 
upregulation of tTau in CSF and the atypical logopenic variant 
subtype (Pillai et al., 2019).

Ferreira et  al. conducted an extensive meta-analysis of 
neuropathology and neuroimaging studies and propose AD subtypes 
based on two dimensions: typicality and severity (Ferreira et al., 2020). 
The four subtypes are typical AD, limbic-predominant, hippocampal-
sparing, and minimal atrophy. They present covariates that are 
associated with the two subtypes at the extremes of the typicality 
dimension, limbic-predominant and hippocampal-sparing.

Recently, deep learning methods incorporating multiple data 
types, such as imaging, omics data, and clinical assessments, have 
introduced multimodal models. For example, Reyes et al. proposed a 
tri-modal co-attention transformer, referred to as Tri-COAT, to 
classify AD cases into three progression-specific subtypes (Machado 
Reyes et al., 2024). They integrated imaging data, genetics, and clinical 
records by using transformer modules to encode each type separately, 
then merging the three into a co-attention model to learn feature 
weights and relationships across the three data types.

Nevertheless, PM progress has been limited for AD as well as a 
host of additional neurological diseases. Unlike cancer, which provides 
a written history of mutations, diseased and healthy cells for 
comparisons from a given patient, and excellent animal models for 
experiments, pathological clues for AD lie buried deep in the human 
brain with only traces of evidence that leak into peripheral systems.

The realization of successful PM can only be  attained by 
identifying disease subtypes and developing practical methods to 
diagnose and treat each subtype. A common first step is to use 
statistical methods to test associations of candidate biomarkers with 
the disease. Different statistics are used for categorical, ordinal, and 
numerical data types. Herein we focus on numerical data types, which 
includes omics data (e.g., gene expression and protein levels), 
measurements from imaging data (such as PET amyloid load), and 
other observations that are quantified as numerical values. Popular 
statistics for this domain include fold change (FC) of levels of 
candidate biomarkers between diseased cases and normal controls and 
area under the receiver operating characteristic curve (AUC; Xia 
et al., 2013).

The nascent PM for AD research field faces challenges due to 
multiple issues, including the need for large sample sizes to elicit 
power to sift out a subtype that may only represent a small fraction of 
the diseased cases. An overlooked, but major, challenge is that 
traditional statistical methods that are successful for global biomarkers 
can be  inappropriate for subset biomarker identification. Stated 
bluntly, traditional methods need to be scrutinized for use in this 
distinct domain.

In order to assess current statistical metrics for advancing PM for 
AD, we examine the use of FC and AUC when subtype groups exist. 
FC is a traditional approach for identifying analytes that are 
differentially expressed across diseased cases and normal controls. It is 
equal to the quotient of the analyte expression levels between the two 
groups: (level in diseased cases)/(level in normal controls). If the 
quotient is above or below a given cutoff, the analyte is considered 
differentially expressed. A single value representing the expression level 
of the analyte is required for each group; usually the median or mean. 
Typically, a cutoff of >2 is used to indicate significant up-regulation in 
the diseased cases group and a cutoff of <0.5 for down-regulation. In 
order to more easily interpret across both up-and down-regulated 
analytes, the log2FC is often employed, where log2FC = abs{log2[(level 
in diseased cases)/(level in normal controls)]}, providing a significance 
threshold of log2FC > 1 for both up-and down-regulation (Pacholewska, 
2017). Some weaknesses of this metric have been previously noted. FC 
calculations are unstable when the expression levels are near the noise 
level of the measurement system. This can lead to false positives at low 
intensity levels. At the other end of the spectrum, FC is also biased 
against samples that have high expression levels, but small differences 
between two groups (Mariani et al., 2003). Mariani et al. reported that 
high FC cutoffs are needed for low intensity genes and lower cutoffs are 
needed for high intensity genes. They introduced a variable FC cutoff-
based approach that uses LOESS to estimate a variance based on 
expression intensity, thereby alleviating the bias at both high and low 
intensity levels (Mariani et al., 2003). Despite these improvements to 
the FC calculation, there is a fundamental problem with this metric: 
Use of the mean or median in the presence of heterogeneity leads to the 
omission of subgroup signals, as demonstrated in this manuscript.

Standard 2 × 2 contingency tables are commonly used to assess 
predictive accuracy of biomarkers using various statistics, such as 
sensitivity/specificity, precision/recall, Fisher’s Exact Test (Fisher, 
1935), and Youden’s J index (Youden, 1950). Note that Youden’s J 
definition can be  rearranged to produce a simple interpretation: 
J = TPR − FPR, where TPR is the true positive rate and FPR is the false 
positive rate. A key benefit of utilizing Youden’s J is that subgroups can 
be captured, rather than being lost in a summary statistic, as is done 
with FC. However, without other information, subgroups may 
be  overlooked due to the existence of moderate case/control 
biomarkers with the same J value, just higher TPR and FPR, e.g., 
J = 0.20 − 0.01 vs. J = 0.70 − 0.51. Importantly, in order to classify real 
values as true or false positives, a threshold must be designated, and 
Youden’s J value is highly dependent upon the given threshold.

More generally, when testing numerical values, 2 × 2 contingency 
tables require the selection of a threshold to separate diagnostic 
classifications. A key strength of AUC is that it has no reliance upon 
a specified threshold. This metric originated as a tool for radar 
receivers, spread throughout engineering and medical domains, and 
has become a prevalent tool for evaluating the diagnostic ability of 
biomarkers (Xia et al., 2013; Zweig and Campbell, 1993; Sø, 2009). 
AUC simultaneously accounts for sensitivity and specificity across 
all threshold values as a plot of the TPR vs. FPR is constructed and 
the area under the curve is returned as the AUC value (Pepe, 2000). 
The plot for a random classifier would tend toward a diagonal line 
from (0,0) to (1,1) with an AUC value of 0.5. A ‘perfect’ predictor 
would have FPR = 0 and TPR = 1 for all thresholds of the biomarker 
and a corresponding AUC value of 1. An example of this rare event 
was reported by Karikari et al. for discriminating Alzheimer disease 
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from healthy young adults using plasma tau phosphorylated at 
threonine 181 (pTau-181) (Karikari et al., 2020).

There is not a consensus for a significance cutoff for AUC values. 
Previous publications have suggested an AUC between 0.7 and 0.8 as 
acceptable and greater than 0.8 as excellent (Cucchiara, 2013; Mandrekar, 
2010), while the National Center on Response to Intervention’s Technical 
Standard sets AUC values between 0.75 and 0.85 as ‘partially convincing’ 
and below 0.75 as ‘unconvincing’ (Bowers and Zhou, 2019). On the other 
hand, it has been recommended that no set value should be utilized; 
rather AUC values should be used to compare predictors within a single 
domain rather than enforcing a strict cutoff value (Zweig and Campbell, 
1993; Hanley and McNeil, 1982; Swets, 1988; Bowers et al., 2013).

In addition to evaluating biomarkers across all threshold values, 
AUC has several other beneficial properties. It is a simple and intuitive 
measure, and the corresponding ROC plot provides additional 
information beyond the scalar value. Also, there are no parameters to 
be tuned, yielding robust reproducibility.

There are also some well-known issues with AUC. First, small 
sample size can yield poor performance (Hanczar et  al., 2010; 
Dudbridge, 2013). Second, AUC includes the areas under the ROC 
curve that represent threshold values that are not utilized in practical 
applications (Lobo et  al., 2008). A related issue is when the ROC 
curves of two different biomarkers cross, the relative AUC values may 
be misleading (Hand, 2009).

In general, the points in the ROC curve arise solely from differences 
in TPR and FPR and are not scaled across threshold values, resulting 
with the possibility of a small span of threshold values being stretched 
across broad regions of the area under the curve. Consequently, a small 
difference in the level of the analyte would correspond to large differences 
in specificity and sensitivity. In clinical practice, target thresholds or 
threshold ranges are used to flag individuals at risk. AUC values are 
generally computed over clean data that have been acquired and 
processed using highly uniform methods, but this uniformity deteriorates 
when moving from bench to bedside. In general, examination of AUC 
values and plots may not directly provide insights for selecting a suitable 
diagnostic threshold that is robust across measurement error. The metric 
introduced in this manuscript addresses this issue.

The AUC metric is entirely dependent upon, and equally weighted 
on, the TPR and FPR. When testing across a heterogeneous group, an 
accurate TPR for a perfect biomarker has an upper limit equal to the 
proportion of the subtype. Due to its dependence upon TPR, 
we hypothesize that screening based on AUC may discard valuable 
subtype biomarkers, regardless of sample size. Using simulated tests 
mimicking nearly ‘ideal’ biomarkers for subsets of disease cases, 
we demonstrate the failure of AUC to capture their significance.

The need for a robust evaluation metric in the heterogeneous AD 
domain inspired us to design a tool that is based upon the distribution 
of values, rather than traditional statistical measurements. Consider a 
biomarker that is a strong indicator of a subset of diseased cases, 
referred to as ‘associated cases’. We assume here that the cases that are 
not part of this subtype exhibit biomarker levels that are similar to the 
normal controls. Consequently, the distribution of biomarker levels 
for the cases tends to skew the distribution or exhibit a bimodal 
profile, where one of the modes lines up with the controls’ distribution.

It should be noted that normal controls might show a bimodal 
distribution also. For example, blood sugar levels are high following a 
meal and low just before a meal, so controls sampled at varying times 
of day would be prone to exhibit a bimodal curve for this analyte.

Aiming to identify aberrant bimodal distributions, we propose a 
metric which calculates the difference between the bimodalities of the 
diseased cases and normal controls. The first task is to select a 
method to measure the degree of bimodality for an array of data 
values. A number of formulae for distinguishing between unimodality 
and bimodality have been previously proposed and evaluated 
(Freeman and Dale, 2013). Hartigan’s Dip Statistic (HDS) (Hartigan 
and Hartigan, 1985) and the Bimodality Coefficient (BC) (SAS 
Institute Inc, 1990) have both been shown to have good accuracy to 
detect bimodality (Freeman and Dale, 2013). Note that high skewness 
in a unimodal distribution tends to increase BC values and can lead 
to false-positive bimodal predictions (Pfister et al., 2013). We selected 
BC as we are interested in identifying either bimodality or skewness 
that is significantly different between cases and controls.

We introduce Bimodality Coefficient Difference (BCD) as the 
difference in the BC values for the diseased cases and normal controls. 
BCD can theoretically range from zero to one, but we observe in our 
trials that relatively low values indicate significance. Using a series of 
simulation trials, we demonstrate the effectiveness of this metric over 
FC and AUC for identifying analytes with clear subtype populations 
that comprise less than half of the simulated cases. We then leverage this 
method in an analysis of AD gene expression data and reveal known 
and novel genes exhibiting bimodal distributions for the AD cases. 
Notably, more than 95% of the genes discovered by BCD were missed 
by both FC and AUC. The python software package for computing 
BCD is freely available at: https://github.com/ClimerLab/bcd.

2 Methods

2.1 BCD

The Bimodality Coefficient, BC, was introduced by SAS in 1990 
and is based on three parameters of the array of values: cardinality (n), 
skewness (s), and kurtosis (k). The value is computed as follows:
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BC values range from zero to one and a uniform distribution has 
a value of 5/9 ≈ 0.555. Higher values indicate greater bimodality.

We propose the following measure, bimodality coefficient 
difference (BCD), for identifying biomarkers representing subtypes in 
heterogeneous populations:

 BCD BC BCcases controls= −| |

The absolute value is applied as a protective factor may result with 
the controls having a higher BC value than the cases.

2.2 Simulated data trials

In our simulations, samples are drawn from one of two normal 
distributions, N1 and N2, with the following means and standard 
deviations: N1 ~ (0.03, 0.04) and N2 ~ (0.40, 0.16). These means and 
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standard deviations were derived from analysis of highly differentially-
expressed proteins from our COVID-19 study, as described in the 
Supplementary material. The size of the subtype, as a percentage of the 
cases, are varied over seven scenarios from 0 to 50%. In each scenario, 
the cases in the subtype group were sampled from N2 and the 
remaining cases, along with all controls, are sampled from N1. A total 
of 1,000 cases and 1,000 controls are simulated in each trial. Each 
scenario was tested using 1,000 trials. Histograms for randomly 
selected trials are shown in Figure 1.

2.3 Biological data trials

We utilized publicly-available gene expression data from human 
cortex tissue generated using Sentrix HumanRef-8 Expression 
BeadChip (Webster et al., 2009). These data are available on NCBI’s 
Gene Expression Omnibus (GEO), Accession GSE15222. Standard 
protocols for cRNA hybridization and BeadStudio software, with 
Illumina’s custom error model, were utilized in data generation, as 
previously described (Webster et al., 2009). Data for 8,650 genes for 
176 AD cases and 187 controls are provided and used for the 
current study.

Following analyses utilizing FC, AUC, and BCD, the highest 5% 
results were extracted for each method and used for comparisons 
between the methods. In order to further interrogate the results and 
examine data distributions, the six best genes for each method were 
extracted and plotted. Note that multiple testing corrections were not 
applied for any of the methods and the presented results need to 
be validated in independent data prior to further research effort.

2.4 Data pre-processing

The AD data were pre-processed by the Myers’ lab, as described 
previously (Webster et al., 2009). Outliers disproportionately affect BC 
values and there is no clear consensus on eliminating them prior to 
computing BC. Here we winsorized the outliers as follows. Given a 
lower quartile Q1, upper quartile Q3, and IQR, values higher than Q3 
+ 3*IQR were replaced with Q3 + 3*IQR and values less than Q1 - 
3*IQR were replaced with Q1-3*IQR.

Because the simulated data can contain ‘negative’ expression 
values, a min/max normalization was applied for FC calculations and 
plotting to scale and shift the values to a range of [0, 1]. Also, a 
logistical regression model was generated in the AUC computations.

3 Results

3.1 Simulation trials

We generated large-scale simulated data for a total of 7,000 pseudo 
analytes over a range of subtype percentages and analyzed each using 
FC, AUC, and BCD. The subset size of zero provides a baseline for 
which no association should be observed as all the data points for 
cases and controls are drawn from the N1 distribution. The other trials 
test subset sizes of 5, 10, 20, 30, 40, and 50%. Results for the simulations 
are summarized in Table 1. As expected, Sim_0%, with none of the 

data values drawn from N2, yielded values near zero for log2FC and 
BCD, and near 0.5 for AUC.

Across the remaining trials with subtypes ranging from 5 to 50%, 
none of the log2FC values were significant as the maximum value 
across all the simulations is 0.821. None of the AUC values were 
significant for subsets of 30% or less as the highest across those 
simulations was 0.675. The medians for subset size 40 and 50% were 
0.695 and 0.743, respectively. As described below, the AD data 
provided a threshold of 0.209 for a p-value of 0.05 for BCD. Based on 
this proxy, BCD values were significant for all trials with subset sizes 
of 10% or more as well as a few of the 5% subset size. Sample ROC 
curves for each scenario are shown in Figure 2. Note the vertical rise 
on the left, which perfectly captures the subtype, followed by the 
relatively straight diagonal line across the graph.

3.2 Alzheimer disease data

In our first round of BCD trials, the genes with the highest values 
proved to be spurious. For example, gene GI_37540877-S exhibited 
the strongest association, with an BCD value of 0.377. This signal was 
erroneous, as described next.

Both the AD cases and normal controls have outlier values for this 
gene and these outliers were winsorized, as described in the Methods 
section, to values of 331.65. As shown in Figure 3, 24 of the AD cases 
and 8 of the normal controls exhibit these outlier values for this gene. 
We extracted the covariate data for these samples and observed all but 
two in each group were brain samples drawn from region 4 (Figure 3). 
91.7% of the cases in the second mode were drawn from brain region 
4, even though only 12.5% of the case samples overall were drawn 
from this region. Furthermore, only 4.8% of the control samples were 
drawn from region 4, yielding a strong imbalance of samples for this 
region. Consequently, diseased cases samples that were drawn from 
region 4 form distinct subsets that create second modes for genes that 
are differentially expressed across the brain regions. These results 
demonstrate the power of BCD to identify subtypes, but do not yield 
information of interest regarding AD. As shown in the 
Supplementary Table S1, brain region 2 is also unbalanced between 
cases and controls.

In our second round of trials, we removed samples drawn from 
brain regions 2 and 4, yielding 137 AD cases and 175 normal controls 
then analyzed the data using FC, AUC, and BCD. The genes with the 
highest 5% of values for each method are enumerated in 
Supplementary Tables S2–S4. Across the 8,650 genes, FC, AUC, and 
BCD values of 0.637, 0.740, and 0.209, respectively, represented the 
cutoffs for p-values ≤ 0.05.

Overall, 46.1% of the significant genes for FC and AUC were the 
same. In sharp contrast, only 3.7 and 4.6% of the significant BCD 
genes were identified by FC and AUC, respectively. Overall, 2.3% of 
the significant genes for each method were common across all three 
approaches (Supplementary Table S5).

Lists of the top six genes for FC, AUC, and BCD are shown in 
Table 2, histograms for each of these genes are shown in Figures 4–6 
and Table 3 provides descriptions of the top AD genes identified by 
BCD. Some of the FC and AUC plots exhibit tendency towards 
bimodality or increased skew, but in general they represent differences 
in expression across the majority of the samples, demonstrating their 
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FIGURE 1

Sample histograms for the simulation trials. Shown are random histograms drawn from the 1,000 trials for each of the seven subset size scenarios.
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FIGURE 2

AUC plots for subtype groups of 0, 5, 10, 20, 30, 40, and 50% of the diseased cases. Random plots for each scenario are shown.

value for identifying biomarkers associated with large proportions of 
the cases.

4 Discussion

The simulation experiments provide a comprehensive evaluation 
across the three methods with 1,000 repetitions of large-scale trials 
comprised of 1,000 cases and 1,000 controls each and nearly ‘ideal’ 
subtype biomarkers representing each subtype percentage. The results 
from these trials are stunning.

In general, FC performed extremely poorly. Even when 50% of the 
cases were associated with the subtype biomarker, the median log2FC 
value was only 0.608. The maximum across all 1,000 trials was 0.821. 
Consequently, all of the pseudo biomarkers would be  discarded, 
despite their nearly perfect discrimination of a subtype comprised of 
half of the cases. Moreover, every one of the biomarkers would 
be discarded for all the other scenarios.

It’s trickier to evaluate AUC, due to lack of a clear significance 
cutoff value. The literature points to 0.7 or 0.75 and our trials on AD 
gene expression provided a cutoff of 0.74 for p-value ≤ 0.05. All the 
pseudo biomarkers had AUC values less than 0.70 across the 1,000 
trials for subsets less than 40%. Furthermore, the median for the 40% 

subset trial was 0.695. Significance emerged as the subset size 
grew to 50%.

Being a newly introduced metric, there is no established 
significance cutoff for BCD. The AD gene expression data provided a 
cutoff value of 0.209 for p-value ≤0.05. Using this proxy, every one of 
the 1,000 trials for subsets of 10% or more would be  marked as 
significant. Even a few of the trials with subset size of 5% were above 
0.209. These results document the power of the use of the distribution, 
rather than the magnitude, of data values to identify subtypes within 
a population.

As expected for the biological trials, the top six genes identified by 
FC and AUC show significant differences between the diseased cases 
and normal controls (Figures 4, 5). While several of the top results 
exhibit some degree of bimodality, others tend towards differences 
across the majority of the samples. On the other hand, each top BCD 
result clearly delimitates a subgroup, without requiring aberrant levels 
for individuals that are not in the given subgroup (Figure 6).

A particularly interesting result is that the first round of BCD 
trials produced spurious associations for the top six values due to the 
imbalance of cases and controls samples from brain region 4. While 
this imbalance, coupled with differential expression across brain 
regions, created clear subsets, none of these genes were included in the 
top six genes for FC or AUC in the first round of trials.

TABLE 1 Median values for the simulation trials, with minimum and maximum values shown in brackets.

Trial log2FC AUC BCD (>2.09)

Sim_0% 0.016 [5.47E−06, 0.080] 0.508 [0.491, 0.542] 0.016 [8.68E−06, 0.076]

Sim_5% 0.0276 [2.25E−06, 0.107] 0.525 [0.483, 0.563] 0.145 [0.066, 0.214]

Sim_10% 0.0544 [2.79E−04, 0.143] 0.548 [0.509, 0.605] 0.282 [0.214, 0.350]

Sim_20% 0.124 [0.037, 0.210] 0.598 [0.563, 0.630] 0.395 [0.325, 0.458]

Sim_30% 0.206 [0.071, 0.320] 0.646 [0.617, 0.675] 0.441 [0.372, 0.514]

Sim_40% 0.337 [0.134, 0.452] 0.695 [0.669, 0.723] 0.464 [0.389, 0.525]

Sim_50% 0.608 [0.221, 0.821] 0.743 [0.719, 0.768] 0.438 [0.383, 0.504]

The first row represents no subsets, where all of the cases and controls values are drawn from the N1 distribution. Subsequent rows represent trials with 5, 10, 20, 30, 40, and 50%, respectively, 
of the cases values drawn from the N2 distribution and represent the disease subtype. For each scenario, 1,000 cases and 1,000 controls values were generated for each of 1,000 trials. Note that 
the BCD analysis of the AD gene expression data provides a threshold of 0.209 for p-value ≤0.05.
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The six most significant genes identified by BCD include four genes 
previously associated with AD and two novel genes. Genes that have 
known associations with AD include CHGB (Lechner et  al., 2004; 

Quinn et al., 2020; Marksteiner et al., 2002; Willis et al., 2008), GLCE 
(Perez-Lopez et al., 2021; Ozsan McMillan et al., 2023; Liachko et al., 
2019; Schultheis et al., 2021), CDK5RAP1 (Esteras et al., 2012) and the 

FIGURE 3

Spurious results for the first round of BCD trials on the AD biological data. (A) The histograms depict the numbers of AD cases and normal controls 
with each expression value range for the most significant BCD gene, GI_37540877-S. The covariates for the individuals in the second mode are shown 
on the right. Note that 91.7 and 75.0% of the cases and controls, respectively, are samples from brain region 4. (B) Overall, brain region 4 comprises 
only 12.5 and 4.8% of the cases and controls, respectively. These results suggest that BCD identified differences between AD cases and normal controls 
due to the differences in the expression of GI_37540877-S in the various brain regions.

TABLE 2 Top six genes for each analysis of the AD gene expression data.

Fold Change AUC BCD

GeneID Gene log2FC GeneID Gene AUC GeneID Gene BCD

GI_38201693-S RGS4 1.448 GI_4585642-S ZNF264 0.854 GI_4502806-S CHGB 0.403

GI_40255112-S MGC35285 1.428 GI_27734844-S ZDHHC23 0.830 GI_17999536-S PRPF8 0.378

GI_40254432-S N/A 1.342 GI_24308166-S DKFZp761H039 0.829 GI_37540877-S GLCE 0.378

GI_40018630-A N/A 1.306 GI_34577121-S NFKB1 0.822 GI_28872783-A CDK5RAP1 0.375

GI_29744077-S LOC340542 1.288 GI_13376557-S FLJ21272 0.820 GI_14589948-S POLR2A 0.374

GI_27475984-S NEUROD6 1.217 GI_23312375-A PPEF1 0.815 GI_23503234-A C1QDC1 0.372
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FIGURE 4

Histograms for the six top genes identified using FC. Each row corresponds to a gene in Table 2 and are given in the same order.
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FIGURE 5

Histograms for the six top genes identified using AUC. Each row corresponds to a gene in Table 2 and are given in the same order.
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FIGURE 6

Histograms for the six top genes identified using BCD. Each row corresponds to a gene in Table 2 and are given in the same order.
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gene it regulates, CDK5 (Liu et al., 2016; Maccioni et al., 2001; Shukla 
et al., 2012; Tsai et al., 2004; Cruz and Tsai, 2004; Monaco III, 2005; 
Maitra and Vincent, 2022; Nikhil et al., 2019; Lau and Ahlijanian, 2003; 
Pei et al., 1998), and POLR2A (Dickson et al., 2021). Chromogranin B 
(CHGB) has been observed in about 60% of the amyloid-beta plaques 
in AD transgenic mice and these mice performed poorly in the Morris 
water maze task (Willis et al., 2008). This protein has been proposed as 
a synaptic degeneration marker for AD (Marksteiner et  al., 2002). 
Glucuronic acid epimerase (GLCE) modifies heparan sulfate by 
converting the glucuronic acid to iduronic acid. This gene is 
downregulated in AD (Sepulveda-Diaz et al., 2015; Huynh et al., 2019) 
and suggested to contribute to the aberrant behavior of heparan sulfate 

in AD (Perez-Lopez et al., 2021; Ozsan McMillan et al., 2023). CDK5 
regulatory subunit-associated protein 1 (CDK5RAP1) is involved in 
checkpoint and arrest in the cell cycle as it inhibits CDK5, a protein 
with strong implications for AD progression (Liu et al., 2016; Maccioni 
et al., 2001; Shukla et al., 2012; Tsai et al., 2004; Cruz and Tsai, 2004; 
Monaco III, 2005; Maitra and Vincent, 2022; Nikhil et al., 2019; Lau and 
Ahlijanian, 2003; Pei et al., 1998). Esteras et al. observed significant 
upregulation of CDK5RAP1 in AD transgenic mouse brain (1.98 fold 
change) and PBMCs (10.69 fold change) (Esteras et al., 2012). The 
largest subunit of RNA polymerase II, POLR2A, also known as RPB1, 
has recently been linked to AD by Dickson et  al. Using an AD 
transgenic mouse model, this group demonstrated the mislocalization 

TABLE 3 Descriptions of the top six genes identified by BCD in the AD data.

GeneID Gene Description Location Alias NCBI Summary

GI_4502806-S CHGB Chromogranin B 

(secretogranin 1)

20p12.3 SCG1 This gene encodes a tyrosine-sulfated secretory protein abundant 

in peptidergic endocrine cells and neurons. This protein may serve 

as a precursor for regulatory peptides (provided by RefSeq, January 

2009).

GI_17999536-S PRPF8 Pre-mRNA 

processing factor 8

17p13.3 PRP8; RP13; HPRP8; 

PRPC8; SNRNP220

Pre-mRNA splicing occurs in 2 sequential transesterification steps. 

The protein encoded by this gene is a component of both U2-and 

U12-dependent spliceosomes, and found to be essential for the 

catalytic step II in pre-mRNA splicing process. It contains several 

WD repeats, which function in protein–protein interactions. This 

protein has a sequence similarity to yeast Prp8 protein. This gene is 

a candidate gene for autosomal dominant retinitis pigmentosa 

(provided by RefSeq, July 2008).

GI_37540877-S GLCE Glucuronic acid 

epimerase

15q23 HSEPI Enables calcium ion binding activity; heparosan-N-sulfate-

glucuronate 5-epimerase activity; and protein homodimerization 

activity. Involved in heparan sulfate proteoglycan biosynthetic 

process. Predicted to be located in Golgi membrane. Predicted to 

be integral component of membrane. Predicted to be active in 

Golgi apparatus (provided by Alliance of Genome Resources, April 

2022).

GI_28872783-A CDK5RAP1 CDK5 regulatory 

subunit associated 

protein 1

20q11.21 C42; CGI-05; HSPC167; 

C20orf34

This gene encodes a regulator of cyclin-dependent kinase 5 activity. 

This protein has also been reported to modify RNA by adding a 

methylthio-group and may thus have a dual function as an RNA 

methylthiotransferase and as an inhibitor of cyclin-dependent 

kinase 5 activity. Alternative splicing results in multiple transcript 

variants that encode different isoforms (provided by RefSeq, May 

2013).

GI_14589948-S POLR2A Polymerase (RNA) 

II (DNA directed) 

polypeptide A, 

220 kDa

17p13.1 RPB1; RPO2; POLR2; 

POLRA; RPBh1; RPOL2; 

NEDHIB; RpIILS; 

hsRPB1; hRPB220

This gene encodes the largest subunit of RNA polymerase II, the 

polymerase responsible for synthesizing messenger RNA in 

eukaryotes. The product of this gene contains a carboxy terminal 

domain composed of heptapeptide repeats that are essential for 

polymerase activity. These repeats contain serine and threonine 

residues that are phosphorylated in actively transcribing RNA 

polymerase. In addition, this subunit, in combination with several 

other polymerase subunits, forms the DNA binding domain of the 

polymerase, a groove in which the DNA template is transcribed 

into RNA (provided by RefSeq, July 2008).

GI_23503234-A C1QDC1 caprin family 

member 2

12p11 EEG1; EEG-1; C1QDC1; 

RNG140

The protein encoded by this gene may regulate the transport of 

mRNA. It may play a role in the differentiation of erythroblasts. 

Multiple transcript variants encoding different isoforms have been 

found for this gene (provided by RefSeq, February 2016).
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of this protein from the nucleus to the cytoplasm in a tau-and 
age-dependent manner (Dickson et al., 2021).

PRPF8 currently has no obvious connection to AD, however, it 
was one of 10 genes found to be associated with AD and Parkinson’s 
disease in another study involving a different dataset (GSE4229) using 
an alternative tissue: peripheral blood (Faruqui et al., 2021). Finally, 
C1QDC1 is another novel gene without any clear association. Table 3 
includes descriptions of the six genes.

FC identified one of the six BCD-significant genes, CHGB, with a 
p-value of 0.0079. The other five were missed by FC and all six were 
missed by AUC. In general, BCD is able to tease out novel genes 
missed by the other methods as FC and AUC shared 46.1% of their 
significant genes while only 3.7 and 4.6% of the BCD genes were 
identified by FC and AUC, respectively (Supplementary Tables S2–S4).

It should be noted that BCD is not expected to identify global 
biomarkers. When nearly all of the cases are associated with the 
biomarker, e.g., pTau-181 associations with AD, a shift in the cases 
median and mean, not modality, is expected. Such biomarkers are better 
captured using FC or AUC as medians and means are ignored by BCD.

It should also be noted that the lower bound on sample size for 
BCD is limited by the ability to distinguish the Bimodality Coefficient 
for the distributions. Since this statistic is derived from the skewness 
and kurtosis of the data, an adequate sample size for each of these 
statistics is requisite. Furthermore, the Bimodality Coefficient includes 
the sample size in its formulation.

BCD enjoys the same favorable properties exhibited by AUC. No 
specific biomarker threshold or other parameters are utilized. The 
metric is simple and intuitive. Furthermore, examination of the 
corresponding histograms provides additional information beyond 
the scalar value. As a bonus, individuals representing the subtype are 
distinguished from those who are not associated.

At the same time, BCD does not suffer from AUC’s drawbacks. 
AUC includes regions under the curve where analyte thresholds are 
not of practical interest and can be misleading when comparing two 
ROC curves that cross. Neither of these issues are of concern for BCD 
as the distributions of analyte levels, rather than TPRs and FPRs, 
dictate the computed values. Furthermore, high AUC value does not 
always correlate with the ability to identify a robust threshold for 
practical use of the biomarker. In contrast, high BCD value indicates 
strong bimodality, which corresponds to a natural inversion between 
the modes. The horizontal axis values delineate the corresponding 
threshold. Finally, analytes that are already known to be unimodal 
under normal conditions do not necessarily require any new controls 
data to be generated and ranks of the BC values for the cases across 
the whole set of tested analytes can be used to distinguish significance.

AD is a complex and heterogeneous disease and identification of 
subtypes is needed to advance precise treatments of each subtype 
group. We demonstrate here that popular statistics used for assessing 
biomarkers, FC and AUC, generally perform suboptimally when 
heterogeneity exists. We  also provide a new metric, BCD, which 
appears to hold promise in this domain.
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