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Introduction: Electrical stimulation of the brain has shown promising prospects 
in treating various brain diseases. Although biphasic pulse stimulation remains the 
predominant clinical approach, there has been increasing interest in exploring 
alternative stimulation waveforms, such as sinusoidal stimulation, to improve 
the effectiveness of brain stimulation and to expand its application to a wider 
range of brain disorders. Despite this growing attention, the effects of sinusoidal 
stimulation on neurons, especially on their nonlinear firing characteristics, 
remains unclear.

Methods: To address the question, 50  Hz sinusoidal stimulation was applied 
on Schaffer collaterals of the rat hippocampal CA1 region in vivo. Single unit 
activity of both pyramidal cells and interneurons in the downstream CA1 region 
was recorded and analyzed. Two fractal indexes, namely the Fano factor and 
Hurst exponent, were used to evaluate changes in the long-range correlations, 
a manifestation of nonlinear dynamics, in spike sequences of neuronal firing.

Results: The results demonstrate that sinusoidal electrical stimulation increased 
the firing rates of both pyramidal cells and interneurons, as well as altered their 
firing to stimulation-related patterns. Importantly, the sinusoidal stimulation 
increased, rather than decreased the scaling exponents of both Fano factor and 
Hurst exponent, indicating an increase in the long-range correlations of both 
pyramidal cells and interneurons.

Discussion: The results firstly reported that periodic sinusoidal stimulation 
without long-range correlations can increase the long-range correlations 
of neurons in the downstream post-synaptic area. These results provide 
new nonlinear mechanisms of brain sinusoidal stimulation and facilitate the 
development of new stimulation modes.
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1 Introduction

Electrical stimulation (ES) has emerged as an increasingly attractive therapeutic option for 
various neurological and psychiatric disorders (Lozano et al., 2019; Krauss et al., 2021). Typically, 
clinical ES usually utilizes charge-balanced square pulse waveforms. However, alternative electrical 
waveforms such as sinusoids have garnered attention due to their potential benefits in terms of 
therapeutic efficacy and safety (Foutz and McIntyre, 2010; Mottaghi et al., 2020; Krauss et al., 
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2021). Sinusoidal stimulation has been utilized in retinal stimulation for 
the restoration of visual function (Twyford and Fried, 2016; Su et al., 
2022), as well as in in transcranial electrical stimulation (TES) for 
conditions such as Parkinson’s disease, tremor, schizophrenia, and 
obsessive-compulsive disorder (Antal and Paulus, 2013; Brittain et al., 
2013; Liu et  al., 2021). It has also shown promise in deep brain 
stimulation (DBS) for Parkinson’s disease and epilepsy (Lian et al., 2003; 
Guo et al., 2016; Liu et al., 2018; Mottaghi et al., 2020), as well as in spinal 
cord stimulation (SCS) for pain management (Soin et  al., 2015). 
Furthermore, sinusoidal stimulation has also been reported to induce 
conduction block in fibers, which is believed to underlie the therapeutic 
effects of many electrical stimulations (Wodlinger et al., 2013; Fisher and 
Velasco, 2014). Previous studies have also demonstrated that sinusoidal 
waveforms may activate neurons at a considerably lower electrical 
intensity compared to pulse stimulation, thereby reducing the risk of 
tissue damage and extending the lifespan of stimulation batteries (Francis 
et al., 2003; Foutz and McIntyre, 2010; Lin et al., 2013). However, the 
effects of sinusoidal stimulation on neuronal activity remain unclear.

The neuronal firing activity exhibits distinct nonlinear dynamic 
properties, including fractal, bifurcation, and chaos (Teich, 1989; Fan 
and Holden, 1993; Munn et al., 2020). Fractal theory, initially devised 
to describe the complex geometry of coastlines, was later extended by 
Mandelbrot to analyze time series data. Since then, fractal analysis has 
been widely utilized in neurophysiological research (Mandelbrot, 
1982; Teich et al., 1997; Lowen et al., 1999; Das et al., 2003; Chen et al., 
2015; Munn et al., 2020). In the time domain, fractal is characterized 
by long-range correlations among events that spanning multiple time 
scales (Teich et al., 1997; Munn et al., 2020). For example, a fractal 
firing sequences of neuronal spikes exhibit long-range correlations in 
the fluctuations of the inter-spike-interval (ISI) or spike counts within 
various temporal windows (Teich, 1989; Gebber et al., 2006).

Long-range correlations have been observed in spontaneous 
neuronal activities in various brain regions, such as the hippocampus, 
basal ganglia, and visual cortex (Bhattacharya et al., 2005; Darbin 
et al., 2006; Munn et al., 2020). Long-range correlations indicate the 
neural network’s “memory” of its past, suggesting that two spikes 
separated far away in a firing sequence are not entirely independent 
(Das et al., 2003; Bhattacharya et al., 2005). The presence of long-range 
correlations in neuronal activity indicates a “healthy” neural network, 
and is essential for efficient information processing in the brain (Beggs 
and Plenz, 2004; Kello et al., 2010; Hohlefeld et al., 2012). Studies have 
shown that fractal patterns with long-range correlations in neuronal 
firing reflect a balance between stability and excitability, representing 
an optimal state for neuronal information processing (Darbin et al., 
2006; Hohlefeld et al., 2012). Compared to periodic or random firing, 
fractal firing with long-range correlations can encode more 
information, even when the number of action potentials remains the 
same over a specified time period. Previous studies have demonstrated 
decreased long-range correlations in the neuronal activity of patients 
with brain diseases such as epilepsy, Parkinson’s disease, major 
depression, Alzheimer’s disease and schizophrenia (Monto et al., 2007; 
Montez et al., 2009; Hohlefeld et al., 2012; Nikulin et al., 2012). This 
decrease suggests a reduction in the efficiency of information 
processing and is believed to be  associated with pathology 
(Goldberger, 1996; Goldberger et al., 2002; Beggs and Plenz, 2004; 
Deniau et al., 2010). Therefore, the recovery of long-range correlations 
may serve as a biomarker reflecting the therapeutic effect in the 
treatment of these diseases (Hohlefeld et al., 2012; Smith et al., 2017).

Previous studies have shown that the long-range correlations can 
be modulated by medication or external stimulations (Linkenkaer-
Hansen et al., 2004; Liang et al., 2018). For example, acupuncture 
stimulations applied to the bilateral hind limbs, which is effective to 
alleviate pain symptoms, has been observed to increase the long-range 
correlations in firing sequence of individual neurons in rat spinal 
dorsal horn (Chen et al., 2015). Sustained electrical pulses with a 
frequency of 70 Hz applied to the spinal cords have been found to 
increase the long-range correlations of electroencephalography (EEG) 
in patients under a minimally conscious state, indicating a restoration 
of cortical information integration (Liang et al., 2018; Ferdowsi et al., 
2024; Wang et  al., 2024). In addition, the increased long-range 
correlations induced by medication have been reported to be a new 
biomarker of the therapeutic effects in patients with infantile spasms 
or Parkinson’s disease (Hohlefeld et al., 2012; Smith et al., 2017). These 
findings suggest that external stimulation has the potential to increase 
long-range correlations in neuronal activity and the recovery of long-
range correlations may serve as a new biomarker that reflects the 
therapeutic effect in the treatment of the disease.

Sinusoidal stimulation has shown promise in TES and DBS as an 
effective treatment for certain neurological disorders such as Parkinson’s 
disease, essential tremor, epilepsy, depression, and so on (Bikson et al., 
2001; Antal and Paulus, 2013; Guo et al., 2016; Liu et al., 2018). However, 
the influence of sinusoidal stimulation on the long-range correlations of 
neuronal firing remains unclear. It is plausible to hypothesis that the 
therapeutic efficacy of sinusoidal stimulation in treating multiple 
diseases is also attributable to the modulation of long-range correlations 
in neuronal firing. Nevertheless, previous studies have demonstrated that 
sustained sinusoidal stimulation with a constant frequency can effectively 
modulate neuronal firing, resulting in precise time-locked firing patterns 
occurring at specific phases within the sinusoidal wave’s cycle (Wang 
et al., 2020). Long-range correlations in neuronal firing are indicative of 
nonlinearity and irregularity, suggesting a substantial level of variability 
in the spiking activity of neurons. From this perspective, it seems that 
sinusoidal stimulation may potentially increase the regularity and reduce 
the long-range correlations of neuronal firing. Therefore, a crucial and 
compelling question arises: does periodic sinusoidal stimulation increase 
or decrease the long-range correlations of neuronal firing?

To address this question, we conducted an analysis of the fractal 
properties of neuronal firing modulated by sinusoidal stimulation in 
hippocampal CA1 region in anesthetized rats. Specifically, sinusoidal 
stimulation was applied in the Schaffer collaterals, which are afferent 
fibers connected to the CA1 region. Unit spikes of both the pyramidal 
cells and interneurons in the downstream area of stimulation were 
recorded to examine the change of fractal of neuronal firing during 
sinusoidal stimulation by calculating the Fano factor and Hurst 
exponent of the spike sequence (Darbin et al., 2006; Munn et al., 
2020). Results of the study can reveal novel nonlinear dynamics in the 
firing patterns of real individual neurons and provide essential insights 
into the mechanisms underlying the effects of sinusoidal stimulation.

2 Materials and methods

2.1 Animals and surgery

The animal experiment was approved by the Laboratory Animal 
Welfare and Ethics Committee of Zhejiang University (Ethics Code: 
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ZJU20210108). The data were obtained from 10 adult male Sprague–
Dawley rats (325 ± 27 g), utilizing previously established 
methodologies (Feng et al., 2013, 2017). The rats were anesthetized 
with urethane (1.25 g/kg, i.p.) and fixed in a stereotaxic frame 
(Stoelting Co., United States). A partial craniotomy was performed to 
allow the placement of electrodes. A16-channel silicon electrode 
probe (#Poly2, NeuroNexus Technologies, United States) was inserted 
into the left hippocampal CA1 region (AP −3.5 mm; ML 2.7 mm; DV 
~2.5 mm) as a recording probe. A concentric bipolar stainless-steel 
electrode (#CBCSG75, FHC Inc., United States) was inserted into the 
afferent axons (i.e., the Schaffer collaterals) of the CA1 region (AP 
−2.2 mm; ML 2.2 mm; DV ~2.8 mm) to apply orthodromic 
stimulation to the upstream of the recording probe (Figure 1A). Four 
neighboring contacts in the recording probe located in pyramidal 
layer of CA1 region were utilized to collect unit spikes. Two stainless 
steel screws were anchored into the nasal bone, serving as the 
reference and ground electrodes, respectively. The accuracy of 
electrodes placement was confirmed based on the sequential 
appearance of unit spike signals in the recording array and the 
potential waveform induced by pulse stimulation, as previously 
described (Kloosterman et al., 2001).

2.2 Stimulation and recording

Sinusoidal waveforms were generated using a signal generator 
(DG1032Z, REGOL Technologies, China) and converted into 
symmetrical sinusoidal stimulus currents via an analog stimulus 
isolator (Model 2200, A-M Systems Inc., United States). The currents 
were delivered to the rat brain through a stimulation electrode. The 
frequency of sinusoidal stimulation was 50 Hz. The peak-to-peak 
current intensity of the sinusoidal waveforms was adjusted to 
35–65 μA (53.0 ± 8.9 μA, 10 rats) to modulate the unit firing of neurons 
in downstream without evoking large amplitude population spikes 
resulted from synchronized neuronal firing. The duration of the 
sinusoidal stimulation was 1 min.

The extracellular electrical signals recorded by the electrode were 
amplified 100-fold using a microelectrode amplifier (Model 3600, 
A-M Systems Inc., United States) and passed through a band-pass 
filtering with a range of 0.3–5,000 Hz. The signals were then sampled 
at 20 kHz using a PowerLab data acquisition system (Model PL3516, 
AD Instruments Inc., Australia) and stored for off-line analysis.

2.3 Analysis of unit spikes

Figure 1A illustrates the process of acute experiments and data 
acquisition. A LabChart8 (AD Instruments Inc., Australia) built-in 
digital high-pass filter (>500 Hz) was used to remove the 50 Hz 
sinusoidal stimulation artifacts and local field potential (LFP) in raw 
recording signals, and to generate multiple unit activity (MUA) 
signals. The lower cut-off frequency was set at 500 Hz to gain better 
spike detection and sorting effects (Feng et al., 2012). MUA signals 
from four neighboring contacts of the recording electrode array in the 
pyramidal layer of the CA1 region were utilized to extract single unit 
activity (SUA) of pyramidal cells and interneurons. Spike detection 
and sorting were conducted in accordance with established methods 
(Feng et  al., 2017). Finally, the spike sequence of each individual 

neuron was obtained, and the ISI sequence was then 
acquired accordingly.

To examine the effect of axonal sinusoidal stimulation on 
downstream neurons, the mean firing rates of MUA and SUA, as well 
as the coefficient of variation (CV) of ISI of spike sequences were 
calculated during 1-min sustained sinusoidal stimulation and in 
1-min baseline recording before stimulation as a control. The 
Approximate Entropy (ApEn), a metric previously used to evaluate 
EEG and neuronal firing complexity, was calculated to evaluate the 
statistical irregularity of neuronal firing (Sleigh and Donovan, 1999; 
Natarajan et al., 2004). The calculation of ApEn followed established 
methods, with an embedding dimension (m) of 2 and a vector 
comparison length (r) of 0.15 (Sleigh and Donovan, 1999; Natarajan 
et al., 2004). The use of a small m and moderate r ensures the reliability 
of ApEn and facilitates more accurate comparisons between different 
data groups. Low ApEn values indicate low irregularity, whereas high 
ApEn values signify high irregularity. The Fano factor and Hurst 
exponent were calculated to evaluate the changes of long-range 
correlations (one of fractal properties) in spike sequences of individual 
neurons (Darbin et al., 2006; Munn et al., 2020).

The Fano factor, abbreviated as F(T), is defined as the ratio of the 
variance to the mean of spike counts within a time window of duration 
T (in second) (Equation 1):

 
F T

N T
N T
i

i
( ) = ( ) 

( ) 

var

mean  
(1)

For the recordings of 1-min sinusoidal stimulation and 1-min 
baseline, T is increased from a minimum of 0.1 s to a maximum of 
10 s. Ni(T) represents the spike counts in the ith window of size T. The 
Fano factor curve F(T) is plotted using double-logarithmic scales.

In spike sequences with long-range correlations, the F(T) increases 
as a power-law function of the window size and may exceed 1.0. This 
increase reflects the greater variance in spike counts with larger 
window sizes (Teich, 1989; Lowen et al., 2001). The increased variance 
results from the presence of infrequent clusters of long and short ISIs, 
which become more apt to be found with increased data collection. 
Such clustering is a characteristic feature of fractal processes (Teich, 
1989). On a double-logarithmic scale, the power-law relationship 
between F(T) and window size (T) appears as a straight line. 
Subsequently, the slope α of the Fano factor time curve was calculated 
to estimate of the fractal scaling exponent (Munn et al., 2020). If the 
neuronal firing is a Poisson process in which the ISIs are uncorrelated, 
F(T) would be approximately 1.0 for all T because the variance of a 
Poisson process is equal to the mean. If the neuronal firing is a 
periodic process, its F(T) would approach 0 because the variance 
decreases as the window size increases.

The second index of long-range correlations, Hurst exponents 
(H), is defined on the ISIs of spike sequences by the following rescaled 
range method (Equations 2–4) (Hurst, 1951; Darbin et al., 2006). 
Firstly, the ISI sequences with a total ISI number of N are divided into 
M adjacent segments, denoted as Im, each with an ISI number of of d. 
Here M × d = N and m = 1,…, M. Next, for each segments Im, the mean 
(Em) and standard deviation (Sm) of ISIs are calculated. The 
accumulated deviation from the mean is then computed for each 
segment Im, which is defined as the running sum of the differences 
between individual ISIs and the mean value:
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FIGURE 1

Increase of neuronal firing during the period of 50  Hz sinusoidal stimulation of Schaffer collaterals in the hippocampal CA1 region. (A) Workflow of the 
animal experiments and data acquisition, including schematic diagram of the implant positions of the recording electrode (RE) in the pyramidal layer 
and the stimulation electrode (SE) in the Schaffer collaterals of CA1 region. (B) A typical example of neuronal responses to 1-min 50  Hz sinusoidal 
stimulation. The shadow denotes the stimulation period. The red curves denote the sinusoidal waveforms applied at the Schaffer collaterals. 
Superposition traces of spike waveforms with an average waveform denoted by the black color of a typical pyramidal cell and an interneuron were 
shown on the left. Triangles and dots mark the firing of pyramidal cells and interneurons, respectively. (C) Comparison of the mean MUA firing rates 
between the baseline recordings and the recordings during stimulation. (D,E) Comparison of the firing rates of pyramidal cells and interneurons 
between the baseline recordings and the recordings during stimulation. Baseline recordings were obtained 1-min before the sinusoidal stimulation. 
**p  <  0.01, paired t-test.
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The rescale range Rm, is defined as the difference between the 
maximum and minimum values of the accumulated deviation:

 R X X k dm k m k m= ( ) − ( ) = …max min , , , , ., , 1 2  (3)

where Xk,m is actually the vector [X1,m, X2,m,…, Xd,m].
Thus, the mean value of the rescaled range for all segments of 

length d were calculated:
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The length d is increased from a minimum of 4 to a maximum of 
N/3. Finally, the Hurst exponent (H) is estimated from the slope of 
double-logarithmic plots of (R/S)d against d. The value of H, ranging 
from 0 to 1.0, determines whether the spike sequences exhibit fractal 
properties. If H is not equal to 0.5, neuronal firing is long-range 
correlated (Jackson, 2004; Nurujjaman et al., 2009). When 0 < H < 0.5, 
the spike sequence exhibits negative long-range correlations: a 
decrease of ISI is typically followed by an increase, and vice versa. 
Conversely, a range of 0.5 < H < 1 indicates positive long-range 
correlations: a decrease of ISI leads to further decreases of ISI, while 
an increase leads to more increases. When H = 0.5, successive changes 
in ISIs become independent, indicating no long-range correlations. 
Therefore, H can indicate the directions of long-range correlations, 
while the α value of F(T) cannot.

The data are presented as the mean ± standard deviation (SD), 
with “n” representing the number of neurons. Based on the results of 
Shapiro–Wilk tests that the data were normally distributed, the 
statistical significance of the differences between the groups of that 
during 1-min sustained sinusoidal stimulation and at the baseline 
recording was tested by paired t-test.

3 Results

3.1 Increase of neuronal firing by sustained 
sinusoidal stimulation of afferent axons in 
the CA1 region

During sustained 50 Hz sinusoidal stimulation applied at the 
Schaffer collaterals, the signals collected in the CA1 pyramidal layer 
comprised MUA, LFP, and sinusoidal stimulation artifacts 
(Figures 1A,B). By applying a digital high-pass filter (>500 Hz) to the 
recorded signals, the MUA signals were extracted (Figure 1B). The 
extracted MUA signals effectively demonstrated an increase in 
neuronal firing in the downstream region during the 1-min 50 Hz 
sinusoidal stimulation period. The mean firing rate of MUA during 
stimulation period (58.4 ± 19.2 spikes/s) was significantly higher than 
that at baseline recording 1-min before stimulation (18.7 ± 7.6 spikes/s; 
p < 0.01, paired t-test, n = 10 rats, Figure 1C). After the termination of 
the stimulation, the MUA signals promptly declined and then 

returned to baseline levels. The MUA signals recorded in CA1 region 
consisted of SUA of pyramidal cells and interneurons. We  next 
investigated the effects of sinusoidal electrical stimulation on the firing 
of different kinds of neurons.

In 10 rat experiments, we obtained SUA from a total of 39 neurons 
in the CA1 pyramidal layer, including 25 pyramidal cells and 14 
interneurons. During 1-min 50 Hz sinusoidal stimulation, the firing 
rate of pyramidal cells significantly increased from 2.4 ± 2.2 spikes/s at 
baseline to 5.2 ± 3.5 spikes/s during stimulation period (p < 0.01, 
paired t-test, n = 25, Figure  1D). Similarly, the firing rate of 
interneurons also increased significantly from 9.1 ± 5.4 spikes/s at 
baseline to 32.4 ± 18.8 spikes/s during the stimulation period (p < 0.01, 
paired t-test, n = 14, Figure 1E). The firing rates of both pyramidal cells 
and interneurons were significantly less than the stimulation 
frequency of 50 Hz during stimulation period. The coupling ratio 
(firing rate / stimulation frequency) was approximately 10% for 
pyramidal cells and 65% for interneurons. In addition, the firing rate 
of interneurons was significantly higher than that of pyramidal cells, 
both at baseline and during stimulation (p < 0.01, t-test).

These results indicate that 50 Hz sinusoidal stimulation at the 
Schaffer collaterals can activate both pyramidal cells and interneurons 
in the downstream CA1 region. However, the neurons failed to follow 
every cycle of the sinusoidal stimulation. Then, did their firing 
patterns change as well? We next investigated the effect of sinusoidal 
stimulation on the firing pattern of downstream pyramidal cells and 
interneurons by analyzing the ISI of these neurons.

3.2 Changes of firing patterns of CA1 
neurons during sustained sinusoidal 
stimulation

At baseline recording before stimulation, the unit spikes of 
pyramidal cells exhibited burst firing patterns, characterized by 
consecutive spikes with a short ISI less than 8 ms (Figure 2A). The 
bursty character resulted in an obvious peak (~ 5 ms) in the ISI 
histogram and approximately 35% of ISIs was in the range of 0–8 ms 
(Figures 2A,B). During the 1-min stimulation period, unit spikes of 
the pyramidal cells were typically generated separately near the 
negative peak of the sinusoidal stimulation waveform. As a result, 
most of the ISIs were close to integer multiples of the 20 ms period of 
50 Hz sinusoidal stimulation (Figure 2B). The probability of ISIs in the 
range of 0–8 ms during stimulation was significantly lower than 
baseline recording (Table 1). However, distinct peaks appeared at 
n-fold multiples of the 20 ms periods of the 50 Hz sinusoidal 
stimulation (Figure 2B). For instance, the probability of ISIs falling 
within 19–21 ms (i.e., approximately one period of the 50 Hz 
stimulation) was significantly higher during stimulation compared to 
the corresponding baseline value (Table 1). The distribution of unit 
spikes of interneurons was more scattered than that of pyramidal cells 
at baseline recording (Figure 2C). Consequently, only 5.3 ± 3.8% of the 
ISIs were within the range of 0–8 ms, similar to the corresponding 
value of 6.1 ± 5.8% observed during stimulation (Table  1). 
Additionally, similar to pyramidal cells, ISI peaks were observed at 
n-folds of the 20 ms periods of 50 Hz sinusoidal stimulation. Notably, 
the probability of ISIs within the first peak (19–21 ms) of the ISI 
histogram was significantly higher than the corresponding baseline 
value (Table 1).
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To better understand the changes in firing pattern of pyramidal 
cells and interneurons during stimulation, we next calculated the CV 
and ApEn of the ISIs. The CV of ISI of interneurons during stimulation 
was significantly larger compared to the corresponding baseline value 
(Table 1). However, despite the transformation of the ISI distribution 
from a single-peak to a multi-peaks distribution during stimulation, 
the CV of ISI of pyramidal cells showed no significant difference 
between the baseline and stimulation period (Table 1). The mean 
ApEn of pyramidal cells increased from 0.87 ± 0.28 at baseline to 
1.05 ± 0.32 during stimulation and the mean ApEn of interneurons 
also increased from 1.16 ± 0.18 at baseline to 1.33 ± 0.26 during 
stimulation (Table 1). Higher ApEn values indicate higher irregularity. 
The irregularity could be caused by long-range correlations among 
spikes or by random disturbance from circumstances without history-
effect or memory. Next, we calculated the Fano factor F(T) and the 
Hurst exponent (H) of the spike sequences to compare the firing 

patterns and long-range correlations of neuronal firing at baseline and 
during stimulation.

3.3 Changes of long-range correlations in 
the neuronal firing during sustained 
sinusoidal stimulation

During 1-min sinusoidal stimulation, the Fano factor of 
pyramidal cells increased with an increase in window size, reaching 
a maximum value exceeding 10 (Figure 3A). Importantly, a power 
law relationship was observed starting at a window size near 10–0.5 s 
(~0.32 s), resulting in a straight line with a positive slope of 
approximately 0.8  in the double-logarithmic plot (Figure 3A). At 
baseline recording, the Fano factor of pyramidal cells also increased 
with an increase in window size, and showed a power law relationship 

FIGURE 2

Sinusoidal stimulation induced changes of firing patterns of both pyramidal cells and interneurons. (A) A typical example of unit spike recording of 
pyramidal cells before and during stimulation. (B) The average inter-spike-interval (ISI) curve of 25 pyramidal cells. (C,D) Corresponding plots as panels 
(A,B) for interneurons with a same order in panels (A,B) but neuronal types changed from pyramidal cells to interneurons. On the recording signals, red 
and blue dots denote unit spikes at baseline and during stimulation, respectively.
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starting at a window size near 10–0.5 s (~0.32 s). However, both the rate 
of increase and the maximum value of Fano factor at baseline 
recording were lower compared to those observed during stimulation 
(Figure 3A). The slope α of the Fano factor during stimulation was 
0.74 ± 0.23, which was significantly higher than the corresponding 
value of 0.28 ± 0.15 at baseline (p < 0.01, paired t-test, n = 25, 
Figure 3A). Similarly, within the window size in the range of 10–0.5 s 
(~0.32 s) to 101 s (~10 s), Fano-factor curves of interneurons also 
exhibited a power law relationship with a straight line in double-
logarithmic plots, both at baseline and during stimulation 
(Figure  3B). The slope α of interneurons during stimulation was 
0.83 ± 0.12, approaching its maximum theoretical value of 1.0 and 
significantly higher than the baseline value of 0.36 ± 0.11 (p < 0.01, 
paired t-test, n = 14, Figure 3B). The power law relationship observed 
in the Fano factor curves suggests the presence of long-range 
correlations in the firing of both pyramidal cells and interneurons. 
The larger slope α during stimulation indicates the long-range 
correlations were stronger during sinusoidal stimulation than 
at baseline.

These findings were further confirmed by the rescaled range 
analysis. In the double-logarithmic plots of (R/S)d against segments 
length with ISI number d, both pyramidal cells and interneurons 
displayed an increase in R/S value with an increase in the ISI number 
d, both during stimulation and at baseline (Figures 4A,B). Although 
both types of neurons exhibited a power law relationship characterized 
by a straight line in the double-logarithmic plots of (R/S)d against d, 
the mean H value [i.e., the slope of (R/S)d] during stimulation was 

larger compared to baseline. Specifically, during the 1-min 50 Hz 
sinusoidal stimulation, the H value of pyramidal cells and interneurons 
significantly increased from 0.60 ± 0.07 and 0.64 ± 0.05 at baseline to 
0.67 ± 0.04 and 0.69 ± 0.04 during stimulation, respectively (p < 0.01, 
paired t-test, n = 25 for pyramidal cells and n = 14 for interneurons, 
Figures 4A,B). An H value greater than 0.5 indicates positive long-
range correlations among spikes, and an increase in H value during 
sinusoidal stimulation further enhances the positivity in the long-
range correlations.

These results indicated that the periodic sinusoidal stimulation 
without long-range correlations can actually increase the long-range 
correlations in neuronal firing of both pyramidal cells 
and interneurons.

4 Discussion

The major finding of this study is that the sustained periodic 
axonal sinusoidal stimulation without long-range correlations can 
recruit the firing and increase rather than decrease the long-range 
correlations in the firing of both pyramidal cells and interneurons in 
the post-synaptic area downstream the stimulation site in rat 
hippocampus. To our knowledge, this is the first study demonstrating 
the change of fractal properties of neuronal firing induced by 
sinusoidal stimulation. The findings and their implications are 
discussed in the following text.

TABLE 1 Comparison of distribution, CV, and ApEn of the ISI of spike sequences.

Cell type Number of 
cells

Group ISI in the range 
of 0–8  ms

ISI in the range 
of 19–21  ms

CV of ISI ApEn

Pyramidal cell 25
Baseline 34.3 ± 22.5% 2.5 ± 2.4% 0.64 ± 0.22 0.87 ± 0.28

During sti. 8.7 ± 9.5% a 7.3 ± 7.6% a 0.63 ± 0.36 1.05 ± 0.32a

Interneuron 14
Baseline 5.3 ± 3.8% 2.5 ± 2.4% 0.73 ± 0.17 1.16 ± 0.18

During sti. 6.1 ± 5.8% 23.9 ± 15.8% a 1.33 ± 0.59 a 1.33 ± 0.26a

aBaseline vs. During sti.
p < 0.01, paired t-test.

FIGURE 3

Fano factor analyses of the firing of pyramidal cells and interneurons. (A) Left: The average Fano factor plots of the total 25 pyramidal cells. Fano 
factors were expressed as function of the time lags (in seconds, double logarithmic scales). Right: The comparison of scaling exponent of Fano factor 
curve between the baseline recordings of pre-stimulation and the recordings during stimulation. (B) The Fano factor plots and comparison of scaling 
exponent of interneurons. **p  <  0.01, paired t-test.
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When a single sinusoidal wave was applied to the neural tissue, its 
negative phase (i.e., negative half-period) can induce depolarization 
of axonal membranes, leading to the generation of an action potential. 
The action potential then propagates along the axons to the axon 
terminals, and subsequently, transmits across the synapses to activate 
the pyramidal cells and interneurons in the post-synaptic CA1 region. 
However, when the stimulus was repeated at a high frequency, the 
downstream neurons usually cannot follow each stimulus to fire 
action potential. Firstly, it is possible that the axons directly evoked by 
sinusoidal waveform generated action potentials at a rate less than the 
50 Hz stimulation frequency. Secondly, previous studies have shown 
that 50 Hz sinusoidal stimulation at axons can induce axonal 
conduction block, which may be  caused by the extracellular K+ 
concentration elevation, the intracellular Na+ accumulation as well as 
the slow recovery of Na+ channels (Jensen and Durand, 2007; Bellinger 
et al., 2008; Zang and Marder, 2021; Zang et al., 2023). Moreover, the 
possible effects of synaptic failure and neurotransmitter depletion in 
the process of synaptic transmission may also attenuate the excitatory 
effect of stimulation on downstream neurons (Kim et  al., 2012; 
Rosenbaum et al., 2014). These effects prevent both pyramidal cells 
and interneurons in the downstream CA1 region from following each 
stimulation cycle to generate action potentials. Consequently, the 
firing rates of both pyramidal cells and interneurons were less than 
stimulation frequency of 50 Hz, and peaks appeared at n-folds of the 
20 ms periods of 50 Hz sinusoidal stimulation in the ISI histogram 
(Figures 1, 2). The ISIs transferring from random values to 20 ms or 
n-folds of the 20 ms during stimulation also indicated that 50 Hz 
sinusoidal stimulation can modulate the spontaneous firing of 
pyramidal cells and interneurons to a stimulation-related pattern.

An intriguing finding of this study is that the sustained periodic 
sinusoidal stimulation inputs, without long-range correlations, 
induced fractal rather than random or regular firing patterns in the 
downstream region. This phenomenon can be  attributed to the 
intrinsic properties of neurons and the mechanism of stimulation-
induced axonal block and synaptic failure. Previous studies have 
demonstrated that the biophysical origin of long-range correlations 
may arise from the intrinsic properties of ion channels and synapses 
in neurons (Teich et al., 1997; Darbin et al., 2006). It has been reported 
that the opening and closing of ion-channels, such as Na+ and K+ 

channels, in neuronal membranes showed long-range correlations 
(Liebovitch and Czegledy, 1992; Lowen et al., 1999). During sustained 
axonal sinusoidal stimulation, the intense activations from sinusoidal 
stimulation can elevate the concentration of K+ in the peri-axonal 
spaces, thereby raising the membrane potential to a depolarization 
level that leads to intermittent axonal block (Bellinger et al., 2008; Guo 
et al., 2018). In addition, the intracellular accumulation of Na+ and 
slow recovery of Na+ channels may also contribute to action potential 
conduction failure (Zang and Marder, 2021; Zang et  al., 2023). 
However, even at this elevated potential, the dynamics of Na+ and K+ 
channels remain followed their intrinsic nonlinear properties, 
initiating action potentials at an even more nonlinear level (Hodgkin 
and Huxley, 1952). Consequently, periodic sinusoidal stimulation can 
activate axonal fibers in a fractal pattern and increase the long-range 
correlations in the induced firing patterns. Fractal patterns have also 
been observed in the secretion of neurotransmitters from the 
pre-synaptic membrane (Lamanna et  al., 2015). These fractal 
properties may lead to a fractal pattern in the recovery from 
stimulation-induced synaptic failure and neurotransmitter depletion. 
Fractal excitation of axons induced by periodic sinusoidal stimulation, 
requires synaptic transmission for its propagation to downstream 
neurons. The fractal properties of synapses may further contribute to 
the generation of fractal impulses in the downstream neurons. 
Additionally, neuronal network interactions may also contribute to 
fractal neuronal firing (Teich, 1989). For example, the fractal neuronal 
firing in the sensory areas of brain cortex, which propagates to the 
basal ganglia, can induce fractal neuronal firing in substantia nigra 
cells (Teich et al., 1997; Rodriguez et al., 2003; Darbin et al., 2006). In 
our experimental investigations of the hippocampal CA1 region, 
pyramidal cells and interneurons form densely interconnected local 
circuits involving feedforward and feedback inhibitions (Andersen 
et  al., 2007; Ahmed and Mehta, 2009). The interactions among 
pyramidal cells and interneurons may contribute to the increased 
fractal properties of neuronal firing during stimulation.

Consequently, the neuronal firing induced by sustained periodic 
sinusoidal stimulation exhibited a fractal pattern rather than a 
periodic firing pattern with constant ISI. Downstream neurons may 
respond to two or more adjacent sinusoidal cycles, resulting in the 
formation of spike clusters with an ISI of 20 ms. It is also possible that 

FIGURE 4

Hurst exponents analyses of the firing of pyramidal cells and interneurons. (A) Left: Examples of rescale range (Hurst exponents) analyses of a 
pyramidal cell. The image shows a linear relationship between (R/S)d and the ISI number d, when plotted in double-logarithmic representation. Right: 
Comparison of the Hurst exponent of pyramidal cells between the baseline recordings of pre-stimulation and the recordings during stimulation. 
(B) Corresponding plots as panel (A) for interneurons. **p  <  0.01, paired t-test.
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two or more consecutive cycles of sinusoidal stimulation failed to 
induce action potentials in downstream neurons, leading to the 
formation of larger spike clusters with ISIs that were twice (40 ms) or 
n-folds of the 20 ms period of 50 Hz sinusoidal stimulation. These 
spike clusters, varying in ISIs from 20 ms to n × 20 ms, exhibited a 
nested organization, where smaller time-scale subclusters being parts 
of larger clusters that appear on larger time scales. This nested 
organizational structure may explain the enhanced long-range 
correlations of neuronal firing during stimulation.

Previous studies have demonstrated that epilepsy, Parkinson’s 
disease, Alzheimer’s disease, schizophrenia, major depressive 
disorder, post-traumatic stress disorder, and age-related cognitive 
disorders are associated with impaired long-range correlations in 
neuronal activity (Monto et al., 2007; Montez et al., 2009; Hohlefeld 
et  al., 2012; Nikulin et  al., 2012; Mishra and Gazzaley, 2014; 
Dimitriadis and Linden, 2016). A decrease in long-range correlations 
indicates disrupted temporal patterning of neuronal activity and is 
believed to be associated with pathological processes (Goldberger 
et al., 2002; Berendse and Stam, 2007; Hohlefeld et al., 2012). The 
increase of long-range correlations in LFP and EEG recordings from 
patient under DBS, SCS and closed-loop neurofeedback stimulation 
has been observed to correlate with therapeutic efficacy (Hohlefeld 
et al., 2012; Hohlefeld et al., 2013; Zhigalov et al., 2016; Smith et al., 
2017; Liang et al., 2018). For instance, an effective therapy of thalamic 
DBS has been found to increase the long-range correlations in the 
high beta-band (21–30 Hz) of EEG recording in patients suffering 
from essential tremor (Hohlefeld et al., 2013). Therefore, increasing 
long-range correlations in neuronal firing induced by sinusoidal 
stimulation may be significant for suppressing pathological firing 
patterns and achieving therapeutic effects.

Furthermore, long-range correlations in the neuronal activity have 
been reported to reflect a balance between excitation and inhibition, 
which is crucial for optimal information processing in the brain (Kello 
et al., 2010; Hohlefeld et al., 2013; Liang et al., 2018). Therefore, the 
stimulation induced increase of long-range correlations may represent 
an optimal state for information processing. The fractal properties of 
neuronal firing mean the existence of a “memory” or historical influence 
on the timing of neuronal firing. Specifically, the timing of a particular 
spike is partly determined by the timing of previous spikes from the 
same neuron (Bhattacharya et al., 2005). The historical effect results in 
the neuronal firing fluctuating across multiple time scales. The 
fluctuations offer potential benefits, including facilitating flexible and 
efficient information coding and enhancing error tolerance during 
encoding (Voss, 1992; West, 2013). Moreover, the fluctuations allow the 
neuronal system with the capacity to adapt flexibly to new and 
demanding external perturbations (Bhattacharya et al., 2005). Therefore, 
the increase of long-range correlations induced by sinusoidal stimulation 
reflects its potential benefit in neuronal information processing.

According to previous research, stimulation frequency is a key 
factor affecting the firing activities of neurons (Bello et  al., 2020). 
Stimulation at lower frequencies can induce reliable propagation of 
action potentials, while stimulation at kilohertz frequency can totally 
block action potential conduction on axons (Kilgore and Bhadra, 2014). 
Therefore, further research is necessary to compare the modulatory 
effects of different stimulation frequencies on the long-range 
correlations of neuronal firing. Moreover, additional studies are needed 
to replicate the findings in different brain regions (e.g., basal ganglia) in 
order to establish the universality of sinusoidal stimulation on neurons. 

Finally, further investigations are essential to validate the therapeutic 
efficacy of sinusoidal stimulation in pathological animal models.

5 Conclusion

The current study firstly demonstrates that sinusoidal stimulations 
of afferent axonal fibers with a fixed frequency can modulate neuronal 
firing and enhance long-range correlations of neuronal firing in rat 
hippocampal CA1 region. The finding suggests that sinusoidal 
stimulation may be an alternative waveform in brain stimulation. It 
also provides a new potential mechanism for the therapeutic effects of 
sinusoidal stimulation to improve instead of to destroy the information 
processing of brain.
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