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Eight challenges in developing
theory of intelligence

Haiping Huang*

PMI Lab, School of Physics, Sun Yat-sen University, Guangzhou, China

A good theory of mathematical beauty is more practical than any current

observation, as new predictions about physical reality can be self-consistently

verified. This belief applies to the current status of understanding deep neural

networks including large language models and even the biological intelligence.

Toy models provide a metaphor of physical reality, allowing mathematically

formulating the reality (i.e., the so-called theory), which can be updated as

more conjectures are justified or refuted. One does not need to present

all details in a model, but rather, more abstract models are constructed, as

complex systems such as the brains or deep networks have many sloppy

dimensions but much less sti� dimensions that strongly impact macroscopic

observables. This type of bottom-up mechanistic modeling is still promising

in the modern era of understanding the natural or artificial intelligence.

Here, we shed light on eight challenges in developing theory of intelligence

following this theoretical paradigm. Theses challenges are representation

learning, generalization, adversarial robustness, continual learning, causal

learning, internal model of the brain, next-token prediction, and the mechanics

of subjective experience.

KEYWORDS
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1 Introduction

Brain is one of the most challenging subjects to understand. The brain is complex

with many levels of temporal and spatial complexities (Gerstner et al., 2014), allowing

for coarse-grained descriptions at different levels, especially in theoretical studies. More

abstract models lose the ability to generate predictions on low-level details but bring the

conceptual benefits of explaining precisely how the system works, and the mathematical

descriptionmay be universal, independent of details (or sloppy variables) (Levenstein et al.,

2023). One seminal example is the Hopfield model (Hopfield, 1982), where the mechanism

underlying the associative memory observed in the brain was precisely isolated (Amit et al.,

1987; Griniasty et al., 1993). There is a resurgence of research interests inHopfield networks

in recent years due to the large language models (Krotov and Hopfield, 2020; Ramsauer et

al., 2020).

In Marr’s viewpoint (Marr, 1982), understanding a neural system can be divided into

three levels: computation (which task the brain solves), algorithms (how the brain solves

the task, i.e., information processing level), and implementation (neural circuit level).

Following the first two levels, researchers designed artificial neural networks to solve

challenging real-world problems, such as powerful deep learning (LeCun et al., 2015;

Schmidhuber, 2015). However, biological details are also being incorporated into models

of neural networks (Abbott et al., 2016; Marblestone et al., 2016; Richards et al., 2019;

Lillicrap et al., 2020) and even used to design new learning rules (Schmidgall et al., 2023).
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Indeed, neuroscience studies of biological mechanisms of

perception, cognition, memory, and action have already provided

a variety of fruitful insights inspiring the empirical or scientific

studies of artificial neural networks, which, in turn, inspire

the neuroscience researchers to design mechanistic models to

understand the brain (Yamins and DiCarlo, 2016; Hassabis et al.,

2017; Saxe et al., 2020). Therefore, it is promising to integrate

physics, statistics, computer science, psychology, neuroscience,

and engineering to reveal inner working of deep (biological)

networks and intelligence with testable predictions (Ma et al.,

2022), rather than using a black box (e.g., deep artificial neural

networks) to understand the other black boxes (e.g, the brain

or mind). In fact, the artificial intelligence may follow different

principles from the natural intelligence, but both can inspire

each other, which may lead to the establishment of a coherent

mathematical physics foundation for either artificial intelligence or

biological intelligence.

The goal of providing a unified framework for neural

computation is very challenging and even impossible. Due to

re-boosted interests in neural networks, there appears a lot of

important yet unsolved scientific questions. We shall detail these

challenging questions below1 and provide our personal viewpoints

toward a statistical mechanics theory, solving these fundamental

questions, based on the first principles in physics. These open

scientific questions toward theory of intelligence are presented

in Figure 1.

2 Challenge I—Representation
learning

Given raw data (or input–output pairs in supervised learning),

one can ask what a good representation is and how the

meaningful representation is achieved in deep neural networks.

We have not yet satisfied answers for these questions. A

promising argument is that entangled manifolds at earlier layers

of a deep hierarchy are gradually disentangled into linearly

separable features at output layers (DiCarlo and Cox, 2007;

Bengio et al., 2013; Brahma et al., 2016; Huang, 2018; Cohen

et al., 2020). This manifold separation perspective is also

promising in system neuroscience studies of associative learning

by separating overlapping patterns of neural activities (Cayco-

Gajic and Silver, 2019). However, an analytic theory of the

manifold transformation is still lacking, prohibiting us from a

full understanding of which key network parameters control

the geometry of manifold and how learning reshapes the

manifold. For example, the correlation among synapses (e.g.,

arising during learning) will attenuate the decorrelation process

along the network depth but encourage dimension reduction

compared with their orthogonal counterparts (Huang, 2018; Zhou

and Huang, 2021). This result is derived by using mean-field

approximation and coincides with empirical observations (Zhou

and Huang, 2021). In addition, there may exist other biological

plausible factors such as normalization, attention, and homeostatic

1 Most of them were roughly provided in the book of statistical mechanics

of neural networks (Huang, 2022). Here we give a significantly expanded

version.

control impacting the manifold transformation (Turrigiano and

Nelson, 2004; Reynolds and Heeger, 2009), which can be

incorporated into a toy model in future to test the manifold

transformation hypothesis.

Another argument from information theoretic viewpoints

demonstrates that the input information is maximally

compressed into a hidden representation, whose task-

related information should be maximally retrieved at the

output layers, according to the information bottleneck

theory (Achille and Soatto, 2017; Shwartz-Ziv and Tishby,

2017). In this sense, an optimal representation must be

invariant to nuisance variability, and their components

must be maximally independent, which may be related to

causal factors (latent causes) explaining the sensory inputs

(see the following fifth challenge). In a physics language, a

coarse-grained (or more abstract) representation is formed in

deeper layers compared with the fine-grained representation

in shallower layers. How microscopic interactions among

synapses determine this representation transformation remains

elusive and thus deserves future studies; a few recent studies

started to address the clustering structure in the deep

hierarchy (Li and Huang, 2020, 2023; Alemanno et al., 2023;

Xie et al., 2024). To conclude, the bottom-up mechanistic

modeling would be fruitful in dissecting mechanisms of

representation transformation.

3 Challenge II—Generalization

Studying any neural learning system must consider three

ingredients: data, network, and algorithm (or DNA of neural

learning). The generalization ability refers to the computational

performance that the network is able to implement the rule

in unseen examples. Therefore, intelligence can be considered

to some extent as the ability of generalization, especially given

very few examples for learning. Therefore, the generalization is

also a hot topic in current studies of deep learning. Traditional

statistical learning theory claims that over-fitting effects should

be strong when the number of examples is much less than the

number of parameters to learn, which could not explain the

current success of deep learning. A promising perspective is to

study the causal connection between the loss landscape and the

generalization properties (Huang and Kabashima, 2014; Baldassi

et al., 2016; Spigler et al., 2019; Zou and Huang, 2021). For a

single layered perceptron, a statistical mechanics theory can be

systematically derived and revealed a discontinuous transition from

poor to perfect generalization (Gyorgyi, 1990; Sompolinsky et al.,

1990). In contrast to the classical bias-variance trade-off (U-shaped

curve of the test error vs. increasing model complexity) (Mehta

et al., 2019), the modern deep learning achieves the state-of-

the-art performance in the over-parameterized regime (Belkin

et al., 2019; Spigler et al., 2019), a regime of the number of

parameters much larger than the training data size. However,

how to provide an analytic argument about the over-fitting effects

vs. different parameterization regimes (e.g., under-, over-, and

super-parameterization) for this empirical observation becomes a

non-trivial task (Adlam and Pennington, 2020). A recent study

of one-hidden-layer networks shows that the first transition
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FIGURE 1

Schematic illustration of eight open challenging problems toward the theory of intelligence.

occurs at the interpolation point, where perfect fitting becomes

possible. This transition reflects the properties of hard-to-

sample typical solutions. Increasing the model complexity, the

second transition occurs with the discontinuous appearance of

atypical solutions. They are wide minima of good generalization

properties. This second transition sets an upper bound for

the effectiveness of learning algorithms (Baldassi et al., 2022).

This statistical mechanics analysis focuses on the average case

(average of all realizations of data, network, and algorithm)

rather than the worst case. The worst case determines the

computational complexity category, while the average case explains

us the universal properties of learning, and the statistical

mechanics links the computational hardness to a few order

parameters in physics (Huang, 2022), and these previous studies

show strong evidence (Huang and Kabashima, 2014; Baldassi

et al., 2016, 2022; Spigler et al., 2019; Hou and Huang,

2020).

For an infinitely wide neural network, there exists a lazy

learning regime, where the overparameterized neural networks

can be well approximated by a linear model corresponding

to a first-order Taylor expansion around the initialization, and

the complex learning dynamics is simply training a kernel

machine (Belkin, 2021). However, in a practical training, the

dynamics is prone to escape the lazy regime, which has no

satisfied theory yet. Therefore, clarifying which of lazy-learning

(or neural tangent kernel limit) and feature-learning (or mean-

field limit) may explain the success of deep supervised learning

remains open and challenging (Jacot et al., 2018; Bartlett et al.,

2021; Fang et al., 2021). The mean-field limit can be studied in

the field theoretic framework, characterizing how the solution

of learning deviates from the initialization through a systematic

perturbation of the action in the framework (Segadlo et al., 2022).

Another related challenge is out-of-distribution generalization,

which can also be studied using statistical mechanics, e.g., in a

recent study, a kernel regression was analyzed (Canatar et al.,

2021). In addition, the field theoretic method is also promising

to write the learning problem of out-of-distribution prediction

into propagating correlations and responses (Segadlo et al.,

2022).

4 Challenge III—Adversarial
vulnerability

Adversarial examples are defined by those inputs with human-

imperceptible modifications, leading to unexpected errors in a

deep learning decision making system. The test accuracy drops

as the perturbation grows; the perturbation can either rely on

the trained network or be an independent noise (Szegedy et al.,

2014; Goodfellow et al., 2015; Jiang et al., 2021). The current

deep learning is argued to learn predictive yet non-robust features

in the data (Geirhos et al., 2020). This adversarial vulnerability

of deep neural networks poses a significant challenge in the

practical applications of both real-world problems and AI4S

(artificial intelligence for science) studies. Adversarial training

remains the most effective solution to the problem (Madry et

al., 2018), in contrast to human learning. However, the training

sacrifices the standard discrimination. A recent study applied

the physics principle that the hidden representation is clustered-

like replica symmetry breaking in the spin glass theory (Mézard

et al., 1987), which leads to contrastive learning that is local

and adversarial robust, resolving the trade-off between standard

accuracy and adversarial robustness (Xie et al., 2024). Furthermore,

the adversarial robustness can be theoretically explained in terms

of a cluster separation distance. In physics, systems with a huge

number of degrees of freedom are able to be captured by a low-

dimensional macroscopic description, such as Ising ferromagnetic

model. Explaining the layered computation in terms of geometry

may finally help to crack the mysterious property of the networks’

susceptibility to adversarial examples (Bortolussi and Sanguinetti,

2018; Gilmer et al., 2018; Li and Huang, 2023). Although

some recent efforts were devoted to this direction (Bortolussi

and Sanguinetti, 2018; Kenway, 2018), more exciting results are

expected in near future studies.

5 Challenge IV—Continual learning

A biological brain is good at adapting the acquired knowledge

from similar tasks to domains of new tasks, even though only
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a handful examples are available in the new task domain.

This type of learning is called continual learning or multi-

task learning (McCloskey and Cohen, 1989; Kirkpatrick et al.,

2017), an ability to learn many tasks in sequence, while transfer

learning refers to the process of exploiting the previously acquired

knowledge from a source task, to improve the generalization

performance in a target task (Parisi et al., 2019). However, the

stable adaptation to changing environments, an essence of lifelong

learning, remains a significant challenge for modern artificial

intelligence (Parisi et al., 2019). More precisely, neural networks

are, in general, poor at the multi-task learning, although impressive

progresses have been achieved in recent years. For example, during

learning, a diagonal Fisher information term is computed to

measure importances of weights (then a rapid change is not allowed

for those important weights) for previous tasks (Kirkpatrick et al.,

2017). A later refinement was also proposed by allowing synapses,

accumulating task-relevant information over time (Zenke et al.,

2017). To reduce the catastrophic-forgetting effects, more machine

learning techniques were summarized in the review (Parisi et

al., 2019). However, we still do not know the exact mechanisms

for principally mitigating the catastrophic-forgetting effects, which

calls for theoretical studies of deep learning in terms of adaptation

to domain-shift training, i.e., connection weights trained in a

solution to one task are transformed to benefit learning on a related

task.

Using asymptotic analysis, a recent article studying transfer

learning identified a phase transition in the quality of the

knowledge transfer (Dhifallah and Lu, 2021). This study reveals

how the related knowledge contained in a source task can

be effectively transferred to boost the performance in a target

task. Other recent theoretical studies interpreted the continual

learning with a statistical mechanics framework using Franz-Parisi

potential (Li et al., 2023) or as an on-line mean-field dynamics of

weight updates (Lee et al., 2021). The Franz-Parisi potential is a

thermodynamic potential used to study glass transition (Franz and

Parisi, 1995). The recent study assumes that the knowledge from the

previous task behaves as a reference configuration (Li et al., 2023),

where the previously acquired knowledge serves as an anchor for

learning new knowledge. This framework also connects to elastic

weight consolidation (Kirkpatrick et al., 2017), heuristic weight-

uncertainty modulation (Ebrahimi et al., 2020), and neuroscience-

inspired metaplasticity (Laborieux et al., 2021), providing a theory-

grounded method for the real-world multi-task learning with deep

networks.

6 Challenge V—Causal learning

Deep learning is criticized as being nothing but a fancy

curve-fitting tool, making a naive association between inputs

and outputs. In other words, this tool could not distinguish

correlation from causation. What the deep network learns is

not a concept but merely a statistical correlation, prohibiting

the network from counterfactual inference (a hallmark ability

of intelligence). A human-like AI must be good at retrieving

causal relationship among feature components in sensory inputs,

thereby carving relevant information from a sea of irrelevant

noise (Pearl andMackenzie, 2018; Schölkopf, 2019; Schölkopf et al.,

2021). Therefore, understanding cause and effect in deep learning

systems is particularly important for the next-generation artificial

intelligence. The question whether the current deep learning

algorithm is able to do causal reasoning remains open. Hence,

how to design a learning system that can infer the effect of an

intervention becomes a key to address this question, although it

would be very challenging to make deep learning extract causal

structure from observations by applying simple physics principles

due to both architecture and learning complexities. This challenge

is now intimately related to the astonishing performances of large

language models (see the following seventh challenge), and the key

question is whether the self-attention mechanism is sufficient for

capturing the causal relationships in the training data.

7 Challenge VI—Internal model of the
brain

The brain is argued to learn to build an internal model

of the outside world, which is reflected by spontaneous neural

activities as a reservoir for computing (e.g., sampling) (Ringach,

2009). The agreement between spontaneous activity and stimulus-

evoked one increases during development, especially for natural

stimuli (Berkes et al., 2011), while the spontaneous activity outlines

the regime of evoked neural responses (Luczak et al., 2009). The

relationship between the spontaneous fluctuation and task-evoked

response causes recent interests in studying brain dynamics (Deco

et al., 2023). This can be formulated by the fluctuation–dissipation

theorem in physics, and the violation can be a measure of deviation

from equilibrium, although a non-equilibrium stationary state

exists.

In addition, the stimuli were shown to carve a clustered neural

space (Huang and Toyoizumi, 2016; Berry and Tkačik G, 2020).

Then, an interesting question is what the spontaneous neural

space looks like, and how the space dynamically evolves, especially

in the adaptation to changing environments. Furthermore,

how sensory inputs combined with the ongoing asynchronous

cortical activity determine the animal behavior remains open

and challenging. If the reward-mediated learning is considered,

reinforcement learning was used to build world models of

structured environments (Ha and Schmidhuber, 2018). In the

reinforcement learning, observations are used to drive actions,

which are evaluated based on reward signals the agent receives from

the environment after taking the actions. It is thus interesting to

reveal which type of internal models the agent establishes through

learning from interactions with the environments. This can be

connected to aforementioned representation and generalization

challenges. Moreover, a recent study showed a connection between

the reinforcement learning and statistical physics (Rahme and

Adams, 2019), suggesting that a statistical mechanics theory could

be potentially established to understand how an optimal policy

is found to maximize the long-term accumulated reward, with

an additionally potential impact on studying reward-based neural

computations in the brain (Neftci and Averbeck, 2019).

Another angle to look at the internal model of the brain is

through the lens of neural dynamics (Buonomano and Maass,

2009; Deco et al., 2009; Sussillo and Abbott, 2009; Vyas et al.,

2020), which is placed onto a low-dimensional surface, robust to
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variations in detailed properties of individual neurons or circuits.

The representation of stimuli, tasks, or contexts can be retrieved for

deriving experimentally testable hypotheses (Jazayeri and Ostojic,

2021). Although previous theoretical studies were carried out in

recurrent rate or spiking activity neural networks (Sompolinsky

et al., 1988; Brunel, 2000), a challenging issue remains to address

how neural activity and synaptic plasticity interact with each

other to yield a low-dimensional internal representation for

cognitive functions. The recent development of synaptic plasticity

combining connection probability, local synaptic noise, and neural

activity can realize a dynamic network in the adaptation to time-

dependent inputs (Zou et al., 2023). This study interprets learning

as a variational inference problem, making optimal learning

under uncertainty possible in a local circuit. Both learning and

neural activity are placed on low-dimensional subspaces. Future

studies must include more biological plausible factors to test

the hypothesis in neurophysiological experiments. Another recent

exciting achievement is using dynamical mean-field theory to

uncover rich dynamical regimes of coupled neuronal-synaptic

dynamics (Clark and Abbott, 2024).

Brain states can be considered as an ensemble of dynamical

attractors (von der Malsburg, 2018). The key challenge is how

learning shapes the stable attractor landscape. One can interpret

the learning as a Bayesian inference in an unsupervised way but not

the autoregressive manner (see the next section). The learning can

then be driven by synaptic weight symmetry breaking (Hou et al.,

2019; Hou and Huang, 2020), separating two phases of recognizing

the network itself and the rule hidden in sensory inputs. It is very

interesting to observe if this picture still holds in recurrent learning

supporting neural trajectories on dynamical attractors, and even

predictive learning minimizes a free energy of belief and synaptic

weights (the belief leads to error neurons) (Jiang and Rao, 2024).

New methods must be developed based on the recently proposed

quasi-potential method to study non-equilibrium steady neural

dynamics (Qiu and Huang, 2024) or dynamical mean-field theory

for learning (Zou and Huang, 2024).

8 Challenge VII—Large language
models

The impressive problem-solving capabilities of Chat-GPT,

where GPT is a shorthand of generative pretrained transformer,

are driving the fourth industrial revolution. The Chat-GPT is

based on large language models (LLMs) (OpenAI, 2023), which

represent linguistic information as vectors in high-dimensional

state space, as trained with a large text corpus in an autoregressive

way [in analogy to the hypothesis that the brain is a prediction

machine (Clark, 2013)], resulting in a complex statistical model of

how the tokens in the training data correlate (Vaswani et al., 2017).

The computational model thus shows strong formal linguistic

competence (Mahowald et al., 2024). The LLM is also a few-shot

or zero-shot learner (Brown et al., 2020; Kojima et al., 2022), i.e.,

the language model can perform a wide range of computationally

challenging tasks with prompting alone [e..g, chain-of-thought

prompting (Wei et al., 2022)]. Remarkably, the LLMs display a

qualitative leap in capability as the model complexity and sample

complexity are both scaled up (Kaplan et al., 2020), akin to phase

transitions in thermodynamic systems.

In contrast to the formal linguistic competence, the functional

linguistic competence is argued to be weak (Mahowald et al., 2024).

This raises a fundamental question what the nature of intelligence

is or whether a single next-token context conditional prediction is

a standard model of artificial general intelligence (Gerven, 2017;

Lake et al., 2017; Sejnowski, 2023). Human’s reasoning capabilities

in real-world problems rely on non-linguistic information, e.g., it

is unpredictable when a creative idea for a scientist would come

to a challenging problem at hand, which relies on reasoning about

the implications along a sequence of thought. In a biological

implementation, the language modules are separated from the

other modules involving high-level cognition (Mahowald et al.,

2024). The LLM explains hierarchical correlations in word pieces

in the training corpora rather than hidden casual dependencies.

In other words, the neural network has not constructed a mental

model of the world, which requires heterogeneous modular

networks, thereby unlike humans. Therefore, the LLM does not

know what it generates (as a generative model). Even if some

key patterns of statistical regularities are absent in the training

data, the model can generate perfect texts in terms of syntax.

However, the texts may be different from the truth. Knowing what

they know is a crucial hallmark of intelligent systems (Gerven,

2017). In this sense, the inner workings of the LLM are largely

opaque, requiring a great effort to mathematically formulate the

formal linguistic competence and further identify key elements

that must be included to develop a robust model of the world.

Mechanisms behind the currently observed false-positive such

as hallucination (Chomsky et al., 2023) could then be revealed,

which may be related to interpolation between modes of token

distributions. A recent study interpreting the attention used in

transformer-based LLM as a generalized Potts model in physics

seems inspiring (Rende et al., 2024), i.e., tokens as Potts spin

vectors.

Most importantly, we currently do not have any knowledge

on how to build an additional network that is able to connect

performance with awareness (Cleeremans, 2014), which is linked

to what makes us conscious (see the last challenge). Following

Marr’s framework, both computational and neural correlates of

consciousness remain unknown (Crick and Koch, 2003; Blum

and Blum, 2022; Dwarakanath et al., 2023). A current physical

way is to consider a Lyapunov function governing complex

neural computation underlying LLMs (Krotov and Hopfield, 2020;

Ramsauer et al., 2020). In this way, the Lyapunov function

perspective will open the door of many degrees of freedom to

control how information is distilled via not only the self-attention

but also other potential gatingmechanisms, based on the dynamical

system theory.

9 Challenge VIII—Theory of
consciousness

One of the most controversial questions is the origin of

consciousness—whether the consciousness is an emergent behavior

of highly heterogeneous and modular brain circuits with various

carefully designed regions [e.g., ∼1014 connections for the human
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brain and many functionally specific modular structures, such as

the prefrontal cortex, hippocampus, and cerebellum (Harris and

Shepherd, 2015; Luo, 2021)]. The subjectivity of the conscious

experience is in contradiction with the objectivity of a scientific

explanation. According to Damasio’s model (Damasio, 2001),

the ability to identify one-self in the world and its relationship

with the world is considered to be a central characteristic of

conscious state. Whether a machine algorithm can achieve the self-

awareness remains elusive. The self-monitoring ability [or meta-

cognition (Dehaene et al., 2017)] may endow the machine (such as

LLMs) to know what they generate. It may be important to clarify

how the model of one-self is related to the internal model of the

brain [e.g., through recurrent or predictive processing (Storm et

al., 2024)]. For example, Karl Friston argued that the conscious

processing can be interpreted as a statistical inference problem of

inferring causes of sensory observations. Therefore, minimizing

the surprise (negative log probability of an event) may lead to

self-consciousness (Friston, 2018), which is consistent with the

hypothesis that the brain is a prediction machine (Clark, 2013;

Gerven, 2017).

There are currently two major cognitive theories of

consciousness. One is the global workspace framework (Dehaene

et al., 1998), which relates consciousness to the widespread and

sustained propagation of cortical neural activities by demonstrating

that consciousness arises from an ignition that leads to global

information broadcast among brain regions. This computational

functionalism was recently leveraged to discuss possibility of

consciousness in non-organic artificial systems (Bengio, 2017;

Butlin et al., 2023). The other is the integrated information

theory that provides a quantitative characterization of conscious

state by integrated information (Tononi, 2004). In this second

theory, unconscious states have a low information content,

while conscious states have a high information content.

The second theory emphasizes the phenomenal properties of

consciousness (Albantakis et al., 2023), i.e., the function performed

by the brain is not subjective experience. Both theories follow a

top-down approach, which is in stark contrast to the statistical

mechanics approach following a bottom-up manner building the

bridge from microscopic interactions to macroscopic behavior.

These hypotheses are still under intensive criticism despite some

cognitive experiments they can explain (Koch et al., 2016). We

remark that conscious states may be an emergent property of

neural activities, lying at a higher level than neural activities. It is

currently unknown how to connect these two levels, for which a

new statistical mechanics theory is required. An exciting route is

to link the spontaneous fluctuation to stimulus-evoked response,

and a maximal response is revealed in a recurrent computational

model (Qiu and Huang, 2024), which can be thought of as a

necessary condition for consciousness, as information-richness

of cortical electrodynamics was also observed to be peaked at the

edge-of-chaos (dynamics marginal stability) (Toker et al., 2022).

This peak thus distinguishes the conscious from unconscious brain

states. From an information-theoretic argument, the conscious

state may require a diverse range of configurations of interactions

between brain networks, which can be linked to the entropy

concept in physics (Guevara Erra et al., 2016). The large entropy

leads to optimal segregation and integration of information (Zhou

et al., 2015).

Taken together, whether the consciousness can be created

from an interaction of local dynamics within complex neural

substrate is still unsolved (Krauss and Maier, 2020). A statistical

mechanics theory, if possible, is always promising in the sense

that one can make theoretical predictions from just a few physics

parameters (Huang, 2022), which may be possible from a high

degree of abstraction, and thus a universal principle could be

expected.

10 Conclusion

To sum up, in this viewpoint, we provide some naive thoughts

about fundamental important questions related to neural networks,

for which building a good theory is different from being completed.

The traditional research studies of statistical physics of neural

networks bifurcate to two main streams: one is to the engineering

side, developing theory-grounded algorithms; and the other is

to the neuroscience side, formulating brain computation by

mathematical models solved by physics methods. In physics, we

have the principle of least action, from which we can deduce

the classical mechanics or electrodynamics laws. We are not sure

whether in physics of neural networks (and even the brain), there

exists general principles that can be expressed in a concise form of

mathematics. It is exciting yet challenging to promote the interplay

between physics theory and neural computations along these eight

open problems discussed in the perspective paper. The advances

will undoubtedly lead to a human-interpretable understanding of

underlying mechanisms of the artificial intelligent systems, the

brain and mind, especially in the era of big experimental data in

brain science and rapid progress in AI studies.
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