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Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly 
improve the quality of life for affected individuals. Identifying ASD based on brain 
functional connectivity (FC) poses a challenge due to the high heterogeneity 
of subjects’ fMRI data in different sites. Meanwhile, deep learning algorithms 
show efficacy in ASD identification but lack interpretability. In this paper, a novel 
approach for ASD recognition is proposed based on graph attention networks. 
Specifically, we treat the region of interest (ROI) of the subjects as node, conduct 
wavelet decomposition of the BOLD signal in each ROI, extract wavelet features, 
and utilize them along with the mean and variance of the BOLD signal as node 
features, and the optimized FC matrix as the adjacency matrix, respectively. 
We  then employ the self-attention mechanism to capture long-range 
dependencies among features. To enhance interpretability, the node-selection 
pooling layers are designed to determine the importance of ROI for prediction. 
The proposed framework are applied to fMRI data of children (younger than 
12  years old) from the Autism Brain Imaging Data Exchange datasets. Promising 
results demonstrate superior performance compared to recent similar studies. 
The obtained ROI detection results exhibit high correspondence with previous 
studies and offer good interpretability.
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1 Introduction

Autism spectrum disorder (ASD) is a complex neuro-developmental disorder that impairs 
social communication, language skills, and behavior (Wise et al., 2015; Takayanagi et al., 2022). 
Recent estimates from the Centers for Disease Control and Prevention suggest that 
approximately 1 in 36 children grapples with ASD. Presently, the etiology and pathogenesis of 
ASD remain elusive, and identification and diagnosis rely on simplistic symptomatic 
observation and empirical judgment by clinicians (Sauer et al., 2021; Klin, 2022; Zahra et al., 
2022; Majhi et al., 2023). Artificial intelligence-assisted diagnosis of ASD can alleviate the 
contradiction between supply and demand between limited psychiatrists and more ASD 
patients (Abbas et al., 2020; Mertz, 2021). Early detection and intervention for ASD can 
enhance language, social, and learning skills in affected children, concurrently fostering 
optimal brain development (Bejarano-Martin et al., 2020; Dai et al., 2023).
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Neuroimaging, particularly functional magnetic resonance 
imaging (fMRI), stands out as a crucial tool for unraveling the intricate 
neural underpinnings of ASD (Nijhof et al., 2018; Noriega, 2019). 
Numerous machine learning (ML) and deep learning (DL) algorithms 
have been proposed for the identification of ASD based on fMRI 
datasets (Wang et al., 2019; Almuqhim and Saeed, 2021; Khodatars 
et al., 2021). For instance, Bi et al. used a random SVM cluster to 
classify 45 ASD and 39 typical development (TD), with an accuracy 
of 96.15% (Bi et al., 2018). Wee et al. employed a multi-kernel SVM to 
classify 58 ASD and 59 TD cases, achieving 96.27% accuracy (Wee 
et al., 2014). It’s crucial to note that these studies based on ML often 
suffered from limitations. The subjects were frequently sourced from 
a single research institution, leading to small sample sizes. For 
instance, one study included only 13 subjects with ASD and 14 
subjects with TD (Murdaugh et  al., 2012). To surmount these 
limitations, efforts have been directed toward deploying DL methods 
with larger-scale datasets. For instance, Aghdam et  al. achieved a 
classification accuracy of 65.56% utilizing deep belief networks 
(Akhavan Aghdam et al., 2018). Similarly, Heinsfeld et al. obtained a 
classification accuracy of 70% using an auto-encoder based on the 
ABIDE datasets (Heinsfeld et  al., 2018). Ma et  al. achieved a 
notable 74.73% accuracy in distinguishing ASD patients from 306 
ASD and 341 TD (Ma et al., 2023).

The algorithms mentioned above, whether utilizing ML or DL 
methods, have made meaningful explorations in identifying 
ASD. However, challenges arise when extending these models to larger 
population samples across different sites. One the one hand, the 
accuracy of ML models in identifying ASD tends to significantly 
decrease when applied to a completely new datasets. This is mainly 
due to the heterogeneity of fMRI data, which arises from differences 
in equipment, parameters, ethnicity, etc., across multiple sites 
collecting fMRI data. One the other hand, while DL models can 
mitigate the interference caused by this heterogeneity, the models 
often lack interpretability.

To address these challenges, some ASD identification methods 
based on graph neural networks (GNN) have emerged, which can 
provide good interpretability. The key to the method of using GNN is 
how to construct the graph. For example, Li et  al. proposed an 
interpretable GNN called BrainGNN (Li et  al., 2021); Wen et  al. 
proposed a multi-view graph convolution networks (MVS-GCN) for 
ASD diagnosis (Wen et  al., 2022); The BrainGNN model and 
MVS-GCN model have many parameters, long training time, and the 
classification accuracy needs to be further improved. It is worth noting 
that not all GNN-based methods have good interpretability, for 
example, the relational graph attention networks (RGAT) proposed by 
Gu et al., which treats each subject as a node of a graph and cannot 
mine abnormal brain regions (Gu et al., 2023).

For the above mentioned issues in ASD recognition, our paper 
proposes a pioneering approach for ASD recognition based on graph 
attention networks. The novel method strategically treats the region 
of interest (ROI) within subjects’ brains as fundamental node in a 
graph representation. This graph-based approach enables a more 
transparent and interpretable representation of the complex 
relationships within the data. Leveraging the connectivity structure 
encoded by the optimized functional connectivity (FC) as the 
adjacency matrix, we aim to provide a holistic view of the interplay 
between brain regions in individuals with ASD. The inclusion of the 
self-attention mechanism further enhances the model’s ability to 

capture nuanced dependencies within the data, addressing a current 
limitation in the interpretability of existing models. Recognizing the 
necessity for interpretability in ASD identification, our framework 
incorporates node-selection pooling layers. These layers play a crucial 
role in determining the importance of individual ROI, thereby offering 
a clear rationale for the model’s predictions.

To validate the effectiveness of our proposed framework, we apply 
it to fMRI data collected from children aged below 12 years, obtained 
from the Autism Brain Imaging Data Exchange (ABIDE) datasets. The 
outcomes of our experiments reveal promising results, showcasing 
superior performance compared to recent studies. Additionally, the 
obtained ROI detection results exhibit a high level of correspondence 
with findings from previous studies, further reinforcing the robustness 
and interpretability of our proposed approach.

In the subsequent sections, we  delve into the methodology, 
experimental setup, and results, providing a comprehensive 
exploration of our innovative approach and its contributions to the 
field of ASD identification. Through this research, we aim to bridge 
the existing gap between advanced machine learning techniques and 
clinical interpretability, fostering a more effective and practical 
approach to ASD detection and diagnosis.

2 Materials and methods

2.1 Participants and data preprocessing

This study specifically targets children aged 12 years old or 
younger. We employ the ABIDE datasets and adhere to specific criteria 
in selecting research subjects: (1) Participants are children aged 
12 years old or younger; (2) Each site contributes no fewer than 40 
subjects; (3) The ratio of ASD to TD subjects at each site is 
approximately equal. Consequently, a total of 264 subjects (134 ASD 
and 130 TD) from 5 sites have been selected. The details of these 
subjects are shown in Table 1.

All fMRI data preprocessing was conducted using the DPARSF 
software (Chao-Gan and Yu-Feng, 2010), following these specific 
steps: (1) Exclusion of the first 10 time points, (2) slice timing 
correction, (3) head motion realignment, (4) registration of individual 
structural T1-weighted images to the mean functional images using a 
6-degree-of-freedom linear transformation, (5) segmentation, (6) 
nuisance covariate regression (GSR was not performed due to 
concerns about increasing negative correlations), (7) normalization 
using DART- EL, and (8) temporal filtering.

TABLE 1 Scanning parameters and subjects in different sites.

Site MRI 
vendor

TR (msec.) ASD TD

NYU Siemens 2000 43 41

UM GE 2000 23 23

KKI Phillips 2,500 22 22

UCLA Siemens 3,000 26 24

STAN GE 2000 20 20

NYU, Langone Medical Center; UM, University of Michigan; KKI, Kennedy Krieger 
Institute; UCLA, University of California Los Angeles; STAN, Stanford University, 
TR, repetition time.
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2.2 Construction of the brain graph

The brain graph is a crucial component of the proposed 
framework, as it represents the connectivity patterns among various 
brain regions. The brain is segmented into 200 ROIs using the CC200 
Atlas (Craddock et al., 2012). These ROIs are defined as graph nodes 
V v v v= …{ }1 2 200, , , . An undirected weighted graph is represented as 
G V E= ( ), , where Eis the edge set, i.e., a collection of v vi j,( ) linking 
vertices from vi to v j , and is derived from the brain FC network. In 
addition, G includes an associated node feature set H h h h= …{ }1 2 200, , , ,  
such as h2 is the feature vector associated with node v2.

2.2.1 Construction of the node feature
To extract node features, we conduct wavelet transformations on 

the BOLD signals within the ROI. Specifically, if the BOLD signal in 
a given ROI is denoted as xi, the Daubechies wavelet transformation 
is utilized to process xiand decompose it into 6 layers, with ‘db1’ being 
employed as the wavelet basis function throughout the transformation. 
The decomposition yields approxim- ation coefficients at level 6 and 
detailed coefficients spanning levels 1 through 6. The expression for 
the transformation is as follows:

 
coeffs i A cD cD cD cD cD cDi i i i i i i[ ] =  

c , , , , , ,6 6 5 4 3 2 1
 

(1)

here, cA i
6  represents the approximation coefficients at level 6, and 

cD i6 , cD i5 , cD i4 , cD i3 , cD i2 , cD i1  represent the detail coefficients at 
levels 6 to 1.

Then, we use the following formula to calculate the mean and 
variance of each level of wavelet coefficients.
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here, i represents the level of wavelet transform, and N is the 
length of each wavelet coefficient array. Figures 1, 2 show the features 
extracted from the same ROI of any ASD and TD using wavelet 
transform, respectively.

Through wavelet transformation, the persistent patterns in brain 
activity (corresponding to approximation coefficients) and transient 
changes (corresponding to detail coefficients) are extracted. Compared 
to traditional node feature representations, wavelet transformation 
can extract features that are more discriminative. Ultimately, 
we  integrate the mean_coeffs and var_coeffs with the mean and 
variance of the BOLD signal itself to compose the node’s feature. 
Hence, node feature hi ∈

( ) 16 .

2.2.2 Construction of the adjacency matrix
We utilize the optimized brain FC network to build the adjacency 

matrix. Initially, the Pearson correlation coefficient between any two 
nodes’ time series is calculated to derive the FC matrix using the 
subsequent formula:
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(4)

where, xin, x jn, xi and x jdenote the time-courses of node i, time-
course of node j at time point n, the mean of the time-courses of node 
i and the mean of time-courses of node j, respectively. N represents the 
length of the BOLD signal.

To address the interference stemming from heterogeneity in 
multi-site fMRI data, some measures were adopted: on one hand, the 
FC matrices of all ASD and TD subjects were averaged separately; on 
the other hand, a predefined threshold was used to filter out 
unimportant connections, meaning that elements in the averaged FC 
matrices above the threshold were preserved while those below the 
threshold were set to zero. The FC matrices optimized through the 
above steps were used as adjacency matrices. Additionally, the 
consistency and comparability of the data were also enhanced to some 
extent by preprocessing all fMRI data using the same steps, as 
described previously.

2.3 A model for ASD classification based on 
graph attention networks (GAT)

The GAT-based model comprises three types of layers: GAT 
layers, top-K pooling layers, and fully connected layers. The model 
architecture is depicted in Figure 3.

2.3.1 GAT layer
The GAT employs attention mechanism which assigns different 

weights to different neighbors based on their relevance to the node 
being encoded (Wan et al., 2024). Let the ith node features in the lth 
layer be hi

l d l( ) ∈
( )

 , the GAT operation can be expressed as follows:

 
hi
l

j Neighbors i
ij

l
j
lW h( )
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−( ) −( )=












∑σ α 1 1

 
(5)

here, σ is the activation function, typically ReLU, W l−( )1 is a 
learnable weight matrix, αijrepresents attention coefficients and hj

l−( )1

denotes the input features of neighboring node j.
In formula (5), the calculation of attention coefficients αijis a crucial 

aspect. We utilize multiple attention heads can capture different aspects 
of relationships. After obtaining the attention coefficients from each 
attention head, these coefficients are aggregated by taking an average to 
form the final attention coefficients for each node. The attention 
coefficient α

ij
k in the k-th attention head is as follows:

 

α
α
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here, αkis a learnable parameter vector for the k-th attention head, 
  denotes concatenation, Wkis learnable weight matrices.
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In addition, we added L2 regularization to the GAT layers to avoid 
overfitting. The regularization parameter for this process is denoted as 
weight_decay.

2.3.2 Top-K pooling layer
The top-K pooling layer is a pooling operation that selects the top 

K nodes based on attention scores. For every edge in the graph, 
we arrange the nodes according to their combined attention scores 

and then choose the top K nodes. Specifically, the process can 
be outlined as follows:

Step 1: Node-level aggregation.
For each node i, aggregate the attention scores across its incoming 

edges. This could involve summing or averaging the attention scores:

 
N de attentioni

j Neighbors i
ijo _ =

∈ ( )
∑ α

 
(7)

FIGURE 1

Wavelet features of ASD.

FIGURE 2

Wavelet features of TD.
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Step 2: Global aggregation.
Aggregate the aggregated attention scores across all nodes in the 

graph. This results in a global attention score for each node, 
representing its overall importance:

 
Global attention Node attentioni

i Nodes
i_ _=

∈
∑

 
(8)

Step 3: Top-K selection:
Sort the nodes based on their global attention scores in descending 

order and select the top K nodes with the highest global attention 
scores. Mathematically, the selection process can be represented as:

 S cted nodes Top K Nodes Global attentioniele ,_ _= − ( ) (9)

2.3.3 Fully connected layer
The fully connected layers play a important role in consolidating 

multi-scale features derived from the GAT-Pooling 1 and GAT-Pooling 
2 block (Chen et al., 2023; Li et al., 2023; Wan et al., 2023a). We feed 

the multi-scale features Z 3( ) to the fully connected layer. Z 3( ) is 
written as:

 Z Z Z3 1 2( ) ( ) ( )= +  (10)

here, Z 1( )
and Z 2( ) are the output which underwent Global 

Maximum Pooling (GMP) and Global Average Pooling (GAP) from 
the GAT-Pooling 1 and GAT-Pooling 2 block, respectively. Z 1( )

and Z
2( ) 

can be represented as:

 
Z GMP H GAP H1 1 1( ) ( ) ( )= ( ) ( )

 
(11)

 
Z GMP H GAP H2 2 2( ) ( ) ( )= ( ) ( )

 
(12)

Lastly, batch normalization is applied for enhanced training 
stability, and dropout is utilized for regularization. The final linear 
layer employs a sigmoid activation function, compressing the output 

BOLD1

BOLD2

...

BOLD n

WT

WT

WT

Mean

Mean & Var

Mean & Var

Mean & Var
Feature vector

Adjacency 
matrix

Graph

GAT 1Top-K pooling 
1GAT 2Top-K pooling 

2

Fully 
connected ASD or TD

GMP(H(2))||GAP(H(2))

GMP(H(1))||GAP(H(1))+

GAT-Pooling 2 GAT-Pooling 1

FIGURE 3

The overview of ASD prediction pipeline.
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to a one-dimensional tensor, suitable for the binary classification task 
of ASD identification.

3 Results and discussion

The model incorporated GAT layers and top-k pooling to 
capture graph-based features at different scales. It was trained 
with the cross-entropy loss function and optimized using the 
Adam optimizer. The model was instantiated with input features 
of size 16, GAT 1 and GAT 2 sizes of 32 each, and utilized 4 
attention heads. The proposed algorithm was performed using the 
HP personal computer (CPU: Intel core i7 2.6 GHz; RAM: 16 GB; 
NVIDIA Quadro P600: 4GB) and Torch-1.8.0 + cu111. The 
classification quality was assessed by the following performance  
indices:

 Accuracy TP TN TP FN TN FP= +( ) + + +( )/  (13)

 Sensitivity TP TP FN= +( )/  (14)

 Specificity TN TN FP= +( )/  (15)

Here, TP, FN, TN, and FP denote, respectively, the number of 
ASD correctly classified, the number of ASD predicted to be TD, the 
number of TD correctly classified, and the number of TD predicted 
to be ASD.

3.1 Result of single site

In the proposed model, the weight_decay was set to 0.0001, the 
ratio of the top_k pooling was set to 0.2, the dropout rate was set to 
0.5, the learning rate was set to 0.001 and the number of epochs was 
30. As shown in Table 2, our proposed algorithm for childhood ASD 
achieved promising results across different sites by the 5-fold cross-
validation strategy.

The algorithm at the NYU site achieved a moderate accuracy of 
76.47%. It demonstrated higher specificity (87.50%) than sensitivity 
(66.67%), indicating a better ability to correctly identify TD cases. At 
the UM site, the algorithm showcased a relatively high accuracy of 
83.33%. The site exhibited balanced sensitivity (77.50%) and specificity 
(90.00%), suggesting a good overall performance in correctly 
identifying both ASD and TD cases. The KKI site displayed a moderate 

accuracy of 76.39%. Similar sensitivity (75.00%) and specificity 
(77.50%) were observed, suggesting a balanced performance but with 
room for improvement. The STAN site showcased the highest 
accuracy of 87.70%. High specificity (100%) indicates an excellent 
ability to identify TD cases, although sensitivity (83.33%) could 
be further improved.

The algorithm’s effectiveness varies across sites, emphasizing the 
need for site-specific adjustments or considerations in its application. 
High specificity is crucial to avoid false positives, ensuring accurate 
identification of TD cases. Further refinement may be  needed, 
especially in achieving higher sensitivity for enhanced ASD case 
detection. In summary, the algorithm exhibits promising performance 
but also highlights the importance of considering site-specific factors 
and continuous refinement for optimal results in childhood 
ASD identification.

3.2 Result of multiple sites

To further evaluate the performance of the proposed model, 
we conducted experiments on a multi-site fMRI datasets with 134 
ASD subjects and 130 TD subjects. It was worth mentioning that, 
in order to overcome the interference caused by the heterogeneity 
of multiple sites data, we averaged the FC matrix mean of all ASD 
and TD subjects, respectively, and zero the connection coefficient 
with values less than 0.4. The weight_decay was set to 0.001, the 
ratio of the top_k pooling was set to 0.2, the dropout rate was set 
to 0.5, the learning rate was set to 0.001 and the number of epochs 
was 100. The proposed algorithm achieved an accuracy of 74.07%, 
a sensitivity of 69.23% and specificity of 78.57% by the 10-fold 
cross-validation.

We conducted a comparative analysis between the proposed 
algorithm model and several recent graph neural network-based 
models. To ensure fairness, we  utilized the same datasets and 
employed 10-fold cross-validation for evaluation. The results of the 
comparative analysis are presented in Table 3.

The BrainGNN model achieved a moderate accuracy of 66.67%. 
Its balanced sensitivity (69.23%) and specificity (64.29%) suggest a fair 
ability to identify both ASD and TD cases. The MVS-GCN model 
demonstrated a relatively higher accuracy of 70.37%. Its balanced 
sensitivity (65.69%) and notably higher specificity (75.09%) suggest a 
robust overall performance. The RGAT model showcased a 
competitive accuracy of 69.23%, displaying a sensitivity of 66.67% and 
specificity of 71.43%. The proposed algorithm not only achieves a 
higher accuracy but also demonstrates a remarkable specificity, 
indicating its effectiveness in correctly identifying TD cases. This 
superior performance positions the proposed algorithm as a robust 

TABLE 2 Results of classification at different sites.

Site Accuracy Sensitivity Specificity

NYU 76.47% 66.67% 87.50%

UM 83.33% 77.50% 90.00%

KKI 76.39% 75.00% 77.50%

UCLA 70.00% 66.67% 75.00%

STAN 87.50% 83.33% 100%

TABLE 3 Results of classification with different methods.

Model Accuracy Sensitivity Specificity

BrainGNN 66.67% 69.23% 64.29%

MVS-GCN 70.37% 65.69% 75.09%

RGAT 69.23% 66.67% 71.43%

The proposed 

algorithm
74.07% 69.23% 78.57%
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and promising approach for ASD classification compared to the 
other models.

Our proposed algorithm exhibits superiority for several key 
reasons. Firstly, by leveraging wavelet transformation to extract 
temporal features from ROI time series, we effectively capture the 
spatiotemporal characteristics of BOLD signals, robustly 
constructing features for nodes in the brain graph. Secondly, 
we employ an averaging approach on the FC matrix and threshold 
elements below a predefined threshold, potentially eliminating 
spurious connections and enhancing the representation of genuine 
edges. Thirdly, the utilization of attention mechanisms enables the 
identification of influential connections, pinpointing nodes that 
play crucial roles in the network. Lastly, we adopt a multi-scale 
perspective by separately extracting features from two graph 
convolutional layers and concatenating them, providing a 
comprehensive representation of node features (Wan et  al., 
2023b,c). These combined strategies contribute to the enhanced 
performance of our algorithm.

3.3 Interpretability

The nodes and edges selected from the top-k pooling layer play 
a crucial role in identifying ASD, enhancing the model’s 
interpretability. By utilizing the top-k pooling layer, we identified 
key ROIs from both individual and multiple sites, as shown in 
Table 4. The numbering of these ROIs corresponds to the definitions 
in the CC200 Atlas based on the tcorr05_2level_all.nii template 
(Craddock et al., 2012).

According Table  4, the distribution of important ROIs across 
different sites reveals interesting patterns. For instance, certain ROIs, 
such as ROI 40, 41, 42, 43, 44, 45, and 46, consistently appear as 
important across multiple sites, indicating their potential significance 
in ASD diagnosis irrespective of the specific population or data 
acquisition protocol. Conversely, some ROIs, such as ROI 35, show 
site-specific importance, suggesting variations in ASD-related neural 
substrates among different populations or data acquisition settings. 
These consistently appearing ROIs were mapped to the corresponding 
regions in the Brodmann’s brain parcellation template, as illustrated 
in Table  5. The connections among these ROIs are depicted in 
Figure 4. We proceed with a comprehensive analysis of the results to 
gain insights into the neural mechanisms underlying ASD and the 
performance of our model.

Firstly, ROIs associated with social cognition and language 
processing, such as ROI 40 and 42, are consistently highlighted 
across various sites, aligning highly with existing literature on 
ASD-related alterations in social and language-related brain 
networks. The fusiform gyrus (ROI 40), an essential brain region 
for face recognition processes, has been implicated in previous 
studies. Task-based fMRI investigations have revealed decreased 
activation in the fusiform gyrus during face recognition tasks in 
individuals with ASD. Furthermore, research suggests that the 
accuracy of face recognition in ASD patients can serve as a crucial 
indicator predicting the severity of later symptoms. Therefore, 
localized abnormalities in the FC of the fusiform gyrus may 
be associated with difficulties in face recognition, contributing to 
social interaction difficulties observed in individuals with autism. 
The inferior temporal gyrus (ROI 40) plays a crucial role in 

language and visual cognition, and localized FC abnormalities in 
the inferior temporal gyrus may contribute to language 
impairments observed in individuals with ASD. Previous task-
based fMRI studies have also highlighted the involvement of the 
inferior temporal gyrus in working memory, a domain where ASD 
patients often exhibit anomalies, showing correlations with 
repetitive behaviors. This findings strengthens the validity of our 
model’s predictions and underscores the importance of these 
brain regions in ASD pathophysiology.

Secondly, the frequency of ROIs 41, 43, 44, 45, 46, 47, and 59 
is also very high. These abnormal regions can also correspond to 
previous research findings. For example, some studies have found 
that patients with autism show reduced activity in the orbitofrontal 
cortex (ROI 41), which may be related to their difficulties in social 
interaction and emotional processing. The secondary visual cortex 
(ROI 43) of patients with autism may be overactive, potentially 
connected to their heightened sensitivity to visual stimuli. 
Functional abnormalities in the primary motor cortex (ROI 59) 
might contribute to their difficulties in motor coordination and 
execution. Overall, these findings suggest that autism might 
involve abnormalities across multiple brain regions, which could 
underlie the condition’s symptoms related to social interaction, 

TABLE 4 Results of classification at different sites.

Site The important ROI

NYU
9, 14, 40, 42, 44, 47, 52, 63, 65, 77, 109, 110, 116, 140, 143, 144, 

159, 161,173, 179, 180, 193, 194, 199

UM
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 57, 58, 

59

KKI
5, 40, 41, 42, 43, 44, 45, 46, 47, 83, 85, 87, 90, 101, 103, 112,124, 

126, 145, 183

UCLA
5, 13, 23, 32, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 59, 64, 78, 92, 

95, 108, 110, 135, 155, 196

STAN
35, 40, 41, 42, 43, 44, 45, 46, 47, 99, 105, 106, 144, 147, 164, 166, 

168, 169,181, 187, 192, 197

Multiple sites
7, 36, 40, 41, 42, 43, 44, 45, 46, 47, 59, 78, 99, 115, 117, 127, 131, 

142,149, 151, 153, 156, 179

TABLE 5 Results of classification with different methods.

The most 
discriminative ROI

Brodmann area Brain area

40 BA37_R Fusiform gyrus

41 BA11_L Orbitofrontal area

42 BA20_L
Inferior temporal 

gyrus

43 BA_18R
Sencondary visual 

cortex

44 None Thalamus_L

45 BA23_L
Ventral posterior 

cingulate cortex

46 BA11_L Orbitofrontal area

47 BA27_R Piriform cortex

59 BA4_R Primary motor cortex
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sensation, emotion, and movement. However, these results 
require further investigation for confirmation and deeper  
understanding.

In addition, the observation of certain ROIs being identified 
exclusively at specific sites warrants further investigation into potential 
site-specific factors influencing ASD neurobiology and diagnostic 
biomarkers. Factors such as demographic characteristics, clinical 
heterogeneity, and imaging protocols may contribute to these 
variations, highlighting the need for personalized and context-specific 
approaches in ASD diagnosis and treatment.

4 Conclusion

In conclusion, our proposed algorithm represents a significant 
advancement in the early detection and diagnosis of Autism 
Spectrum Disorder (ASD) using functional MRI (fMRI) data. By 
addressing the challenges associated with identifying ASD based on 
brain functional connectivity (FC), our approach offers several key 
advantages over existing methods. Firstly, the integration of wavelet 
transformation enables the extraction of temporal features from 
regions of interest (ROIs), allowing for the capture of spatiotemporal 
characteristics inherent in BOLD signals. Secondly, our approach 
incorporates an averaging strategy on the FC matrix and employs 
thresholding to eliminate spurious connections below a predefined 
threshold. Thirdly, the utilization of attention mechanisms enables 
the identification of influential connections within the brain 
network, highlighting nodes that play critical roles in ASD 
pathology. Lastly, our adoption of a multi-scale perspective, 
achieved through the extraction of features from two graph 
convolutional layers and their subsequent concatenation, provides 
a comprehensive representation of node features. By demonstrating 
superior performance compared to recent studies and offering high 
interpretability, our approach holds promise for improving the 
quality of life for individuals affected by ASD and advancing our 
understanding of its neurobiological underpinnings. Moving 
forward, continued research and validation efforts are warranted to 
further refine and validate our algorithm for real-world 
clinical applications.
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FIGURE 4

Connection patterns that are consistently present in the brains of ASD patients.
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