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Adversarial attacks are still a significant challenge for neural networks. Recent

e�orts have shown that adversarial perturbations typically contain high-

frequency features, but the root cause of this phenomenon remains unknown.

Inspired by theoretical work on linear convolutional models, we hypothesize

that translational symmetry in convolutional operations together with localized

kernels implicitly bias the learning of high-frequency features, and that this is

one of the main causes of high frequency adversarial examples. To test this

hypothesis, we analyzed the impact of di�erent choices of linear and non-

linear architectures on the implicit bias of the learned features and adversarial

perturbations, in spatial and frequency domains. We find that, independently of

the training dataset, convolutional operations have higher frequency adversarial

attacks compared to other architectural parameterizations, and that this

phenomenon is exacerbated with stronger locality of the kernel (kernel size) end

depth of the model. The explanation for the kernel size dependence involves

the Fourier Uncertainty Principle: a spatially-limited filter (local kernel in the

space domain) cannot also be frequency-limited (local in the frequency domain).

Using larger convolution kernel sizes or avoiding convolutions (e.g., by using

Vision Transformers or MLP-style architectures) significantly reduces this high-

frequency bias. Looking forward, our work strongly suggests that understanding

and controlling the implicit bias of architectures will be essential for achieving

adversarial robustness.

KEYWORDS

adversarial examples, implicit regularization, neural networks, convolutional

architectures, Uncertainty Principle

1 Introduction

Despite the enormous progress in training neural networks to solve hard tasks, they

remain surprisingly and stubbornly sensitive to imperceptibly small perturbations known

as adversarial examples. Extensive research has been conducted on the nature and structure

of adversarial examples, as evidenced by studies such as Goodfellow et al. (2014), Tanay and

Griffin (2016), Bubeck et al. (2018), Fawzi et al. (2018), Gilmer et al. (2018), Schmidt et al.

(2018), Ford et al. (2019), Ilyas et al. (2019), and Mahloujifar et al. (2019). One notable
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finding from experiments is that adversarial examples often

exhibit a significant amount of high-frequency energy content

(Yin et al., 2019) but their precise origin and nature remain

obscure. In this context, a natural questions emerges: does this

phenomenon depend on the neural network architecture or on the

training dataset?

1.1 Influence of the dataset on the nature
of the adversarial examples

Previous studies have demonstrated that adversarial examples

are not random perturbations of the input space; rather, they

contain dataset-specific information that reveals class decision

boundaries (Ilyas et al., 2019). This raises the question: “Do

high-frequency energy concentration in adversarial examples reflect

specific task- and data-dependent learned features?”. Interestingly,

Wang et al. (2020) showed that high-frequency features are crucial

for achieving high generalization performance in various models

trained on CIFAR10. They argue that learning high-frequency

features is a data-dependent phenomenon, as models relying

on lower-frequency features exhibited lower accuracy. Previous

research has also demonstrated that the sensitivity to certain

frequency-based features can be modified by reducing their

reliability through data augmentations in the dataset (Geirhos

et al., 2018; Hermann et al., 2020; Li et al., 2022). Maiya et al. (2021)

provided evidence that different datasets produce adversarial

examples with varying concentrations of energy in the frequency

domain that correlate with the dataset statistics.

Taken together, these findings suggest that the selection of features,

particularly high-frequency features, is largely influenced by dataset

statistics and that this bias, in turn, affects the nature of adversarial

examples.

1.2 Influence of the neural network implicit
bias on the nature of the adversarial
examples and the Implicit Fourier
Regularization hypothesis

In many cases, datasets contain multiple features that are

correlated with the target function and the learned weights to

detect those features. A natural question is therefore: “Why does a

particular model tend to use frequency-based features, particularly

high-frequency features, and how is this related to the nature

of adversarial attacks?”. Various theories have been proposed to

explain the robustness and generalization of neural networks from

a frequency perspective. One example is Universal Adversarial

Perturbations, a method used to determine the directions in input

space that neural networks are sensitive to Tsuzuku and Sato

(2019). The authors’ findings highlight the importance of the model

choice for robustness, as they discovered that convolutional neural

networks exhibit sensitivity to noise in the Fourier Basis, unlike

other models such as MLPs.

In addressing the aforementioned question, we adopt a similar,

but more general, approach that relies on the concept of “implicit

bias.” Implicit bias in machine learning refers to the phenomenon

where the training process of an overparameterized network,

influenced by factors including the choice of model architecture

and parametrization (Gunasekar et al., 2018; Yun et al., 2020),

the initialization scheme (Sahs et al., 2020a), and the optimization

algorithm (Williams et al., 2019; Sahs et al., 2020b; Woodworth

et al., 2020), naturally favors certain solutions or patterns over

others, even in the absence of explicit bias in the training data. The

implicit bias of state-of-the-art models has been shown to play a

critical role in the generalization of deep neural networks (Arora

et al., 2019; Li et al., 2019). Recent theoretical work (Gunasekar

et al., 2018) on L-layer deep linear networks proved that (i) fully

connected layers induce a depth-independent ridge (ℓ2) regularizer

in the spatial domain of the network weights whereas, surprisingly,

full-kernel convolutional layers (i.e., where the support of the

kernel weights is the full image, in contrast to local kernels)

induce a depth-dependent sparsity (ℓ2/L) regularizer in the weights

frequency domain. The hypothesis we aim to test is that the

learned weights, which determine the features detected in the

dataset to solve the task, also influence the characteristics of

adversarial examples.

At this point, it is important to note that linear convolutional

models differ from the high-performance convolutional neural

networks (CNNs) typically used in practical applications.

Nevertheless, we postulate that similar mechanisms of implicit

regularization might be operating in deep nonlinear models

with local convolutions. In particular, we suggest that the high-

frequency nature of adversarial perturbations arises not solely from

the dataset statistics but also from the implicit bias induced by

the specific architectural choice. To formalize this hypothesis, we

introduced the Implicit Fourier Regularization (IFR) hypothesis:

Translational symmetry in convolutional operations together with

localization of kernels introduces an implicit regularization in the

frequency content of the network weights and adversarial attacks,

leading to a preference for higher frequencies.

The IFR hypothesis suggests that in datasets where high-

frequency features are important for the task, models using

convolutional parametrization with local kernels tend to have

a bias toward learning these features. As a result, adversarial

perturbations generated by these models also tend to exhibit high-

frequency components. More broadly, our research establishes a

connection between the implicit regularization arising from model

parametrization and the structure of adversarial perturbations.

2 Methods

2.1 Neural network training

Each architecture was defined by the number of hidden

layers, and non-linearities (see Supplementary Table 1). In terms of

hyperparameters, we tuned the maximum learning rates for each

model by starting from a base learning rate of 0.1, and then, if there

were visible failures during training (most commonly, the model

converging to chance performance), we adjusted the learning rate
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up/down by a factor of 10 or 50. Amongst the model architectures

we explored, the only hyper-parameter that was tuned was the

learning rate. The final values of the learning rates after search are

detailed in Supplementary Table 5. In addition, all the models were

trained with linearly decaying learning rate follow 0.3 factor for

each epoch and resetting the learning rate back to max when the

model was trained at least 20 epochs. All themodels were trained on

a single GTX 1080 Ti for at least 40 epochs (30–120 GPUminutes),

andwe choose the epochwith the highest validation set accuracy for

further experiments (see hyperparameters of training and accuracy

on Supplementary Section 1.3).

2.2 Adversarial attack generation

We used the Foolbox package (Rauber et al., 2017; MIT license)

to generate adversarial perturbations δ for every example in the

test set for a fully trained model (PGD-Linf, PGD-L2, PGD-L1,

Kurakin et al., 2016, BB-Linf, and BB-L2, Brendel et al., 2019).

Finally, we computed the 2-D Discrete Fourier spectrum δ̂ :=

Fδ of the perturbation δ. Details of the attacks are available in

Supplementary Table 10.

2.3 Model predictor calculation and
Toeplitz matrix

In our work we started by considering linear networks

φ :R
d → R given by

φ(x) = βT
L x :=

(

L
∏

l=1

Wl

)

x (1)

where x is a vector in R, Wl ∈ R
d×d represents the network’s

weights and L the number of layers. β represents the model

predictor and contains the information about the type of features

the network learn to detect in the input. The characterization of

the learned β will be therefore one of the focuses of this work as

it determines the way the model is extracting information from

the input and also its biases. For its computation we used two

different methods. For the linear models, we transformed the

weights of every architecture into their matrix form. For example

for the convolutional operation, we generated a Toeplitz matrix per

convolutional filter and then calculated the dot product of the first l

matrices to get the βl [or for all l = 1, · · · , L to get the input-output

function β , see Equation (1) and Gunasekar et al., 2018]. For the

nonlinear models, because the nonlinearities do not allow us to use

the weights directly, we decided to use a proxy, the saliency map.

The saliency map is the gradient ( dφ
dx
) of the function [φ(x)] with

respect to the input image (x). In the linear case, these gradients

are exactly the weights of the function β (up to a constant),

which we confirmed using the Toeplitz computation above. For the

nonlinear models, because the weights used changed per example,

the gradient gave us a good approximation of those weights.

2.4 Generation of hidden shortcut features

Our technique draws inspiration from the field of

steganography, which introduces visually imperceptible features in

images (Cheddad et al., 2010). Here we describe how we added

class-correlated features in the Fourier space of the train and

test set images to highlight biases of the model representation in

Fourier space see also Figure 1. Those features are generated in the

form of a noisy matrix (added to the image) with specific frequency

characteristics (High, Medium, and Low). Below we detail how we

generated those matrices.

For each class, we sampled a 3 × 32 × 32 matrix of scalars

(image dimension) from a Gaussian distribution with mean of

0 and standard deviation of 1, one per class (Nclass). Then we

scaled the features by a scalar factor ǫ. Next, we generated masking

matrices (Mclass) of the same size. Subsequently, we filtered the

Nclass matrices by computing the Hadamard product of them with

Mclass masking matrices for low, medium and high frequencies.

Finally, these class-specific features were added into the Fourier

spectrum of CIFAR-10 train and test images corresponding to their

respective classes. The mathematical definitions are as follows:

Nclass ∼ N (0, 1)

Mclass = FrequencyMclass =

{

Inside frequency range 1

Outside frequency range 0

ηclass = Mclass ⊙ (ǫ ∗ Nclass), ˆ̃x = x̂+ ηclass

3 Experimental results

Next, we will test different implications of the IFR principle.

Specifically:
• In Section 3.1 we analyze the implicit bias in the learned

weights of a trained network (extending the validity of the

results in Gunasekar et al., 2018 to the non-linear case) and

its relation with the adversarial perturbations. We do so for

a range of architectures (convolutional or fully connected,

deep or shallow, linear or not linear) where the support of the

weights is the full image (fully connected or full kernel models).

• In Section 3.2 we directly test the IFR hypothesis and focus

on convolutional architectures with local kernels. Specifically,

we analyze the influence of different levels of locality of the

convolutional kernel on the Fourier spectrum of the network

learned weights and of the associated adversarial attacks. To

gain more insight on the nature of the bias we also perform

the same analysis focusing on importance of convolutional

translational symmetry due to weights sharing. Finally, for

linear models, we propose a theoretical explanation of the

experimental results based on the uncertainty principle.

• In Section 3.3 we further test the models’ Fourier spectral bias

in non-linear models, injecting frequency-targeted shortcuts in

the dataset and analyze to which extent different models take

advantage of such features.

• In Section 3.4, we evaluate if the results obtained in the

previous sections extend to a range of complex models trained

on Imagenet. Moreover we consider other state of the art
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FIGURE 1

Steganography experiment. Class specific information ηclass is introduced into Fourier Spectrum of training set image ( ˆ̃x = x̂+ ηclass). Models with

sparse frequency regularizer (full and local kernel convolutional models) take more advantage of hidden shortcut features in the dataset leading to

higher test accuracy.

architectures that are not-convolutional, such as transformers,

and compare their frequency bias with that of convolutional

models.

3.1 Full models analysis: relation between
implicit bias and adversarial perturbations

To establish if there exists a relationship between the network’s

implicit regularization and the adversarial perturbations, we

started, as previously mentioned, from the recent theoretical results

in Gunasekar et al. (2018) where the authors considered the linear

network as Equation (1). They prove that:

• when no restrictions is imposed on the Wl matrices (fully

connected layers), training with stochastic gradient descent

naturally converges to a solution with minimal ‖βL‖2 norm.

• when theWl matrices are convolutional (with kernels support

the full image, full kernel) the training converges to a solution

with minimal ‖β̂L‖ 2
L
norm where β̂L is the Discrete Fourier

Transform of βL.

In other words, changing the parametrization of the linear layer

of the model in Equation (1) induces different learned features β .

Here, through experiments, we: (1) confirm these findings;

(2) extend them to non-linear models; (3) test that a similar

regularization is also present in the adversarial perturbations δ

generated from each considered model. We started this analysis

considering the two linear architectures discussed in Gunasekar

et al. (2018), namely fully connected and full kernel convolutional

models. Subsequently, we considered non-linear architectures

including shallow versions (with one hidden layer) and deep

versions (with three hidden layers) of these models. Moreover, we

trained the models on five different datasets: CIFAR-10 (Krizhevsky

and Hinton, 2009), CIFAR100 (Krizhevsky and Hinton, 2009),

MNIST (LeCun and Cortes, 2010), FashionMNIST (Xiao et al.,

2017), and SVHN (Netzer et al., 2011) using PyTorch (Paszke et al.,

2019). Throughout the paper, we employed the PGD attack, which

is considered a standard attack in the field (see Section 2 for details).

In Figure 2 we report the values of the (max-normalized)

ℓ2 (of β , δ) and ℓ1 (of β̂ , δ̂) norms for the different considered

architectures. We observe that :

• The results in Gunasekar et al. (2018) are confirmed and

extended to the non-linear case: 1) the ℓ1 norm of β̂ in the case

convolutional full kernel architectures is depth dependent (a);

2) fully connected networks have ℓ2 norms of β that do not

change with depth (b).

• The same pattern holds for the average across adversarial

perturbations associated to each model choice (c,d).

3.2 Translational symmetric convolutional
models with localized kernels: testing the
IFR hypothesis

One limitation of the analysis done in Gunasekar et al. (2018),

and in the previous section, is that full kernel convolutional layers

are not often used in common state-of-the-art architectures. Non-

linear convolutional models with localized kernels are usually

employed instead. Moreover the theory in Gunasekar et al. (2018)

only specifies a bias toward ℓ 2
L
-sparsity in the frequency domain of

the weights for linear convolutional networks with no information

about the distribution of those frequencies. In this section we fill

this gap and focus on convolutional non linear models with local

kernels and analyze and compare the energy distribution in the
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FIGURE 2

(A) ℓ1 norm of β̂; (B) ℓ2 norm of β̂; (C) ℓ1 norm of the averaged δ̂ perturbations; (D) ℓ2 norm of the averaged δ̂ perturbations. FC, Fully Connected;

FKC, Full Kernel Convolutional; L, number of layers.

frequency domain of the network’s weights β and the adversarial

perturbations δ. Moreover, to investigate if convolutional weights

sharing, i.e., translational symmetry, is playing a major role in

determining such energy distribution, we consider a third version

of the model with local kernels but no convolutional sharing of the

weights, which we call locally connectedmodel.

The results, reported below, are directly related to the main

claim of the paper, the IFR hypothesis, i.e., that convolutional

operations with decreasing kernel size favor higher frequencies

learning in the network weights and adversarial attacks. In specific,

we consider convolutional non linear models (of different depths

and non-linearities) with (1) local (fixed size) or (2) full kernels

and (3) locally connected models. For the associated β and δ

we then:

• Calculate the half power frequency (f50), i.e., the frequency at

which we accumulate the 50% total energy and average across

different depths and non-linearities for, respectively, models

in (1-2-3). This analysis aimed at determining whether a local

kernel favors higher-frequency learning compared to models

with full kernels (1–2) and the importance convolutional

weights sharing (3).

• Repeat the analysis across multiple datasets (MNIST,

FashionMNIST, SVHN, CIFAR10, and CIFAR100) to test if

the phenomenon is dependent on the dataset statistics.

• Plot the fraction of energy outside a fixed frequency interval

of [− k
2 ,+

k
2 ], divided by the total energy, for each kernel

(which we called κhigh). This analysis aimed to assess whether

smaller convolutional kernels favor concentration of energy

in high frequencies for the learned network’s weights. The

specific value of k was chosen arbitrarily, as we are interested

in observing the overall trend.

The results depicted in Figure 3 confirm the validity of the

IFR hypothesis. Notably, we observe that models with full kernels

exhibit a lower f50 compared to those with local kernels (a).

This trend holds true for all models that possess a significant

content of useful high-frequency features, which accounts for

the distinct behavior observed in MNIST and FashionMNIST

datasets (Rahaman et al., 2019). Furthermore, this phenomenon

appears to be independent of the chosen dataset, as convolutional

architectures with local kernels consistently demonstrate higher

f50 values, albeit at different levels. Our findings also underscore

the pivotal role of convolutional weights translational symmetry

in determining the frequency bias. For instance, the f50 values of

locally connected models with the same kernel size (LC) differ

significantly from those of local kernel convolutional models. The

same observations are applicable to adversarial perturbations (b).

To further test the dependence of the frequency bias from the

kernel size, Figure 4 reports the fraction of energy κhigh(15) of β̂

and δ̂ for the models with increasing kernel size. As predicted

by the IFR, the fraction is a decreasing function of the kernel size

(a) and, interestingly, as the model goes deeper, the phenomenon

is exacerbated (b). This is one of the main results of the paper

and clearly illustrates that the adversarial attacks high-frequency

content increases with smaller kernel size. All together these results

confirm the validity of the IFR.

Regarding the kernel size, from a theoretical point of view,

we offer an explanation via the Fourier Uncertainty Principle—

i.e., a space-limited kernel cannot be band-limited in frequency

domain—as the origin of the frequency bias. The reasoning

can be made rigorous for a linear convolutional model with

local kernels by a straightforward extension of the results in

Gunasekar et al. (2018). To do so, let us note first that, in

the case of convolutional networks, the linear predictor β in

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1387077
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Caro et al. 10.3389/fncom.2024.1387077

FIGURE 3

(A) Half Power Frequency (f50) of the Fourier transform of the weights β̂ for various models and datasets. In specific: Convolutional models with Local

Kernels (LKC), Locally Connected (LC), and Full Kernel Convolutional (FKC) trained on MNIST, Fashion Mnist, SVHN, CIFAR10, and CIFAR100. (B) Half

Power Frequency (f50) of the adversarial perturbation δ̂ for the same models and datasets.

FIGURE 4

Concentration of energy κhigh for k = 15 (the energy cut-o� to consider high energy frequencies) for the input-output weights β versus kernel size

(3,7,9,11,15, 21, or 32). Results are obtained averaging five models. All models were trained for 40 epochs on Grayscale CIFAR10. (A) One hidden

layer models and (B) three hidden layer models.

Equation (1) can be rewritten as β := ⋆L−1
l=1

wl, where wl are the

kernel for layer l and ⋆ indicates convolution. Then we have the

following:

Theorem 1. Decreasing the kernel size of each convolutional

filter wl results in an increased concentration of energy in high

frequencies for β̂ .
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A rigorous mathematical treatment can be found in the

Supplementary Section 2. The key intuition is that, due to the

Fourier Uncertainty Principle, decreasing the support of the

convolutional filter wl at layer l causes an increase of its high

frequency energy content.

3.3 Testing of the di�erent implicit biases
via the injection of hidden shortcut features

In this section we present an alternative and indirect

demonstration of the validity of the IFR for the models considered

in the previous section i.e., convolutional with (1) full or (2)

local kernels and (3) locally connected models. Our approach

draws inspiration from the field of steganography, which focuses on

introducing shortcut features in images in a visually imperceptible

manner (Cheddad et al., 2010). We introduce class-correlated

shortcut features in the Fourier space of each CIFAR-10 train

and test set image. Depending on the frequency range of these

features (low, medium, or high), convolutional models with

reduced kernel sizes are expected to demonstrate improved test

accuracy, in line with the findings discussed in Section 3.2.

Specifically, we performed a hidden features experiment, and

localize the information in the low, medium, or high frequencies by

introducing the class-dependent signals characterized by frequency

in specific bands of the spectrum of the training and testing set of

CIFAR10 (see Section 2 for methodological details).

Table 1 shows the performance of the linear models where

class-dependent features with different frequencies (Low, Medium

or High) were added to the images. We observe that all models

are able to use the low-frequency shortcut features in order to

perform the task achieving 100% accuracy. However, when the

cheat signal is introduced in the medium and high frequencies

some models perform better than others. In particular, full kernel

convolutional models struggle in selecting the signal as they have

an average variation in performance for both medium and high

frequencies of only 1.5%. In contrast, the convolutional models

with local kernels demonstrate superior performance in medium

and high frequencies with an average variation in performance of

≈ 31%. Lastly, Locally connected kernels have an average change

in performance of≈ 13%.

These experiments not only confirm the existence of an implicit

bias of the models as characterized in the previous sections, but

also demonstrate that, when useful high-frequency information is

present, models with local convolutions aremore adept at capturing

these features compared to other parameterizations.

3.4 Expanding to other state-of-the-art
machine learning models and Imagenet
dataset

Here we further investigate the high-frequency bias exhibited

by convolutional models with local kernels when training is

done on one of the most complex image recognition datasets

available, Imagenet (Deng et al., 2009). Additionally, we aim to

examine whether other high-performance deep models without

convolutions, such as Vision Transformers (ViT), exhibit less bias

toward high-frequency features in their weights and attacks. ViT

have performed on par with convolution-based architectures in

many tasks including object recognition (Dosovitskiy et al., 2020).

Interestingly, recent work has shown that ViTs can be more robust

to high frequency adversarial perturbations than ResNets (Shao

et al., 2021).

We selected models with different parameterizations

from the timm package (Wightman, 2019). These include

Convolution-Based Models, Vision Transformers, Hybrid ViT

and Convolutional Models, and MLPs models (for detailed

information on the specific pretrained timm models, refer

to Supplementary Sections 1.1, 1.3 for details).

Figures 5A, B shows the f50 energy of δ̂. We observe that

pure convolutional models exhibit a stronger energy concentration

in the higher frequencies, confirming the results of previous

sections. Moreover in (b) shows that models with larger first

layer word/patch size kernels [ViT(32)] have more energy in the

low frequencies compared to models with smaller kernel sizes

[ViT(16), ViT(8)]. This confirms the results in Section 3.2 with

models trained on CIFAR10. Interestingly, the work in Park and

Kim (2022) showed that self-attention layers can produce models

with lower frequency preference and that a combination of the

Vision Transformers with Convolutions generates a compromise

frequency preference. Here we confirm those findings showing that

hybrid models already have a f50 in between ViTs and Convolution

models and also find that also MLP-Based models have similar

energy distribution compared to hybrid models. All together

these results show that, regardless of the dataset, convolution-

based models have a preferences toward higher frequency features

compared to the non-convolutional counterparts.

4 Discussion and conclusions

In this study, we provide both empirical and theoretical

evidence to support the hypothesis that the convolutional

architecture of modern high-performance networks, particularly

the locality of convolutional kernels, plays a significant role in the

emergence of high-frequency adversarial examples. To explore this

phenomenon, we first validated theoretical findings related to the

implicit bias of deep linear models with full connections, whether

fully connected or convolutional, as outlined by Gunasekar et al.

(2018). We then extended these results to nonlinear models and

established a correlation between the end-to-end weights of the

model and the adversarial perturbations.

Afterwards, our focus shifted to convolutional models with

local kernels, and we have provided empirical and theoretical

evidence (limited to linear models) to demonstrate their bias

toward high-frequency features compared to other model

parameterizations. crucially, we have highlighted the importance

of convolutional translation symmetry (weight sharing) in

our findings.

Through experiments with different datasets, we present

evidence that translational symmetric convolution-based models

exhibit higher energy in the high frequencies when there is

significant useful high-frequency information present. This finding

departs from the conventional understanding of adversarial
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TABLE 1 Performance on CIFAR10 dataset with class-revelant information introduced at di�erent frequency bands.

Models Baseline Low frequency Medium frequency High frequency

Full kernel convolution (L = 1) 39.8 100.0 41.03 41.38

Full kernel convolution (L = 3) 40.1 100.0 39.80 40.97

Local kernel convolution (L = 1) 41.8 100.0 49.99 53.60

Local kernel convolution (L = 3) 42.5 100.0 94.17 98.47

Locally connected (L = 1) 40.7 100.0 44.39 46.23

Locally connected (L = 3) 42.2 100.0 47.36 54.73

Low Frequency (ǫ = 0.5), Medium Frequency (ǫ = 5e− 02), and High Frequency (ǫ = 5e− 04) (see Section 2 for details). Different ǫ’s were chosen to match the signal to noise ratio of those

frequencies bands and make the task as difficult as possible.

FIGURE 5

(A) f50 for di�erent models trained on Imagenet. (B) ViT models with di�erent kernel word/patch sizes.

perturbations and generalization, where high-frequency adversarial

attacks are assumed to be solely determined by dataset statistics.

Instead, our results demonstrate that even in datasets with higher

frequency information, such as CIFAR10, CIFAR100, and SVHN,

models with non-convolutional architectures (e.g., fully connected,

locally connected, and Vision Transformers) exhibit fewer high-

frequency adversarial attacks.

In order to further examine the network bias, we also

conducted a novel steganography experiment. The results of this

experiment provided compelling evidence that the bias observed

in linear models extends to nonlinear models as well. Additionally,

we found that this bias significantly influences the ease with

which the models can learn specific features (Section 3.3). These

findings open up new and exciting avenues for investigating the

model’s ability to generalize across various bases, not limited

to Fourier.

Through comparison with other high-performing models,

we demonstrated that Vision Transformers (ViTs) with smaller

kernel sizes also exhibit higher energy in the high frequencies

for both CIFAR10 and ImageNet trained models. This suggests

that our findings are robust and applicable across different

datasets regardless of their statistics. Moreover they offer valuable

information for designing and understanding the implicit biases in

various model architectures.

We firmly believe that understanding such biases can guide

models toward effectively leveraging the most beneficial set

of features while simultaneously reducing the vulnerability

of modern neural networks to adversarial attacks. Although

our study focuses on convolutional architectures we believe

that shedding light on the interplay between the model

architecture and adversarial robustness is essential to the

development of more reliable and secure neural network

systems. This research opens up new avenues for improving

the overall performance and safety of deep learning models in

real-world applications.
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