
TYPE Original Research

PUBLISHED 02 May 2024

DOI 10.3389/fncom.2024.1385047

OPEN ACCESS

EDITED BY

Yang Cui,

University of Science and Technology

Liaoning, China

REVIEWED BY

Geyang Xiao,

Zhejiang Lab, China

Junqi Yang,

Henan Polytechnic University, China

*CORRESPONDENCE

Hui Tian

tianhui@cqupt.edu.cn

RECEIVED 11 February 2024

ACCEPTED 08 April 2024

PUBLISHED 02 May 2024

CITATION

Tian H, Su X and Hou Y (2024) Feedback

stabilization of probabilistic finite state

machines based on deep Q-network.

Front. Comput. Neurosci. 18:1385047.

doi: 10.3389/fncom.2024.1385047

COPYRIGHT

© 2024 Tian, Su and Hou. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Feedback stabilization of
probabilistic finite state machines
based on deep Q-network

Hui Tian1*, Xin Su1 and Yanfang Hou2

1Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education,

Chongqing University of Posts and Telecommunications, Chongqing, China, 2School of Electrical and

Electronic Engineering, Chongqing University of Technology, Chongqing, China

Background: As an important mathematical model, the finite state machine

(FSM) has been used in many fields, such as manufacturing system, health care,

and so on. This paper analyzes the current development status of FSMs. It is

pointed out that the traditional methods are often inconvenient for analysis and

design, or encounter high computational complexity problems when studying

FSMs.

Method: The deep Q-network (DQN) technique, which is a model-free

optimization method, is introduced to solve the stabilization problem of

probabilistic finite state machines (PFSMs). In order to better understand the

technique, some preliminaries, including Markov decision process, ǫ-greedy

strategy, DQN, and so on, are recalled.

Results: First, a necessary and su�cient stabilizability condition for PFSMs is

derived. Next, the feedback stabilization problem of PFSMs is transformed into

an optimization problem. Finally, by using the stabilizability condition and deep

Q-network, an algorithm for solving the optimization problem (equivalently,

computing a state feedback stabilizer) is provided.

Discussion: Compared with the traditional Q learning, DQN avoids the limited

capacity problem. So our method can deal with high-dimensional complex

systems e�ciently. The e�ectiveness of our method is further demonstrated

through an illustrative example.

KEYWORDS

probabilistic finite statemachine (PFSM), deepQ-network (DQN), feedback stabilization,

artificial neural network (ANN), controller

1 Introduction

The finite state machine (FSM), also known as finite automata (Yan et al.,
2015b), is an important mathematical model, which has been used in many

different fields, such as manufacturing system (Wang et al., 2017; Piccinini et al.,
2018), health care (Shah et al., 2017; Zhang, 2018; Fadhil et al., 2019), and so on.

The deterministic finite state machine (DFSM) is known for its deterministic behaviors,
in which each subsequent state is uniquely determined by its input event and preceding
state (Vayadande et al., 2022). However, DFSMs may not be effective in dealing with
random behaviors (Ratsaby, 2019), for example, the randomness caused by component
failures in sequential circuits (El-Maleh and Al-Qahtani, 2014). To address the challenge,
a probabilistic finite state machine (PFSM) was proposed in the study by Vidal et al.
(2005), which provides a more flexible framework for those systems that exhibit random
behaviors. Especially, it gives an effective solution to practical issues, such as the reliability
assessment of sequential circuits (Li and Tan, 2019). Therefore, the PFSM offers a new
perspective for the theoretical research of FSMs.

On the other hand, the stabilization of systems is an important and fundamental
research topic, and there have been many excellent research results in various fields,
for example, Boolean control network (Tian et al., 2017; Tian and Hou, 2019), time-
delay systems (Tian and Wang, 2020), neural networks (Ding et al., 2019), and so on.

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1385047
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1385047&domain=pdf&date_stamp=2024-05-02
mailto:tianhui@cqupt.edu.cn
https://doi.org/10.3389/fncom.2024.1385047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1385047/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

The stabilization research of FSMs is no exception and has also

attracted the attention of many scholars. The concepts of stability

and stabilization of discrete event systems described by FSMs were

given in the study by Özveren et al. (1991). A polynomial solution

of stability detection and a method for constructing stabilizers were

presented. Passino et al. (1994) utilzed the Lyapunov method to

study the stability and stabilization of FSMs. Tarraf et al. (2008)

proposed some new concepts, including gain stability, incremental

stability and external stability, and then established a research

framework for robust stability of FSMs. Kobayashi et al. developed

a linear state equation representation method for modeling DFSMs

in the study by Kobayashi (2006) and Kobayashi and Imura (2007)

and derived a necessary and sufficient condition for DFSM to be

stabilizable at a target equilibrium node in the study by Kobayashi

et al. (2011).

However, as we know, the FSM is most often non-linear.

Moreover, none of the above methods are convenient when

analyzing and designing various FSMs. In the last decade, scholars

applied the semi-tensor product (STP) of matrices to FSMs and

derived many excellant results. First, with the help of STP, an

algebraic form of DFSMs was given in the study by Xu et al. (2013).

This algebraic form is a discrete-time bilinear equation. Then, the

classic control theory can be used to investigate FSMs. Especially,

under the algebraic form, necessary and sufficient conditions for

the stabilizability of DFSMs were derived in the study by Xu et al.

(2013), and a state feedback controller was obtained by computing

a corresponding matrix inequality. Moreover, Yan et al. (2015a)

provided a necessary and sufficient condition to check whether a set

of states can be stabilized. Han and Chen (2018) considered the set

stabilization of DFSMs and provided an optimal design approach

for stabilizing controllers. Later, Zhang et al. used the STP method

to investigate PFSMs and non-deterministic FSMs. Specifically, a

necessary and sufficient condition for stabilization with probability

one and a design method for optimal state feedback controller

were provided in the study by Zhang et al. (2020a). Moreover, a

systematic procedure was designed to get a static output feedback

stabilizer for non-deterministic FSMs in the study by Zhang et al.

(2020b). Although the STP method is very useful in analyzing

discrete event systems, including various FSMs, it suffers from

high computational complexity and can only handle small-scale or

even micro-scale discrete event systems. To solve the problem, this

study refers to techniques developed by Acernese et al. (2020) to

solve the stabilization problem of high-dimensional PFSMs, and

then provides a reinforcement learning algorithm to compute a

state feedback stabilizer for PFSMs. The algorithm is especially

advantageous in dealing with high-dimensional systems.

The rest of this study is arranged as follows: Section 2

introduces some preliminary knowledge, including PFSM, Markov

decision process (MDP), deep Q newtwork (DQN), and ǫ-greedy

strategy. In Section 3, a stabilizabillity condition is derived and

an algorithm based on DQN is provided. An illustrative example

is employed to show the effectiveness of our results, as shown in

Section 4, which is followed by a brief conclusion in Section 5.

2 Methods

For the convenience of statement, some symbol explanations

are provided first.

Notation:R expresses the set of all real numbers. Z+ stands for

the set of all positive integers. Z+
a,b denotes the set {a, a+ 1, · · · , b},

where a, b ∈ Z
+, a ≤ b. |A| is the cardinality of set A.

2.1 Probabilistic finite state machine

A PFSM is a five-tuple

3 = (X ,U , P, f ,X0), (1)

where the set X : = {X1,X2, · · · ,Xn} represents a finite set

of states, and X0 ∈ X is the initial state. U : = {U1,U2, · · · ,Um}

denotes a finite set of events. P :X ×U ×X → [0, 1] is a transition

probability function, and P(Xi,Uk,Xj) : = P
Uk
Xi ,Xj

expresses the

probability of PFSM (1), transiting from state Xi ∈ X to state

Xj ∈ X under the input event Uk ∈ U , satisfying

∑

Xj∈X

P
Uk
Xi ,Xj

= 1

or
∑

Xj∈X

P
Uk
Xi ,Xj

= 0.

The state transition function f :X × U → 2X describes that

PFSM (1) may reach different states from one state under the same

input event, where 2X is the power set of X .

2.2 Markov decision process and
optimization methods

A Markov decision process (MDP) is characterized by

a quintuple

� = (S,A, P,R, γ), (2)

where S is a set of states, A is a set of actions, P is a state transition

probability function, R is a reward function, and γ ∈ [0, 1] is a

discount factor that determines the trade-off between short-term

and long-term gains.

MDP (2) may reach state st+1 from state st ∈ S under the

chosen action at ∈ A, and its probability is determined by the

function P
at
st ,st+1 = P(st+1 | st , at). The expected one-step reward

from state st to state st+1 via action at is as follows:

Ratst ,st+1 = E [rt+1 | st , at]

where rt+1 = rt+1(st , at , st+1) represents the immediate return after

adopting action at at time t, and E[·] is the expected value of [·].

The objective of MDP (2) is to determine an optimal policy π .

This policy can maximize the expected return Eπ [Gt] under policy

π where

Gt =

∞
∑

k=0

γ krt+k+1.

For a given policy π , the value function of a state st , denoted by

vπ (st), is the expected return ofMDP (2) taking an action according

to the policy π at time step t:

vπ (st) = Eπ

[

∞
∑

k=0

γ krt+k+1 | st

]

, ∀st ∈ S. (3)

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

The optimal policy is as follows:

π∗(st , at) = argmax
π∈5

vπ (st), ∀st ∈ S (4)

where 5 is the set of all admissible policies.

From (4), it is easy to understand v∗(st) = vπ∗ (st). Since vπ (·)

satisfies the Bellman equation, we have

v∗ (st) = max
a∈A

∑

s∈S

Past ,s
[

Rast ,s + γ v∗(s)
]

(5)

Similarly, the action-value function describes the cumulative

return from state-action (st , at) under policy π

qπ (st , at) = Eπ

[

∞
∑

k=0

γ krt+k+1 | s = st , a = at

]

, ∀at ∈ A. (6)

By substituting (3) into (6), we can obtain

qπ (st , at) = Eπ [rt+1 + γ vπ (st+1)],

which represents the expected return of action at adopted by

MDP (2) at state st , following policy π . The action-value function

under optimal strategy π∗ is called as the optimal action-value

function,i.e., q∗(st , ut) : = qπ∗ (st , at), ∀st ∈ S, ∀at ∈ A. Since

v∗(st) = maxa q∗(st , a), from (5), we can get

q∗ (st , at) =
∑

s∈S

Patst ,s

[

Ratst ,s + γ max
a

q∗(s, a)
]

.

Therefore, if MDP (2) exists an optimal deterministic policy, it

can be expressed as follows:

µ∗ (st) = argmax
a∈A

q∗ (st , a) , ∀st ∈ S.

DQN is such a technique that combines Q leaning with arificial

neural networks (ANNs), providing an effective approach

to decision-making problems in dynamic and uncertain

environments. It uses ANNs to construct parametric models

and estimate action value functions online. Compared with Q

learning, the main advantages of DQN are as follows: (1) DQN

uses ANNs to approximate Q functions, overcoming the issue

of limited capacity in Q tables and enabling the algorithm to

handle high-dimensional state spaces. (2) DQN makes full use of

empirical knowledge.

Q learning updates the value function according to the

following temporal difference (TD) formula:

q (st , at)← q (st , at)+ α

[

rt+1 + γ max
a′

q
(

st+1, a
′
)

− q (st , at)

]

,

(7)

where rt+1 + γ maxa′ q
(

st+1, a
′
)

is the TD target, rt+1 +

γ maxa′ q
(

st+1, a
′
)

− q (st , at) is the TD error δ, and 0 < α ≤ 1

is a constant that determines how quickly the past experiences

are forgotten.

When dealing with high-dimensional complex systems, the

action-value function q(s, a), as described in Equation (7), is

approximated by an ANN to reduce computational complexity.

This can be achieved by minimizing the following loss function

L(θt) = (rt+1 + γ max
a′

q
(

st+1, a
′; θ−t

)

− q(st , at; θt))
2, (8)

where the parameter θ−t is a periodic copy of the current network

parameter θt .

By differentiating Equation (8), we have

▽θt L(θt) = 2(rt+1 + γ max
a′

q(st+1, a
′; θ−t)

−q(st , at; θt))(−▽θt q(st , at; θt)), (9)

where ▽θtq(st , at; θt) represents the gradient of q(st , at; θt) with

respect to the parameter θt .

We choose the gradient descent method as the

optimization strategy

θt+1 = θt −
α

2
▽θt L(θt). (10)

By substituting Equations (9) into (10), we obtain an update

formula for parameter θt

θt+1 = θt + α[rt+1 + γ max
a′

q(st+1, a
′; θ−t)

−q(st , at; θt)]▽θt q(st , at; θt).

Finally, the ǫ-greedy strategy is used for action selection.

Specifically, an action is chosen randomly with probability ǫ ∈

R(0 < ǫ ≤ 1), and the best estimated action is chosen with

probability 1−ǫ. As learning progresses, ǫ gradually decreases, and

the policy is shifted from exploring the action space to exploiting

the learned Q values. The policy π(a | s) is as follows:

π(a | s) =

1− ǫ + ǫ
|A| if a = argmax

a∈A

q(s, a)

ǫ
|A| other actions ,

where π(a | s) is the probability of MDP (2) selecting action

a at state s. argmax
a∈A

q(s, a) stands for the action with the highest

estimated Q value for state s.

3 Results

We first give a definition.

Definition 1: Assume that Xe is an equilibrium state of PFSM

(1). The PFSM is said to be feedback stabilizable to Xe with

probability one, if for any initial stateXi ∈ X , there exists a control

sequence U : = Ul1 ,Ul2 , · · · ,Ulk ∈ U , such that PU
Xi ,Xe

= 1.

We define an attraction domainℜk(Xe) for an equilibrium state

Xe, which is a set of states that can reach Xe in k steps.

ℜk(Xe) =
{

Xi ∈ X | there exists a control sequence U :

= Ul1 ,Ul2 , · · · ,Ulk ∈ U , such that PU
Xi ,Xe

= 1
}

. (11)

Next, we give an important result.

Theorem 1: Assume that Xe is an equilibrium state of PFSM

(1). The PFSM is feedback stabilizable toXe with probability one, if

and only if there exists an integer ρ ≤ n− 1 such that

ℜρ(Xe) = X . (12)

Proof (Necessity): Assume that PFSM (1) is feedback stabilizable to

the equilibrium state Xe with probability one. Then, according to

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

1: Check whether ℜρ (Xe) = X holds or not. If

yes, perform the following calculations.

Otherwise, PFSM (1) cannot be stabilized to Xe.

2: Input: B, Xe, γ, ǫ, τ, T, mini-batch size M, θ

3: Output: µ∗(Xi,Xe)

4: Initialize weights θ ← rand([0, 1]), θ− ← θ, the

replay memory B← ∅

5: Define reward function to reach state Xe

6: for episode = 1, 2, · · · ,N do

7: t← 0, Xt ← rand(X)

8: while t < T and Xt 6= Xe do

9: Choose Ut by using ǫ-greedy policy

10: Applying Ut, read Xt+1 and rt+1

11: Store transition (Xt ,Ut , rt+1,Xt+1, done) in B

12: if |B| ≥ M then

13: sample mini-batch M from B

14: for every state Xi ∈ X in M do

15: if Xt+1 == done then

16: target[i] = ri

17: else

18: target[i] = ri + γ max
U ′∈U

q(Xt+1,U ′; θ−)

19: end if

20: end for

21: Perform gradient descent and calculate

the loss

22: Train and update network weight θ

23: end if

24: t← t + 1

25: end while

26: if episode%τ == 0 then

27: update target network weight: θ− ← θ

28: end if

29: end for

30: return µ∗(Xi,Xe)← argmax
U

(Xi,U,Xe; θ
−), ∀Xi ∈ X

Algorithm 1. State feedback stabilization of PFSM (1) based on deep Q-

network.

FIGURE 1

Structure diagram of DQN.

Definition 1, for any initial state Xi, there exists a control sequence

U : = Ul1 ,Ul2 , · · · ,Ulρ , such that PU
Xi ,Xe

= 1, namely Xi ∈ ℜk(Xe).

Due to the fact that the state space is a finite set, there must be an

integer ρ, such that ℜρ(Xe) = X holds.

(Sufficiency): Assume that Equation (12) holds. For any initial

state Xi ∈ X , we have Xi ∈ ℜρ(Xe). From Equation (11),

there exists a positive integer ρ and a control sequence U : =

Ul1 ,Ul2 , · · · ,Ulρ such that Xi can be driven to Xe by U in ρ

steps with probability one. According to Definition 1, PFSM (1) is

feedback stabilizable to Xe with probability one. �

We cast the feedback control problem of PFSM (1) into a

model-free reinforcement learning framework. The main aim is

to find a state feedback controller, which can guarantee the finite

time stabilization of PFSM (1). This means that all states can be

controlled and brought to an equilibrium state within finite steps.

Therefore, PFSM (1) is rewritten as (X ,U , P,R, γ), where P is

FIGURE 2

Performance of Algorithm 1 in Example 1.

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

TABLE 1 A state feedback controller of PFSM (14).

State X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

Action U1 U2 U1 U1 U2 U1 U2 U2 U1 U3 U2 U3 U3 U3 U2 U2 U2 U3 U2 U2

FIGURE 3

Evolution of the closed-loop system (16).

FIGURE 4

The number of steps required to stabilize PFSM (14) to X3.

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

unknown. The stabilization problem of PFSM (1) is formulated

as follows:

max
µ(·)

Eµ

[

∞
∑

t=0

γ trt+1 (Xt ,Ut ,Xt+1)

]

, ∀X0 ∈ X

subject to (1),

(13)

where

rt+1 =

{

1, if Xt+1 = Xe

−0.1, otherwise.

The objective of Equation (13) is to find an action U that

maximizes the action-value function q∗ among all possible actions

in U . Therefore, for any state Xt and external condition Xe, the

optimal state feedback control law of PFSM (1) is as follows:

µ∗(Xt ,Xe) = argmax
U∈U

q∗(Xt ,U,Xe; θ
−), ∀Xt ∈ X .

Based on the above discussion, we are ready to introduce

an algorithm to design an optimal feedback controller (see

Algorithm 1). It should be noted that in this algorithm, DQN uses

two ANNs. The structure diagram of DQN is shown in Figure 1.

Remark 1: This algorithm is mainly used to solve the

stabilization problem of high dimensional PFSMs. For small or

micro-scale PFSMs, it is slightly more complex. In this case, we

can choose the STP method. Therefore, Algorithm 1 and the STP

method complement each other.

According to the results calculated by Algorithm 1, a state

feedback controller can be given. Specifically, fromAlgorithm 1, the

result is an optimal policy. Assume thatµ∗(Xi,Xe) is the calculation

result. Then, we get a state feedback controller µ∗i : = µ∗(Xi,Xe),

∀i ∈ Z
+
1,n.

4 Discussion

Example 1: Consider a PFSM

X1(t + 1) =

f (X1(t),U1) =

{

X2, P = 0.5

X5, P = 0.5

f (X1(t),U2) = X1, P = 1.0

f (X1(t),U3) =

{

X1, P = 0.6

X3, P = 0.4,

X2(t + 1) =

f (X2(t),U1) = X2, P = 1.0

f (X2(t),U2) =

{

X3, P = 0.7

X6, P = 0.3

f (X2(t),U3) =

{

X2, P = 0.5

X4, P = 0.5,

X3(t + 1) =

f (X3(t),U1) = X3, P = 1.0

f (X3(t),U2) = X3, P = 1.0

f (X3(t),U3) = X3, P = 1.0,

X4(t + 1) =

f (X4(t),U1) =

{

X4, P = 0.4

X7, P = 0.6

f (X4(t),U2) = X5, P = 1.0

f (X4(t),U3) =

{

X4, P = 0.3

X6, P = 0.7,

X5(t + 1) =

f (X5(t),U1) = X5, P = 1.0

f (X5(t),U2) =

{

X3, P = 0.9

X6, P = 0.1

f (X5(t),U3) =

{

X5, P = 0.8

X9, P = 0.2,

X6(t + 1) =

f (X6(t),U1) = X3, P = 1.0

f (X6(t),U2) = X6, P = 1.0

f (X6(t),U3) =

{

X6, P = 0.7

X7, P = 0.3,

X7(t + 1) =

f (X7(t),U1) = X7, P = 1.0

f (X7(t),U2) = X5, P = 1.0

f (X7(t),U3) =

{

X7, P = 0.6

X8, P = 0.4,

X8(t + 1) =

f (X8(t),U1) =

{

X7, P = 0.7

X8, P = 0.3

f (X8(t),U2) = X9, P = 1.0

f (X8(t),U3) =

{

X8, P = 0.9

X1, P = 0.1,

X9(t + 1) =

f (X9(t),U1) = X6, P = 1.0

f (X9(t),U2) = X9, P = 1.0

f (X9(t),U3) =

{

X9, P = 0.5

X2, P = 0.5,

X10(t + 1) =

f (X10(t),U1) =

{

X11, P = 0.3

X12, P = 0.7

f (X10(t),U2) = X10, P = 1.0

f (X10(t),U3) =

{

X10, P = 0.4

X13, P = 0.6,

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

X11(t + 1) =

f (X11(t),U1) = X11, P = 1.0

f (X11(t),U2) =

{

X12, P = 0.5

X14, P = 0.5

f (X11(t),U3) =

{

X11, P = 0.7

X15, P = 0.3,

X12(t + 1) =

f (X12(t),U1) =

{

X16, P = 0.6

X17, P = 0.4

f (X12(t),U2) = X12, P = 1.0

f (X12(t),U3) =

{

X12, P = 0.8

X18, P = 0.2,

X13(t + 1) =

f (X13(t),U1) = X13, P = 1.0

f (X13(t),U2) =

{

X14, P = 0.9

X19, P = 0.1

f (X13(t),U3) =

{

X13, P = 0.5

X20, P = 0.5,

X14(t + 1) =

f (X14(t),U1) =

{

X15, P = 0.8

X16, P = 0.2

f (X14(t),U2) = X14, P = 1.0

f (X14(t),U3) =

{

X17, P = 0.6

X18, P = 0.4,

X15(t + 1) =

f (X15(t),U1) = X15, P = 1.0

f (X15(t),U2) =

{

X16, P = 0.7

X20, P = 0.3

f (X15(t),U3) =

{

X19, P = 0.5

X15, P = 0.5,

X16(t + 1) =

f (X16(t),U1) = X16, P = 1.0

f (X16(t),U2) =

{

X17, P = 0.8

X18, P = 0.2

f (X16(t),U3) =

{

X16, P = 0.6

X19, P = 0.4,

X17(t + 1) =

f (X17(t),U1) = X17, P = 1.0

f (X17(t),U2) =

{

X18, P = 0.9

X20, P = 0.1

f (X17(t),U3) =

{

X17, P = 0.7

X19, P = 0.3,

X18(t + 1) =

f (X18(t),U1) = X18, P = 1.0

f (X18(t),U2) =

{

X19, P = 0.8

X20, P = 0.2

f (X18(t),U3) =

{

X18, P = 0.5

X1, P = 0.5,

X19(t + 1) =

f (X19(t),U1) = X19, P = 1.0

f (X19(t),U2) =

{

X20, P = 0.6

X1, P = 0.4

f (X19(t),U3) =

{

X19, P = 0.8

X2, P = 0.2,

X20(t + 1) =

f (X20(t),U1) = X20, P = 1.0

f (X20(t),U2) =

{

X1, P = 0.7

X3, P = 0.3

f (X20(t),U3) =

{

X20, P = 0.9

X4, P = 0.1,

(14)

where Xi(t) represents the i-th state of PFSM (14) at time step t. It

is easy to observe that X3 is an equilibrium state.

We now use Algorithm 1 to compute a state feedback controller

to stabilize PFSM (14) to X3. The computation is performed on

a computer with Intel i5-11300H processor, 2.6 GHz frequency,

16 GB RAM, and Python 3.7 software. We adopt TensorFlow in

Keras to train the DQN model, where the discount factor γ is

0.99, the rang for ǫ in ǫ-greedy policy is from 0.05 to 1.0, and

the sizes of memory buffer B and mini-batch M are 10,000 and

128, respectively.

Through calculation, we obtain a state feedback controller

µ∗i = µ∗(Xi,X3), i ∈ [1, 20], (15)

which is shown in Table 1.

Model (14) is a PFSM with 20 states, which is not a simple

system. Here, we utilize average rewards to track the performance

during training (see Figure 2). It is easy to observe that as training

time goes on, the performance inceases and tends to be stable. We

put the state feedback controller (15), as shown in Table 1, into

PFSM (14) and get a closed-loop system.

X1(t + 1) =

{

X2, P = 0.5

X5, P = 0.5,
X2(t + 1) =

{

X3, P = 0.7

X6, P = 0.3,

X3(t + 1) = X3, P = 1.0, X4(t + 1) =

X4, P = 0.4

X7, P = 0.6,

X5(t + 1) =

X3, P = 0.9

X6, P = 0.1,
X6(t + 1) = X3, P = 1.0,

X7(t + 1) = X5, P = 1.0, X8(t + 1) = X9, P = 1.0,

X9(t + 1) = X6, P = 1.0, X10(t + 1) =

X10, P = 0.4

X13, P = 0.6,

X11(t + 1) =

X12, P = 0.5

X14, P = 0.5,
X12(t + 1) =

X12, P = 0.8

X18, P = 0.2,

X13(t + 1) =

X13, P = 0.5

X20, P = 0.5,
X14(t + 1) =

X17, P = 0.6

X18, P = 0.4,

X15(t + 1) =

X16, P = 0.7

X20, P = 0.3,
X16(t + 1) =

X17, P = 0.8

X18, P = 0.2,

X17(t + 1) =

X18, P = 0.9

X20, P = 0.1,
X18(t + 1) =

X18, P = 0.5

X1, P = 0.5,

X19(t + 1) =

X20, P = 0.6

X1, P = 0.4,
X20(t + 1) =

X1, P = 0.7

X3, P = 0.3.

(16)

The state transition trajectory of the closed-loop system (16)

starting from any initial state is shown in Figure 3. It can be

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

observed from Figure 3 that all states reach X3 after a finite

number of steps and then stay at X3 forever with probability

one. This demonstrates the effectiveness of our controller. The

number of steps required to reach X3 for each state is shown

in Figure 4. From these results, we can observe that based on

DQN, Algorithm 1 can solve the stabilization problem of non-small

-scale PFSMs.

5 Conclusion

This article studied the state feedback stabilization of PFSMs

using the DQN method. The feedback stabilization problem

of PFSMs was first transformed into an optimization problem.

A DQN was built, whose two key parts: TD target and Q

function, are approximated through neural networks. Then,

based on the DQN and a stabilizability condition derived in

this paper, an algorithm was developed. The algorithm can be

used to calculate the optimization problem mentioned above

and then solves the feedback stability problem of PFSMs. Since

DQN avoids the limited capacity problem of Q learning, our

algortithm can handle high-dimensional complex systems. Finally,

an illustrative example is provided to show the effectiveness of

our method.

Data availability statement

The original contributions presented in the

study are included in the article/supplementary

material, further inquiries can be directed to the

corresponding author.

Author contributions

HT: Conceptualization, Formal analysis, Funding acquisition,

Methodology, Project administration, Supervision, Writing—

review & editing. XS: Conceptualization, Formal analysis,

Investigation, Methodology, Validation, Writing—original draft.

YH: Formal analysis, Investigation, Writing—review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research was funded by the National Key R&D Program of China

(2021YFB3203202) and Chongqing Nature Science Foundation

(cstc2020jcyj-msxmX0708).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Acernese, A., Yerudkar, A., Glielmo, L., and Vecchio, C. D. (2020). Double deep-Q
learning-based output tracking of probabilistic Boolean control networks. IEEE Access
8, 199254–199265. doi: 10.1109/ACCESS.2020.3035152

Ding, S., Wang, Z., and Zhang, H. (2019). Quasi-synchronization of delayed
memristive neural networks via region-partitioning-dependent intermittent control.
IEEE Trans. Cybern. 49, 4066–4077. doi: 10.1109/TCYB.2018.2856907

El-Maleh, A., and Al-Qahtani, A. (2014). A finite state machine based fault
tolerance technique for sequential circuits. Microelectron. Reliab. 54, 654–661.
doi: 10.1016/j.microrel.2013.10.022

Fadhil, A., Wang, Y., and Reiterer, H. (2019). Assistive conversational
agent for health coaching: a validation study. Methods Inf. Med. 58, 9–23.
doi: 10.1055/s-0039-1688757

Han, X., and Chen, Z. (2018). A matrix-based approach to verifying stability and
synthesizing optimal stabilizing controllers for finite-state automata. J. Franklin Inst.
355, 8642–8663. doi: 10.1016/j.jfranklin.2018.09.009

Kobayashi, K. (2006). “Modeling of discrete dynamics for computational time
reduction of model predictive control,” in Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems (Tokyo), 628–633.

Kobayashi, K., and Imura, J. (2007). “Minimalilty of finite automata representation
in hybrid systems control," in Hybrid Systems: Computation and Control (Berlin
Heidelberg: Springer), 343–356. doi: 10.1007/978-3-540-71493-4_28

Kobayashi, K., Imura, J., and Hiraishi, K. (2011). Stabilization of finite automata
with application to hybrid systems control. Discret. Event Dyn. Syst. 21, 519–545.
doi: 10.1007/s10626-011-0110-2

Li, J., and Tan, Y. (2019). A probabilistic finite state machine based strategy
for multi-target search using swarm robotics. Appl. Soft Comput. 77, 467–483.
doi: 10.1016/j.asoc.2019.01.023

Özveren, C., Willsky, A., and Antsaklis, P. (1991). Stability and stabilizability
of discrete event dynamic systems. J. ACM 38, 729–751. doi: 10.1145/116825.
116855

Passino, K., Michel, A., and Antsaklis, P. (1994). Lyapunov stability of a
class of discrete event systems. IEEE Trans. Automat. Contr. 39, 269–279.
doi: 10.1109/9.272323

Piccinini, A., Previdi, F., Cimini, C., Pinto, R., and Pirola, F. (2018). Discrete
event simulation for the reconfiguration of a flexible manufactuing plant. IFAC-
PapersOnLine 51, 465–470. doi: 10.1016/j.ifacol.2018.08.362

Ratsaby, J. (2019). On deterministic finite state machines in random
environments. Probab. Eng. Inf. Sci. 33, 528–563. doi: 10.1017/S02699648180
00451

Shah, S., Velardo, C., Farmer, A., and Tarassenko, L. (2017). Exacerbations in
chronic obstructive pulmonary disease: identification and prediction using a digital
health system. J. Med. Internet Res. 19:e69. doi: 10.2196/jmir.7207

Tarraf, D., Megretski, A., and Dahleh, M. (2008). A framework for robust
stability of systems over finite alphabets. IEEE Trans. Automat. Contr. 53, 1133–1146.
doi: 10.1109/TAC.2008.923658

Tian, H., and Hou, Y. (2019). State feedback design for set stabilization
of probabilistic boolean control networks. J. Franklin Inst. 356, 4358–4377.
doi: 10.1016/j.jfranklin.2018.12.027

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://doi.org/10.1109/ACCESS.2020.3035152
https://doi.org/10.1109/TCYB.2018.2856907
https://doi.org/10.1016/j.microrel.2013.10.022
https://doi.org/10.1055/s-0039-1688757
https://doi.org/10.1016/j.jfranklin.2018.09.009
https://doi.org/10.1007/978-3-540-71493-4_28
https://doi.org/10.1007/s10626-011-0110-2
https://doi.org/10.1016/j.asoc.2019.01.023
https://doi.org/10.1145/116825.116855
https://doi.org/10.1109/9.272323
https://doi.org/10.1016/j.ifacol.2018.08.362
https://doi.org/10.1017/S0269964818000451
https://doi.org/10.2196/jmir.7207
https://doi.org/10.1109/TAC.2008.923658
https://doi.org/10.1016/j.jfranklin.2018.12.027
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Tian et al. 10.3389/fncom.2024.1385047

Tian, H., Zhang, H., Wang, Z., and Hou, Y. (2017). Stabilization of k-valued logical
control networks by open-loop control via the reverse-transfer method.Automatica 83,
387–390. doi: 10.1016/j.automatica.2016.12.040

Tian, Y., and Wang, Z. (2020). A new multiple integral inequality and its
application to stability analysis of time-delay systems. Appl. Math. Lett. 105:106325.
doi: 10.1016/j.aml.2020.106325

Vayadande, K., Sheth, P., Shelke, A., Patil, V., Shevate, S., Sawakare, C.,
et al. (2022). Simulation and testing of deterministic finite automata machine.
International Journal of Comput. Sci. Eng. 10, 13–17. doi: 10.26438/ijcse/v10i
1.1317

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. (2005).
Probabilistic finite-state machines - part I. IEEE Trans. Pattern Anal. Mach. Intell., 27,
1013–1025. doi: 10.1109/TPAMI.2005.147

Wang, L., Zhu, B., Wang, Q., and Zhang, Y. (2017). Modeling of
hot stamping process procedure based on finite state machine (FSM).
Int. J. Adv. Manuf. Technol. 89, 857–868. doi: 10.1007/s00170-016-
9097-z

Xu, X., Zhang, Y., and Hong, Y. (2013). “Matrix approach to stabilizability of
deterministic finite automata,” in 2013 American Control Conference (Washington,
DC), 3242–3247.

Yan, Y., Chen, Z., and Liu, Z. (2015a). Semi-tensor product approach to
controllability and stabilizability of finite automata. J. Syst. Eng. Electron. 26, 134–141.
doi: 10.1109/JSEE.2015.00018

Yan, Y., Chen, Z., and Yue, J. (2015b). Stp approach to controlliability of finite state
machines. IFAC-PapersOnLine 48, 138–143. doi: 10.1016/j.ifacol.2015.12.114

Zhang, X. (2018). Application of discrete event simulation in health care: a
systematic review. BMC Health Serv. Res. 18, 1–11. doi: 10.1186/s12913-018-3456-4

Zhang, Z., Chen, Z., Han, X., and Liu, Z. (2020a). Stabilization of probabilistic finite
automata based on semi-tensor product of matrices. J. Franklin Inst. 357, 5173–5186.
doi: 10.1016/j.jfranklin.2020.02.028

Zhang, Z., Xia, C., and Chen, Z. (2020b). On the stabilization of nondeterministic
finite automata via static output feedback. Appl. Math. Comput. 365:124687.
doi: 10.1016/j.amc.2019.124687

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2024.1385047
https://doi.org/10.1016/j.automatica.2016.12.040
https://doi.org/10.1016/j.aml.2020.106325
https://doi.org/10.26438/ijcse/v10i1.1317
https://doi.org/10.1109/TPAMI.2005.147
https://doi.org/10.1007/s00170-016-9097-z
https://doi.org/10.1109/JSEE.2015.00018
https://doi.org/10.1016/j.ifacol.2015.12.114
https://doi.org/10.1186/s12913-018-3456-4
https://doi.org/10.1016/j.jfranklin.2020.02.028
https://doi.org/10.1016/j.amc.2019.124687
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Feedback stabilization of probabilistic finite state machines based on deep Q-network
	1 Introduction
	2 Methods
	2.1 Probabilistic finite state machine
	2.2 Markov decision process and optimization methods

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

