
TYPE Hypothesis and Theory

PUBLISHED 07 May 2024

DOI 10.3389/fncom.2024.1367712

OPEN ACCESS

EDITED BY

Yuqi Han,

Beijing Institute of Technology, China

REVIEWED BY

Aleksandr Nikolaevich Raikov,

National Supercomputer Center, China

Yu Xie,

Beijing Institute of Technology, China

*CORRESPONDENCE

Howard Schneider

hschneidermd@alum.mit.edu

RECEIVED 09 January 2024

ACCEPTED 02 April 2024

PUBLISHED 07 May 2024

CITATION

Schneider H (2024) The emergence of

enhanced intelligence in a brain-inspired

cognitive architecture.

Front. Comput. Neurosci. 18:1367712.

doi: 10.3389/fncom.2024.1367712

COPYRIGHT

© 2024 Schneider. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

The emergence of enhanced
intelligence in a brain-inspired
cognitive architecture

Howard Schneider*

Sheppard Clinic North, Vaughan, ON, Canada

The Causal Cognitive Architecture is a brain-inspired cognitive architecture

developed from the hypothesis that the navigation circuits in the ancestors

of mammals duplicated to eventually form the neocortex. Thus, millions of

neocortical minicolumns are functionally modeled in the architecture as millions

of “navigation maps.” An investigation of a cognitive architecture based on these

navigation maps has previously shown that modest changes in the architecture

allow the ready emergence of human cognitive abilities such as grounded, full

causal decision-making, full analogical reasoning, and near-full compositional

language abilities. In this study, additional biologically plausible modest changes

to the architecture are considered and show the emergence of super-human

planning abilities. The architecture should be considered as a viable alternative

pathway toward the development ofmore advanced artificial intelligence, as well

as to give insight into the emergence of natural human intelligence.

KEYWORDS

brain-inspired cognitive architecture (BICA), planning, neocortex, human-level artificial

intelligence (HLAI), artificial general intelligence (AGI), superintelligence

1 Introduction

The Causal Cognitive Architecture (Schneider, 2023, 2024) is a brain-inspired

cognitive architecture (BICA). It is hypothesized that the navigation circuits in the amniotic

ancestors of mammals duplicated many times to eventually form the neocortex (Rakic,

2009; Butler et al., 2011; Chakraborty and Jarvis, 2015; Fournier et al., 2015; Kaas, 2019;

Güntürkün et al., 2021; Burmeister, 2022). Thus, the millions of neocortical minicolumns

are modeled in the Causal Cognitive Architecture as millions of spatial maps, which are

termed “navigation maps.”

The architecture is not a rigid replication of the mammalian brain at the lower

level of the spiking neurons, nor does it attempt to behaviorally replicate the higher-

level psychological properties of the mammalian brain. Instead, it considers, given the

postulations above, the properties and behaviors that emerge from a cognitive architecture

based on navigation maps. The architecture represents a more functionalist system, as

per Lieto (2021a,b), although a continuum exists between functionalist and structuralist

models. Even in this study, where an enhancement to the architecture is considered, the

constraints of biology and anatomy are taken into account.

Figure 1 shows an overview of the Causal Cognitive Architecture 5 (Schneider, 2023).

Figure 2 shows the operation of the architecture through a cognitive cycle—a cycle of

sensory inputs processed and then an output (or null output) resulting. As noted above,

the millions of neocortical minicolumns are modeled in the Causal Cognitive Architecture

as millions of spatial maps, termed navigation maps. An example of a simplified navigation

map used in a simulation of the architecture is shown in Figure 3. The operation

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1367712
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1367712&domain=pdf&date_stamp=2024-05-07
mailto:hschneidermd@alum.mit.edu
https://doi.org/10.3389/fncom.2024.1367712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1367712/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

of the Causal Cognitive Architecture is given in more detail below;

here, a simple overview of its function is provided.

In each cognitive cycle, sensory inputs stream into the Input

Sensory Vectors Shaping Modules (Figure 2). One shaping module

exists for each sensory system, e.g., vision, auditory, etc. The

shaping module normalizes the sensory inputs into a form that

can be used within the architecture. The normalized sensory inputs

then move to the Input Sensory Vectors Association Modules.

Here, sensory features are spatially mapped onto navigation

maps dedicated to one sensory system. Again, there is one

association module for each sensory system, e.g., vision, auditory,

etc. The navigation maps holding sensory inputs of a given

sensory system (e.g., vision) are matched against the best-matching

stored navigation map in that (e.g., visual) Input Sensory Vectors

Association Module. That best-matching stored navigation map is

retrieved and then updated with the actual sensory input of that

sensory system (or a new navigation map is created if there are

too many changes). As such, there is a type of predictive coding

occurring—the architecture anticipates what it is sensing and then

considers the differences with the actual input signal. This works

well for the perception of noisy, imperfect sensory inputs.

The navigation maps are then propagated to the Object

Gateway Modules (Figure 2), where portions and the entire

navigation maps are matched against stored multisensory

navigation maps (i.e., contain features from multiple sensory

systems) in the Causal Memory Module. The best-matched

navigation map from the Causal Memory Module is then

considered and moved to the Navigation Module. This best-

matching navigation map is updated with the actual sensory

information sensed from the environment. The updated navigation

map is termed the Working Navigation Map. An example of a

Working Navigation Map is shown in Figure 3.

Instinctive primitives (pre-programmed) and learned

primitives (learned) are small procedures that can perform

operations on the Working Navigation Map. They are selected by

a similar matching process in terms of the sensory inputs as well

as signals from the Goal/Emotion Module and from the previous

values of the Navigation Modules. The arrow (i) in Figure 2

shows the actions of the best-matching instinctive primitive on

the Working Navigation Map in the Navigation Module. These

operations are essentially matrix operations, such as comparing

arrays, adding a vector to an array, and other straightforward

operations that could be expected of brain-inspired circuitry. The

result is an output signal to the Output Vector Association Module

and then to the Output Vector Shaping Module. This results in

the activation of an actuator or the transmission of an electronics

communication signal. Then, the cognitive cycle repeats—sensory

inputs are processed again, the Navigation Module may produce

an output action, and the cognitive cycle repeats again, and so on.

Feedback pathways, only partially shown in Figures 1, 2, exist

throughout the architecture. As noted above, there is a type of

predictive coding occurring—the architecture anticipates what it

is sensing and then considers the differences with the actual input

or intermediate signal. This is advantageous for the perception

of noisy, imperfect sensory inputs. In the prior literature, it

has been shown how, by enhancing some of these feedback

pathways, causal reasoning, analogical inductive reasoning, and

compositional language readily emerge from the architecture

(Schneider, 2023, 2024). The mechanisms behind these emergent

properties are discussed in more detail below.

This study asks what if the evolution of the human brain

were to continue as it has in the past, and given an environment

for such evolution, what advantageous changes could occur as

reflected in a model such as the Causal Cognitive Architecture?

More specifically, the study considers an evolution where there are

increased intelligence abilities (e.g., Legg and Hutter, 2007; Adams

et al., 2012; Wang, 2019; or the ability to better solve complex

problems which humans encounter in their lives).

2 Previous work: the Causal
Cognitive Architecture

A vast number of cognitive architectures exist (Samsonovich,

2010; Kotseruba and Tsotsos, 2020). However, given that this study

considers the further biological evolution of the brain modeled

via the Causal Cognitive Architecture, this section focuses on the

Causal Cognitive Architecture. The purpose of this section is to

review the architecture so that the reader is provided with an

understanding of its properties and operation before the new work

is discussed in this article in the following section. In the last sub-

section of this section, the Causal Cognitive Architecture is then

compared with other existing cognitive architectures as well as

previous work on cognitive maps.

2.1 Sensory inputs

In this section, the Causal Cognitive Architecture is considered

in more detail. Appendix A gives a more formal description of

the Causal Cognitive Architecture. Modified equations are used

to describe the architecture. They are “modified” in the sense

that many of the equations contain pseudocode. A pseudocode

is a common language (e.g., English) description of the logic

of a software routine (Olsen, 2005; Kwon, 2014). Traditional

pseudocode tends to reproduce program structure, although, in

English, it includes constructs such as While, Repeat-Until, For, If-

Then, Case, and so on. However, doing so to describe the Causal

Cognitive Architecture would be quite lengthy. Using the more

abstracted pseudocode in the equations describing the architecture

provides a more understandable description of the architecture

without sacrificing much accuracy.

The subject of this study is the CCA7 version of the

architecture. However, the operation of the CCA5 (Causal

Cognitive Architecture 5) version of the architecture will first be

described. Then, in the sections further below, the evolution to

the CCA6 (Casual Cognitive Architecture 6) version will be briefly

considered. Then, the focus of the study will be on the evolution,

operation, and properties of the CCA7 version of the architecture.

The early sections of the formal description of the Causal Cognitive

Architecture 7 (CCA7) in Appendix A apply to the CCA5, CCA6,

and CCA7 versions of the architecture.

An overview of the CCA5 version of the architecture is shown

in Figures 1, 2. It is seen that sensory inputs stream into the

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 1

Overview of the Causal Cognitive Architecture 5 (CCA5). See text for a description of modules and their operation (“D” indicates the module has

developmental function, i.e., changes algorithms with experience; ovals indicate pathways that are n = 0, 1, 2… where there are sets of modules

providing signals).

Input Sensory Vectors Shaping Modules, with one module for

each sensory system, e.g., vision and auditory. As noted above,

the Causal Cognitive Architecture works in terms of cognitive

cycles. These cycles are biologically inspired. For example, Madl

et al. (2011) hypothesize that the essence of human cognition

is cascading cycles of operations. In the CCA5, each cognitive

cycle, whatever information in the previous time period of the

previous cognitive cycle has streamed into the Input Sensory

Vectors ShapingModules (arrow “a,” Figure 2) is further processed,

normalized, and then propagated to the Input Sensory Vectors

Association Modules (arrow “b,” Figure 2), as well as to the

Sequential/Error Correcting Module (arrow “c,” Figure 2).

The details of sensory perception, i.e., sensory signal processing,

from the quantum level to the output produced by a transducer

after possibly multi-layered initial signal processing, are largely

abstracted away in this formalization. This does not diminish the

importance of better signal processing. However, the architecture is

concerned with whatever processed sensory inputs stream in, and

that is what is considered here.

Equations (9, 10) from Appendix A are shown below. S1,t
is an array of sensory inputs of sensory system 1 (visual

in the current simulation), which has accumulated since the

last cognitive cycle to the present cognitive cycle at time t.

S2,t, S3,t, and so on are arrays of sensory inputs from other

sensory systems. Input_Sens_Shaping_Mods .normalize

is a method operating on arrays S in the Input Sensory Shaping

Modules, processing and normalizing the raw input sensory data.

S’ is a normalized array, i.e., the raw array of the streams of sensory

inputs for that sensory system has been normalized to a size and

form that allows straightforward operations with the navigation

maps within the architecture, which are also arrays. The vector

s’(t) holds the normalized arrays of sensory inputs at time t for the

different sensory systems.

s(t) = [S1,t, S2,t, S3,t,..., Sθ_σ ,t] (9)

s’(t) = Input_Sens_Shaping_Mods .normalize (s(t))

= [S’1,t, S’2,t, S’3,t,..., S’θ_σ ,t] (10)

In simulations of the CCA5, CCA6, and CCA7 versions of

the architecture, visual, auditory, and olfactory simulated inputs

have been considered. However, the architecture is very flexible

in accepting any number of different sensory system inputs. For

example, a radar sensory system (or most other artificial sensory

systems) could easily be added to the architecture—its inputs, once

processed and normalized, will be treated as any other sensory

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 2

Cognitive cycle: sensory inputs are processed and an output cccurs. a—Sensory inputs stream into the Input Sensory Vectors Shaping Modules.

b—Processed and normalized sensory inputs propagate to the Input Sensory Vectors Association Modules and best-matching Local Navigation Maps

(LMNs) for each sensory system produced (spatial binding). c—Processed and normalized sensory inputs propagate to the

Sequential/Error-Correcting Module (temporal binding). d—Segmentation of objects in the input sensory scenes. e—Spatial mapping of the temporal

mapping of the sensory inputs from the Sequential/Error-Correcting Module. f—Match to the best-matching Multi-Sensory Navigation Map from the

Causal Memory Module, producing the Working Navigation Map (WNM) for the Navigation Module. g—Working Navigation Map (WNM) in/accessible

by Navigation Module. h—Selecting a best-matching primitive (an Instinctive Primitive in this case). i—Instinctive Primitive operating on the Working

Navigation Map (WNM). j—action signal produced by operation of Instinctive Primitive on WNM. k—output_vector signal, motion corrected by the

Sequential/Error Correcting Module. l—Signal to actuators or for electronic transmission.

inputs. Similarly, a particular sensory system can be rendered

inoperable, and if the other sensory systems are sufficient, often

there will be limited impact on the architecture’s final perception

and behavior. As will be seen below, there is a very flexible approach

toward the processing of sensory input data from a number of

different sensory systems.

The Causal Cognitive Architecture is inspired by the

mammalian brain. However, to simplify the system of equations

used to model the architecture, the olfactory sensory system and

any additional non-biological senses are treated the same as the

other senses, which in the brain relay through the thalamus to the

neocortex. Similarly, the architecture does not model the left-right

sides and the interhemispheric movement of working memory in

the biological brain.

As can be seen from Figure 1, outputs from the Input Sensory

Vectors Shaping Module are also propagated to the Autonomic

Reflex Modules. These Reflex Modules perform straightforward

actions in response to certain input stimuli, analogous to reflex

responses in mammals. In this study, there is more of a focus on the

higher-level cognition occurring in the architecture. Similarly, this

study does not fully consider or model the repertoire of lower-level

learning and behavior routines that exist in humans.

Vector s’(t) (Equation 10), holding the normalized arrays of

sensory inputs, is propagated to the Input Vectors Association

Modules (arrow “b,” Figure 2) and the Sequential/Error Correcting

Module (arrow “c,” Figure 2). Spatial binding of the sensory inputs

will occur in the Input Vectors Association Modules, i.e., each

sensory system’s inputs will be mapped onto a navigation map

(essentially an array) where the spatial relationship of different

sensory inputs are maintained to some extent (e.g., the navigation

map in Figure 3 which represents the sensory scene of Figure 6A).

In the Sequential/Error Correcting Module, temporal binding

of the sensory inputs occurs—temporal relationships of different

sensory inputs, i.e., those of the current cognitive cycle time t = t

and those of previous cycles t = t-1 (i.e., 1 cognitive cycle ago), t =

t-2, and t= t-3 are bound spatially onto a navigation map and later

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 3

Example of a Navigation Map—the 6x6x0 spatial dimensions are shown, containing sensory features and links to other navigation maps. This

represents the sensory scene of Figure 6A. Although this navigation map only contains visual sensory features, other navigation maps can contain

combinations of visual, auditory, olfactory, and so on, sensory features.

combined with the spatial navigation maps (Schneider, 2022a,b).

This is discussed in more detail in Section A-4 in Appendix A.

The need to store snapshots of the input sensory navigation maps

every 30th of a second, for example, to track and make memories

of motion (as well as changes in higher level cognitive processes),

is obviated by transforming the temporal changes into a spatial

features that are then mapped on to the same navigation map with

the other spatial features.

Temporal binding is an essential feature of the Causal Cognitive

Architecture. As mentioned above, it is described in more detail

in Appendix A and the literature (Schneider, 2022a). If there is

a motion of an object, the temporal binding allows the creation

of a vector representing this motion, which can then be mapped

onto the existing spatial binding navigation map representing the

input sensory data. In addition, the motion of ideas, i.e., changes

in navigation maps, can also be similarly mapped onto other

navigation maps. However, this study will not focus on temporal

binding but rather consider in more detail the flow of sensory

inputs s’(t) into the Input Sensory Vectors Association Modules

and then to the Navigation Module and related modules (Figure 1).

Equation (18) from Appendix A is shown below. In each

Input Sensory Vectors Association Module (there is a separate

one for each sensory system), the sensory input features

(S’σ ,t) for that sensory system σ are spatially mapped onto a

navigation map. Each such navigation map is then matched

(“match_best_local_navmap ”) against the best navigation

maps stored in that Input Sensory Vectors Association Module for

that sensory system σ (all_mapsσ ,t ,). That best-matching stored

navigation map is retrieved and then updated with the actual

sensory input of that sensory system (or a new navigation map is

created if there are too many changes). LNM(σ ,γ ,t) is the updated

navigation map (where σ is the sensory system, γ is the map

address, and t is the time corresponding to the current cognitive

cycle). LNM stands for “Local Navigation Map” referring to this

being the updated input sensory navigation map for that local

sensory system (e.g., vision, auditory, olfactory, and so on). The

vector lnmt (Equation 23) contains the best-matching and updated

navigation maps for each sensory system.

In predictive coding, the brain or artificial agent makes a

prediction about the environment, and then this prediction is sent

down to lower levels of sensory inputs. Actual sensory inputs are

compared to the prediction, and the prediction errors are then

used to update and refine future predictions. Essentially, the brain

or the artificial agent effectively functions to minimize prediction

errors (Rao and Ballard, 1999; Friston, 2010; Millidge et al., 2021;

Georgeon et al., 2024).

In Equation (18), WNM’t−1 refers to the Working Navigation

Map, i.e., the navigation map the architecture was operating on

in the Navigation Module (Figure 1) in the previous cognitive

cycle t = t-1, which will influence the matching of sensory inputs

to the best local sensory navigation map stored in the particular

Input Sensory Vectors Association module in the current cognitive

cycle t = t. The architecture anticipates to some extent what it

will be sensing and then considers the differences with the actual

input signal, i.e., which stored navigation map of that sensory

system’s stored navigation maps (all_mapsσ ,t) is the closest match

based on the actual sensory input (S’σ ,t) and based on what the

Navigation Module expects to see (WNM’t−1). The architecture

essentially matches sensory inputs with navigation maps it already

has experience with and then considers the differences (i.e., the

error signal) with updated navigation maps (i.e., error signal

resolved) saved in memory. This works well for the perception

of noisy, imperfect sensory inputs, and this is easy to implement

with the navigation map data structure (e.g., Figure 3) used by

the architecture.

While this process has a number of similar aspects to predictive

coding, it was not designed as a predictive coding architecture. For

example, the architecture does not actively attempt to minimize

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

free energy or minimize prediction errors, although this effect often

results. Instead, this arrangement emerged in the attempt to model

the evolution of the brain, albeit in a loosely functionalist approach

(e.g., Lieto, 2021b).

LNM(σ ,γ ,t)=Input_Assocn_Mod σ .match_best_local

_navmap (S’σ ,t , all_mapsσ ,t ,WNM’t−1) (18)

lnmt = [LNM(1,γ ,t), LNM(2,γ ,t), LNM(3,γ ,t), . . . , LNM(θ_σ ,γ ,t)] (23)

The Local Navigation Maps [i.e., the best-matching navigation

maps for each “local” sensory system updated by the actual sensory

inputs, represented by lnmt in Equation (23)] are then propagated

to the Object Gateway Modules (arrow “d,” Figure 2), with one

module for each sensory system. In the Object Gateway Modules,

portions of each navigation map will be attempted to be segmented

into different objects, as best it can do. If there is, for example, a

black sphere in a sensory scene, the Object Gateway Module, when

processing the visual LNM (local navigation map), will readily

segment out a black sphere from the rest of the sensory scene

[the navigation map shown in Figure 3 was constructed in this

manner from various visual close-up sensory inputs. For example,

in cell (0,0,0), the link shown, i.e., {0024, 0,0,0}, refers to another

navigation map where the various lines and colors of a sphere were

extracted from the navigation map as a black sphere, and where the

descriptive labels “sphere” and “black” were linked to].

The temporal binding (i.e., motion) of the sensory inputs

that have occurred in the Sequential/Error Correcting Module is

spatially mapped to each of the Local Navigation Maps (arrow

“e,” Figure 2). For example, Equation (62) taken from Appendix A

shows the Local Navigation Map for the visual sensory inputs

LNM(1,γ ,t) being updated with a “Vector NavigationMap” “VNM”t
(i.e., the motion prediction vector created in the Sequential/Error

CorrectingModule and applied to an array), with the updated Local

Navigation Map LNM’(1,γ ,t) resulting as follows:

LNM’(1,γ,t) = LNM(1,γ ,t) ∪ VNM”t (62)

The different sensory system-updated Local Navigation Maps

LNM’(1....,γ ,t) are then matched against the multisensory (i.e.,

have features from all sensory systems as well as perhaps other

features created and stored on the maps) navigation maps stored

in the Causal Memory Module (arrow “f,” Figure 2). WNMt is the

best-matching multisensory navigation map. Equation (67) from

Appendix A shows that the Object Segmentation Gateway Module

(“Object_Seg_Mod ”) built-in method (i.e., part of the circuitry

of the Object Segmentation Gateway Module) “differences ”

compares the number of differences between actual sensory

information on the Local Navigation Maps represented by actualt
to the features represented byWNMt .

As Equation (67) shows, if the number of differences is low

enough, then the best-matching multisensory navigation map

WNMt is updated with actual sensory information from the Local

Navigation Maps represented by actualt [if there are too many

differences between the best-matching map and the actual input

maps, i.e., >h’ as shown in Equation (67), then in another equation

in Appendix A, there will be the creation of a new multisensory

navigation map and updating it, rather than the modification

of the existing WNMt]. The resulting multisensory navigation

map WNM’t is called the “Working Navigation Map” and is the

navigation map upon which instinctive primitives and learned

primitives operate in the Navigation Module (arrow “g,” Figure 2).

Figure 3 is an example of a Working Navigation Map.

|Object_Seg_Mod.differences (actualt ,WNMt)| ≤h’,

⇒WNM’t = WNMt ∪ actualt . (67)

2.2 The Navigation Module(s)

In the CCA5 version of the architecture, there is a single

Navigation Module (Figure 1). However, the Navigation Modules

are increased in the CCA6 version (Figure 5) and the CCA7 version

(Figure 9). Nonetheless, this section applies to all these versions of

the architecture.

Instinctive primitives are small procedures that can perform

operations on the Working Navigation Map (WNM’t) in the

Navigation Module. Instinctive primitives are pre-existing—they

come preprogrammed with the architecture. Learned primitives are

similar to small procedures that can perform operations on the

Working Navigation Map (WNM’t). However, learned primitives

are learned by the architecture, rather than being preprogrammed.

The instinctive primitives are inspired by the instinctive

behaviors present in human infants and children, as well as in some

non-human primates (Spelke, 1994; Kinzler and Spelke, 2007).

Spelke groups these instinctive behaviors in terms of the physics

of objects, agents, numbers, geometry, and reasoning about social

group members.

As can be seen from Figure 2 (arrow “h”), the processed Input

Sensory Vectors Association Modules’ navigation maps, as well

as inputs from other parts of the architecture, propagate to the

store of both learned primitives and instinctive primitives in the

architecture. Either an instinctive primitive or a learned primitive

will be selected. The primitive is selected by a similar matching

process to the one discussed above, but here in terms of the sensory

inputs as well as signals from the Goal/Emotion Module and the

previous values of the Navigation Modules.

Arrow “i” in Figure 2 shows the best-matching instinctive

primitive acting on the Working Navigation Map (WNM’t) in the

Navigation Module. These operations are essentially matrix/tensor

operations, such as comparing arrays, adding a vector to an array,

and other straightforward operations that could be expected of

brain-inspired circuitry. Equation (82) is taken from Appendix A.

In the Navigation Module, the best-matching primitive (it can be

either an instinctive primitive or a learned primitive), WPRt is

applied against the Working Navigation MapWNM’ (in the CCA6

and CCA7 versions of the architecture where there is more than one

Navigation Module, this occurs in Navigation Module A).

In Equation (82), “apply_primitive ” is a built-in method

(i.e., part of the circuitry of the Navigation Module) that does the

actual operations of applying the primitive WPRt on the Working

Navigation Map WNM’. The result is an output signal actiont
(Equation 82). As indicated by arrow “j” in Figure 2, output signal

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

actiont is propagated to the Output Vector Association Module.

As indicated by arrow “k” in Figure 2, there is a modification

of the output signal actiont with respect to temporal motions

introduced in the Output Vector Association Module, creating an

intermediate output_vectort signal. This is further modified by

the motion_correctiont signal produced by the Sequential/Error

Correcting Module. The result is the output_vectort signal, as

shown in Equation (87). The output_vectort signal propagates

to the Output Vector Shaping Module. The signal is further

transformed for interface with the real world (arrow “l,” Figure 2),

where it can result in the activation of an actuator or the

transmission of an electronic communication signal.

actiont = Nav_ModA.apply_primitive (WPRt ,WNM’t)

(82)

output_vector’t = Output_Vector_Mod .apply_motion

_correction (output_vectort ,motion_correctiont)

(87)

Then, the cognitive cycle repeats—sensory inputs are

processed, the Navigation Module may produce an output action

which results in an actuator output, and then the cycle repeats

again, and so on.

Step-by-step examples of the architecture processing a

particular sensory scene are given by Schneider (2022a, 2023). In

addition, more details on the processes that occur are given in

Appendix A.

2.3 Feedback operations

Feedback pathways, only partially shown in Figures 1, 2, exist

throughout the Causal Cognitive Architecture. These feedback

pathways are essential—the architecture considers the differences

with the actual input or intermediate signal compared to its existing

internal representations, as discussed above. This is advantageous

for the perception of noisy, imperfect sensory inputs.

Schneider (2022a) describes how, by enhancing some of

these feedback pathways, causal properties readily emerge from

the architecture. In Figure 4A, the feedback pathways from the

Navigation Module back to the Input Sensory Vectors Association

Modules are enhanced. Biologically, such a change could have

occurred in the evolution of the brain through a number of

genetic mechanisms (e.g., Rakic, 2009; Chakraborty and Jarvis,

2015).

The result of this enhancement of this feedback pathway is

that when the operation of the instinctive or learned primitive

on the Working Navigation Map in the Navigation Module does

not produce an output action or a meaningful output action,

the results, i.e., the new contents of the Working Navigation

Map, can instead be fed back to the Input Sensory Vectors

Association Modules instead of being sent to the Output Vector

Association Module.

As shown in Figure 4A, the NavigationModule in this cognitive

cycle did not produce any output signal actiont . However, as arrow

“j” (Figure 4A) shows, the contents of the Navigation Module are

fed back to the Input Vectors Association Module. These saved

contents essentially now represent the intermediate results of the

Navigation Module. In the next cognitive cycle, they can be fed

forward to the Navigation Module and operated on again.

As Figure 4B shows, in the next cognitive cycle, instead of

processing the actual sensory inputs, these stored intermediate

results will automatically propagate forward to the Navigation

Module and be processed again (arrow “k”). These saved, essentially

intermediate results become again the current Working Navigation

Map (WNM’) in the Navigation Module. The advantage of

reprocessing intermediate results is that another operation of the

instinctive (or learned) primitive on these results can often result

in a better, actionable output signal actiont (Equation 82). If not,

the new intermediate results (i.e., the new contents of the Working

Navigation Map) can be fed back and again be re-processed

in the next one or many repeated cognitive cycles (at present,

determination of what is a meaningful result can be determined in

part by a learned or instinctive primitive’s procedures, as well as

in part if the action signal sent to the Output Vector Association

Module can be acted upon).

Equations (88, 89) taken from Appendix A show that if the

action signal produced by the Navigation Module is not actionable

(i.e., actiont 6= “move∗”), then the Working Navigation Map in the

Navigation Module is fed back to the various sensory system Input

Vector Association Modules (Equation 88). In the next cognitive

cycle t = t+1, the best-matching Local Navigation Map in each

module now becomes the sensory features extracted from the

fed-back Working Navigation Map (Equation 89), and so, these

Local Navigation Maps will be automatically propagated forward

to the Navigation Module, where they will constitute the Working

Navigation Map again. Thus, intermediate results of the previous

cycle will be operated on a second time by whatever instinctive or

learned primitives are selected in this cognitive cycle.

While this seems like an inelegant way to re-operate on

intermediate results, evolving this mechanism in the brain takes

modest changes, i.e., enhancement of particular feedback pathways.

Indeed, in humans, when the brain switches from the automatic

operations of System 1 to the more complex operations of System 2

(Kahneman, 2011), which is similar to re-operating on intermediate

results, less attention can be paid to the normal stimuli around us,

which is what happens in the Causal Cognitive Architecture during

re-operating on intermediate results.

(actiont 6= “move∗” andWPRt 6= [“discard∗”])or

WPRt = [“feedback∗”],
{

⇒Nav_ModA.feedback_to_assocn_mod (WNM’t) (88)

⇒∀σ :LNM(σ ,γ ,t+1)=Input_Sens_Vectors_

Assoc_Module σ.extract _σ (WNM’t)
}

(89)

Schneider (2022a) shows that by re-operating on the

intermediate results, the architecture can generate casual behavior

by exploring possible causes and effects of the actions. An example

is where the CCA3 version of the Causal Cognitive Architecture

controls a hospital patient assistant robot. A new robot has never

seen a patient fall to the ground and has never been trained on

a closely identical case. However, it has a learned primitive (i.e.,

procedure) from a rudimentary education before doing this work

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 4

Consider the above figure under these situations: (A) (arrows a → j) When the operation of the selected instinctive or learned primitive on the

Working Navigation Map in the Navigation Module does not produce an output action or a meaningful one, the results, i.e., the new contents of the

Working Navigation Map, can instead be fed back to the Input Sensory Vectors Association Modules. (B) (arrows k → l) Instead of actual sensory

inputs, the intermediate results from the Navigation Module (previous figure), which have been temporarily stored in the Input Sensory Vectors

Association Modules, are now automatically propagated to the Navigation Module. In this new cognitive cycle, perhaps a new instinctive primitive

will end up being selected (or the same ones used) and applied to previous intermediate results, possibly producing a valid output action. If so, then

the output action goes to the Output Vector Association Module and then to the real world. However, if no valid output action occurs, the new

intermediate results can be fed back again and, in the next cognitive cycle, processed again. (C) (j**) (Note: Although not shown, assume there is a

TempMap memory storage area in the Navigation Module, which is shown more explicitly in Figure 5.) No meaningful output was produced by the

interaction of the primitive on the Working Navigation Map (WNM) in the Navigation Module. As before, the Working Navigation Map (i.e., the

intermediate results) are fed back and stored in the Sensory Association Modules. However, the operations at j** occur now (described below and in

the text now occur). E�ectively, induction by analogy automatically occurs in these steps, allowing the production of an actionable output in many

situations. a—Sensory inputs stream into the Input Sensory Vectors Shaping Modules. b—Processed and normalized sensory inputs propagate to the

Input Sensory Vectors Association Modules and best-matching Local Navigation Maps (LMNs) for each sensory system produced (spatial binding).

c—Processed and normalized sensory inputs propagate to the Sequential/Error Correcting Module (temporal binding). d—Segmentation of objects in

the input sensory scenes. e—Spatial mapping of the temporal mapping of the sensory inputs from the Sequential/Error Correcting Module. f—Match

to the best-matching Multi-Sensory Navigation Map from the Causal Memory Module, producing the Working Navigation Map (WNM) for the

Navigation Module. g—Working Navigation Map (WNM) in/accessible by Navigation Module. h—Selecting a best-matching primitive (an Instinctive

Primitive in this case). i—Instinctive Primitive operating on the Working Navigation Map (WNM). j—No meaningful action signal is produced by the

operation of Instinctive Primitive on WNM; thus, the contents of WNM are fed back to the Input Sensory Vectors Associations Modules. k—In the new

cognitive cycle, the stored WNM, i.e., the previous cycle’s intermediate results, are now reprocessed through the Navigation Module. l—Perhaps a

meaningful action signal is now produced, and an output signal results. j**–No meaningful action signal is produced by the operation of Instinctive

Primitive on WNM; thus, the following happens (represented above by ** since there is not enough space to show the various arrows required): 1.

The contents of WNM are fed back to the Input Sensory Vectors Associations Modules, like before. 2. The contents of WNM are also fed to trigger a

match with the best-matching nav map in the Causal Memory Module (WNM’t-best_match). 3. The nav map that WNM’t-best_match links to is

placed in “TempMap” memory of the Navigation Module. 4. The di�erence (WNM’t-di�erence) between WNM’t-best_match and “TempMap” is kept

in the Navigation Module. 5. The original WNM being stored in the Input Sensory Vectors Association Modules in the next cognitive cycle propagates

forward and is added to WNM’t-di�erence, resulting in a new Working Navigation Map WNM, which will be processed again (i.e., action by primitive

against it) in the new cognitive cycle, and this time may (or may not) result in an actionable output from the Navigation Map.

that it should not allow any patient it is with to fall down on

the ground.

The robot one day happens to be assisting a patient who

begins to fall toward the ground. The learned primitive concerning

a person falling is triggered but does not produce an actual

output signal. The intermediate result calls the physics instinctive

primitive (i.e., a general knowledge procedure pre-programmed

in the architecture), which pushes back against something falling

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 5

The Causal Cognitive Architecture 6 (CCA6). The Navigation Module of the CCA5 architecture has been duplicated into Navigation Module A and

Navigation Module B, along with other changes, resulting in the CCA6 version of the architecture.

or moving to stop the movement. Thus, the robot pushes

back against the falling patient and stops the patient from

falling, even though it has never actually done this before

in training.

2.4 Analogical reasoning

Even with reprocessing of intermediate results, there are

still many situations where the Navigation Module will not

produce any actionable output. Schneider (2023) shows that

with biologically feasible, modest modifications to the feedback

operations, analogical reasoning readily emerges. Although not

explicitly shown, note that a temporary memory area, “TempMap,”

now also exists in the Navigation Module (Figure 4C; this memory

area is treated equivalently to an array in the equations, hence the

bolding of its name).

Given the existence of a temporary memory area, why,

for causal behavior, as shown above, is it necessary to feed

back the intermediate results of the Navigation Module to the

Input Sensory Vectors Association Modules rather than just

store them in the temporary memory area? As Schneider (2023)

notes, the reason is that the Causal Cognitive Architecture is

biologically inspired, and from an evolutionary perspective, it

seems more reasonable that storage of intermediate results could

occur by enhancing feedback pathways rather than by creating new

memory areas. To efficiently carry out analogical operations, as

described below, the evolutionary usurpation of some brain regions

as a temporary storage region would have been advantageous

at this point. Thus, the CCA5 and higher versions of the

architecture possess a temporary memory area associated with the

Navigation Module.

As before, the Working Navigation Map (WNM’t ; i.e., the

intermediate results) is fed back and stored in the Input Sensory

Association Modules (arrow “j” in Figures 4B, C). However,

the Working Navigation Map is also propagated to the Causal

Memory Module, where it will automatically match the best stored

multisensory navigation map, which becomes the new Working

Navigation Map in the Navigation Module. The navigation map

that this navigation map recently linked to is triggered and

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 6

(A) Connectionist systems have di�culty solving problems such as “place the black sphere on top of the black block which is not near a cylinder” (the

arrow shows the correct solution to this problem, but of course, it is not shown to the system being asked to solve this problem). (B, C) The sensory

scene of (A) is loaded in Navigation Module A (B). The instruction associated with (A) (“place the black sphere on top of the black block which is not

near a cylinder”) is loaded in Navigation Module B (C). In subsequent cognitive cycles, the contents of Navigation Module B are processed against the

contents of Navigation Module A via operations of various instinctive primitives discussed in the text.

retrieved and then propagated to and subtracted from the new

Working Navigation Map in the Navigation Module (“∗∗” in

Figure 4C). In the next cognitive cycle, as before, the original

Working Navigation Map is automatically propagated, although

now added to the differences in the Navigation Module. As a result

of a few modifications to the feedback pathways and operations

on the navigation maps here, effectively induction by analogy

automatically occurs in these steps.

Equations (95–99) are taken from the Appendix A and show

these operations. If there is no actionable output from the

Navigation Module (i.e., actiont 6= ” move∗,” where “move∗”

is an output signal giving instructions about moving something

or moving a message), then these operations are automatically

triggered, i.e., these equations occur [note that there is only

one Working Navigation Map WNM’t in the Navigation Module

(Figure 4C) at any time. However, since the contents of what is

WNM’t change several times in these operations, for better clarity

to the reader, a small descriptor is appended to its name, e.g.,

“WNM’t-original,” etc.].

In Equation (95), the contents of the Navigation Module, i.e.,

WNM’t , which for better readability is called “WNM’t-original”

here, are fed back to be stored in the Input Sensory Vectors

Association Modules, the same as before. However, “WNM’t-

original” is also propagated to the Causal Memory Module where

automatically the “Causal_Mem_Mod.match_best_map ”

built-in method will occur, matching it with the best matching

multisensory map, which becomes the new Working Navigation

Map called here as “WNM’t-best_match” (Equation 96).

In Equation (97), the built-in method

“Nav_ModA.use_linkaddress1_map” retrieves the navigation map

that “WNM’t-best_match” most recently linked to and puts this

map into the TempMap memory. Then, as Equation (98) shows,

the difference between “WNM’t-best_match” and TempMap

gets stored in the Navigation Module as “WNM’t-difference.”

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

Then, a new cognitive cycle starts, and WNM’t-original is

automatically fed forward but now added to “WNM’t-difference”

(Equation 99). The new Working Navigation Map WNM’t is

termed “WNM’t-analogical” since it represents an analogic

inductive result.

Consider a navigation map x which is represented by “WNM’t-

original.” Given that there was no actionable output in the last

cognitive cycle, it is advantageous to induce what this navigation

map x will do next, i.e., which navigation map it will call. In

Equation (100), it is shown that it has properties/features P1. . . Pn.

Consider navigation map y represented as “WNM’t-best_match” in

Equation (96). It is the best-matching navigation map to navigation

map x and thus assumed it will share many properties, as shown in

Equation (101).

Navigation map y has previously linked to (i.e., it was

pulled into the Navigation Module) the navigation map in

TempMap (Equation 97), i.e., as given by the built-in method

“use_linkaddress1_map ” [Schneider (2023) discusses other

links and groups of links to use as the basis for analogical

induction]. The difference between navigation map y and

TempMap is “WNM’t-difference” (Equation 98). Thus, consider

this difference, i.e., “WNM’t-difference,” to be property N, as noted

in Equation (102).

Since navigation map y has property N, by induction by

analogy, it can be said that navigation map x also has property N

(Equation 103). Thus, add property N, which is actually “WNM’t-

difference,” to navigation map x, which is actually “WNM’t-

original,” producing the result of navigation map x with property

N as being “WNM’t-analogical” (Equation 99).

((actiont 6= “move∗” orWPRt = [“analogical∗”]) andWPRt

6= [“discard∗”] andWPRt 6= [“feedback∗”]),
{

⇒Nav_ModA.feedback_to_assocn_mod

(WNM’t − original) (95)

⇒WNM’t − best_match

= Causal_Mem_Mod.match_best_map (WNM’t − original)

(96)

⇒TempMapt = Nav_ModA.use_linkaddress1_map

(WNM’t − best_match) (97)

⇒WNM’t − difference = Nav_ModA.subtract

(WNM’t − best_match,TempMapt)
}

(98)

((actiont−1 6= “move∗” orWPRt−1

= [“analogical∗”]) andWPRt−1

6= [“discard∗”] andWPRt-1 6= [“feedback∗”]),

⇒WNM’t − analogical

= Nav_ModA.retrieve_and_add_vector_assocn()

(99)

P1x & P2x & . . . Pnx (100)

P1y & P2y & . . . Pny (101)

Ny (102)

∴Nx (103)

As noted above, Equations (100–103) essentially define

induction by analogy. In Equation (100), x has properties/features

P1 to Pn. y is similar and also has properties/features P1 to Pn
(Equation 101). y also has the feature “N” (Equation 102). Thus,

by induction by analogy, x has the feature “N” (Equation 103).

As shown above, a ready mechanism now exists in the Causal

Cognitive Architecture, which follows this definition. If an

actionable resolution of a Working Navigation Map (WNM’t) does

not immediately occur (i.e., a primitive applied to WNM’t does

not produce an actionable output from the Navigation Module),

the architecture can follow the analogical mechanism above to

produce an analogical result which can be operated on in the next

cognitive cycle.

Of interest is that analogical intermediate results are useful

in typical day-to-day functioning rather than being considered

as something only used in exceptional high-level problem-solving

tasks (e.g., writing an intelligence test). For example, in the study

by Schneider (2023), there is an example of a robot controlled by

a CCA5 version of the architecture. The robot needs to cross a

river and has instinctive primitives that guide it to stay on solid

ground to do so. However, there are piles of leaves floating on the

river, which appear solid and for which the robot has no experience

nor any instinctive primitives. By analogical reasoning, it is shown

how the robot automatically uses a previous navigation map (i.e.,

experience) of stepping on pieces of newspaper floating in a puddle

and its leg going into the puddle to not use the leaves to cross the

river. The robot has no knowledge whatsoever about newspapers or

leaves other than they appear to be solid, yet by automatically using

its analogical reasoning mechanism, it successfully crosses the river

via another path and not by stepping on the piles of floating leaves.

Hofstadter (2001) provides evidence that supports the use of

analogies as the core of human cognition. Of interest, full analogical

reasoning does not appear to be present in chimpanzees (Penn

et al., 2008), although more recent reports show some animals

capable of some aspects of analogical reasoning (Flemming et al.,

2013; Hagmann and Cook, 2015). The mechanisms described

above for the Causal Cognitive Architecture show theoretically that

modest modifications can result in the emergence of analogical

reasoning from a chimpanzee–human last common ancestor, albeit

a loosely functionalist model thereof.

2.5 Compositionality

Given the usefulness of the Navigation Module, duplicating it

into two Navigation Modules might be more advantageous. Again,

biologically, such a change could have readily occurred in the

evolution of the brain through a number of genetic mechanisms

(e.g., Rakic, 2009; Chakraborty and Jarvis, 2015). Figure 5 shows

the duplication of the Navigation Module into Navigation Module

A and Navigation Module B. This new version of the architecture is

called the Causal Cognitive Architecture 6 (CCA6).

Consider the compositional problem shown in Figure 6A, such

as following the command to “place the black sphere on top of

the black block which is not near a cylinder” (the arrow shows the

correct solution to this problem. Of course, the arrow is not shown

to the system being asked to solve this problem). Connectionist

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

systems have trouble with such compositional problems. For

example, Marcus et al. (2022) give a similar example to DALL-E2

and prompt it to place a red ball on top of a blue pyramid behind

a car above a toaster. DALL-E2 tries 10 times and produces various

output images in response to the command, but none of these

actually depict the requested relationships correctly.

However, Schneider (2024) shows that if the Navigation

Module is duplicated into Navigation Module A and Navigation

Module B, as shown in Figure 5, then compositionality and

compositional language readily emerge from this CCA6 version of

the architecture.

In the CCA6 architecture shown in Figure 5, compositional

operations tend to occur in Navigation Module B. Instinctive

primitives (as well as learned primitives) involved in compositional

operations and language operations will generally operate on the

navigation map in Navigation Module B. Consider the example

shown in Figure 6A of “placing the black sphere on top of the black

block which is not near a cylinder.” The sensory scene of the spheres

and blocks will propagate through the architecture (Figure 5) and

be mapped to a navigation map in Navigation Module A, as shown

in Figure 6B [it actually takes a few cognitive cycles and close-up

views of the objects, as evidenced by the links in some of the cells

(e.g., link to {map= 24, x= 0, y= 0, z= 0} for cell (0,0,0) with the

labels “sphere” and “black”), to create this navigation map].

Equations (109–114) are taken from Appendix A. The

instinctive primitive “parse_sentence ” is triggered by the

instruction (“instruction sentence”) associated with this sensory

image. In Equation (109), “parse_sentence.copy() ” maps

the instruction (“place the black sphere on top of the black block

which is not near a cylinder”) to a navigation map (WNMB’t) in

Navigation Module B (“Nav_ModB”). This is shown in Figures 6B,

C. The “link{+}” in the cells in the Navigation Map (WNMB’t) in

Navigation Module B just means that the cell links to its neighbor

to the right.

The “parse_sentence.parse() ” instinctive primitive

parses through Navigation Map B WNMB’, i.e., the instruction

sentence (Equation 110). Each word is matched against the Causal

Memory Module “parse_sentence.parse.match() ”

(Equation 111). If what is called an “action word” is found (i.e., it

matches some specific action to do to the other cells), then it is

mapped to cells in NavigationMap AWNM’ in NavigationModule

A (Figure 7A) containing features associated with or mapping to

the action word. In Figure 7A, it can be seen, for example, that

“place” has been matched to cell (0,0,0) in Navigation Module A.

This makes sense since this action word is associated with the black

sphere in the instruction sentence (this is described in more detail

in Appendix A).

A “near_trigger” is a feature that is spatially near

something else or not near something else that can trigger

various physics instinctive primitives. The instruction

sentence word “near” triggers instinctive primitive

“Nav_ModB.physics_near_object() ” (Equation 112).

The result of this instinctive primitive is to place the tag “not” in

the cells “not near” the white cylinder, as seen in the Navigation

Map of Navigation Module A in Figure 7B.

In each cognitive cycle, the CCA6 architecture will continue

to parse through the instruction sentence. When it reaches

the “end_of_communication” (i.e., the end of the sentence),

it then parses through Navigation Module A, looking for a

“place” tag. Suppose there is a “place” tag (e.g., cell (0,0,0)) in

Navigation Module A in Figure 7B, then instinctive primitive

“Nav_ModA.place_object() ” is triggered (Equation 113).

This instinctive primitive will go through the navigation map

looking for other tagged notations such as “top” in cells (2,0,0) and

(4,0,0) in Navigation Module A (Figure 7B). It will ignore (2,0,0)

since there is a “not” tag there, but it will consider (4,0,0) valid. It

will then trigger the instinctive primitive “Nav_ModA.move() ,”

which then sends the action signals to the Output Vector

Association Module A, which in turn sends a motion-corrected

signal to the Output Vector Shaping Module, which instructs the

actuators to move the black sphere to the cell (4,0,0) with the black

block on the right (Equation 114).

(instruction_sentence),

{⇒WNMB’t = Nav_ModB.parse_sentence.copy() (109)

⇒Nav_ModB.parse_sentence.parse (WNMB’t),

(110)

[⇒Nav_ModB.parse_sentence.parse.match() (111)

⇒near_trigger,

(⇒Nav_ModB.physics_near_object())] (112)

⇒end_of_communication,

[<place>,

(⇒Nav_ModA.place_object() (113)

⇒Nav_ModA.move())]} (114)

Compositionality is a key property of an intelligent system.

Without compositionality, such a system would need to experience

every (or very many) permutations of a vast number of sensory

scenes and actions to learn them. Above, it was shown how, with

the duplication of the navigation modules, compositional abilities

can readily emerge. This is discussed in more detail in Schneider

(2024), including the emergence of language.

2.6 Comparison of the Causal Cognitive
Architecture with other
cognitive architectures

Samsonovich (2010) and Kotseruba and Tsotsos (2020) review

the many cognitive architectures proposed in the literature.

Kotseruba and Tsotsos note the large diversity of cognitive

architectures proposed and the difficulty of defining the term. They

consider cognitive architectures broadly as programs that “could

reason about problems across different domains” and attempt to

help determine what “particular mechanisms succeed in producing

intelligent behavior” in terms of modeling the human mind.

Laird et al. (2017) attempt to unify the field of cognitive

architectures with what they term a “standard model of the mind.”

In their standard model, perception feeds into working memory,

while motor outputs feed out of it. There is bidirectional movement

of information between a declarative long-term memory and the

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 7

(A) The instinctive primitive “parse_sentence()” has entered the tag <“place”> in the cell containing the black sphere. (B) After a few more cognitive

cycles, the instinctive primitive “parse_sentence()” and then the instinctive primitive “physics_near_object()” have now written these tags in the

various cells of the navigation map in Navigation Module A.

working memory. Similarly, there is a bidirectional movement of

information between procedural long-term memory and working

memory. This is a very generic model of a cognitive architecture,

and it would be expected to capture the inclusion of most

of the models listed by Samsonovich (2010) or Kotseruba and

Tsotsos (2020). However, the CCA7 version of the Causal

Cognitive Architecture surprisingly does not fit within this

“standard model.”

In this standard model of the mind, there are separate areas for

declarative long-term memory and procedural long-term memory.

However, in the CCA7, there can be both declarative long-term

memory (i.e., navigation maps of experiences) and procedural

long-term memory (i.e., instinctive and learned primitives) mixed

together in the different Input Sensory Vectors Association

Modules and within multisensory navigation maps which are

operated on in the Navigation Modules A and B.

The CCA7 architecture is largely defined by its binding of

sensory inputs into navigation maps and comparing these inputs

with pre-stored information. The CCA7 architecture is also largely

defined by its heavy usage of feedback of intermediate results of

navigation maps. Again, these operations are not typical for most

of the architectures defined by the standard model of the mind

or included by Samsonovich (2010) or by Kotseruba and Tsotsos

(2020).

2.7 Cognitive maps

As noted above, the Causal Cognitive Architecture hypothesizes

that the navigation circuits in the amniotic ancestors of mammals

duplicated many times to eventually form the neocortex. Thus,

the millions of neocortical minicolumns are modeled in the

Causal Cognitive Architecture as millions of navigation maps.

As noted above, using this postulation, it has been possible to

show the emergence of causal reasoning, analogical reasoning, and

compositionality from a brain based on such navigation maps

[Schneider, 2022a, 2023, 2024; Albeit, not rigidly replicating the

mammalian brain, but at a more functionalist system as per Lieto

(2021b)].

Similar to the concept of navigation maps, cognitive maps

were proposed by Tolman (1948). A cognitive map is considered

the way the brain represents the world and allows navigation and

operations on paths and objects in the world. Thus, cognitive maps

can hold geographical information as well as information from

personal experiences. Before the work byO’Keefe andNadel (1978),

there was much debate about the existence of cognitive maps in a

large spectrum of the animal world. This debate still continues, for

example, whether cognitive maps exist in insects (Dhein, 2023).

In mammals, experimental work has largely found evidence

for cognitive maps existing in terms of spatial navigation (e.g.,

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

O’Keefe andNadel, 1978; Alme et al., 2014). However, Behrens et al.

(2018) andWhittington et al. (2022) review extensions of cognitive

maps into other domains of cognition. Hawkins et al. (2019) note

evidence within the mammalian neocortex for the equivalent of

grid cells. Schafer and Schiller (2018) have also hypothesized that

the mammalian neocortex contains maps of spatial objects and

maps of social interactions.

Buzsaki andMoser (2013) consider cognitive maps in planning,

an area in which the new work on the Causal Cognitive

Architecture below has developed. They propose that the memory

and planning properties of the mammalian brain actually evolved

from the same mechanisms used for navigation of the physical

world. With regard to the neuroanatomical and neurophysiological

basis for cognitive maps in the brain, the study by Schuck et al.

(2016) suggests that the human orbitofrontal cortex holds a

cognitive map of the current states of a task being performed.

3 New work: the Causal Cognitive
Architecture 7 (CCA7)

3.1 Duplication of the TempMap
memory areas

As noted in the Introduction section, Causal Cognitive

Architecture is a brain-inspired cognitive architecture (BICA) that

was developed from the hypothesis that the navigation circuits

in the amniotic ancestors of mammals duplicated many times

to eventually form the neocortex. The thousands or millions

(depending on the organism) of neocortical minicolumns are

modeled in the architecture as navigation maps. The modeling

of the mammalian brain and its evolution is done in a loosely

functionalist approach (e.g., Lieto, 2021b) with constraints imposed

by structuralist concerns. Small modifications in the architecture,

akin to what could have been reasonable genetic and developmental

changes, have been postulated and explored in the development

of the versions of the architecture from the Causal Cognitive

Architecture CCA1 version to the CCA6 version.

This very functionalist and theoretical approach to mammalian

brain functioning and evolution is quite different than approaches

that have attempted to more faithfully replicate brain structure

and function (e.g., Markram, 2012; Frégnac, 2023). However, the

approach taken by the Causal Cognitive Architecture does allow

the emergence of mechanisms that could hypothetically explain

the functioning of the mammalian brain as well as how ordinary

genetic and developmental mechanisms could have readily allowed

the emergence, i.e., evolution, of the seemingly discontinuous

features in humans (i.e., the sharp cognitive and behavioral

differences between humans and our closest evolutionary relatives).

In addition, the approach taken by the Causal Cognitive

Architecture creates a mechanism (i.e., a particular cognitive

architecture) that can be used as the basis of building intelligent

artificial systems.

As noted above, in this study, the question is asked what if the

evolution of the human brain were to continue as it has in the past,

and given an environment selecting for the ability to better solve

complex problems which humans encounter in their lives (very

roughly indicated by measures of intelligence, for example, e.g.,

Legg and Hutter, 2007; Adams et al., 2012; Wang, 2019), then what

advantageous changes could occur as reflected in a model such as

the Causal Cognitive Architecture?

A computer engineer interested in enhancing the “intelligence”

(as per the definitions above) capabilities of the CCA6 version

of the architecture (Figure 5) could readily add a large language

model (LLM) module to the architecture or even just add a simple

calculator module to the architecture. If one assumes that the

CCA6 could be developed to the point of human intelligence (i.e.,

with adequate instinctive and learned primitives and with adequate

experiences stored throughout the architecture), then adding even

a calculator module could create a super-human intelligence

(albeit, given the assumptions above). For example, in computing

various strategies or outcomes, numerical answers would be readily

available for many problems in such an architecture, unlike in

the CCA6 version shown in Figure 5 or unlike in the case of an

actual human.

Adding a calculator module or, even more advantageously,

adding complete or multiple LLMmodules to the Causal Cognitive

Architecture in Figure 5 could be considered in future work.

Indeed, adding LLMs to cognitive architectures is an active area of

research at the time of writing (e.g., Joshi and Ustun, 2023; Laird

et al., 2023; Sun, 2024). However, in this study, the assumption is

that there will be an environment selecting for the ability to better

solve complex problems. Thus, although there is not in this study

the construction, mutation, and testing of millions of copies of the

CCA6, there is a consideration of what advantageous modifications

could emerge next, rather than design in modules (e.g., calculator

module, LLM, and so on), which would not emerge naturally on

their own as such (a calculator module or a complex LLM module

would not readily emerge on its own from the CCA6 version of the

architecture shown in Figure 5).

It is hypothesized that a first step in such an evolution could

be the duplication of the TempMap temporary memory area

in Navigation Module B into many such TempMap temporary

memory areas. As noted above, various mechanisms are feasible for

the duplication of brain structures (e.g., Rakic, 2009; Chakraborty

and Jarvis, 2015). Thus, as a first step in the continued evolution

of the CCA6 version of the architecture, there are multiple

duplications of the TempMap temporary memories in Navigation

Module B. This is shown in Figure 8. Previously, there was a single

TempMap temporary memory area in Navigation Module B; now,

there are many.

The temporary memory areaTempMapwas discussed above in

its use for allowing analogical reasoning (Equation 97).Mammalian

brain working memory, particularly human working memory, is

the inspiration for the architecture’s Navigation Modules and the

TempMap temporary memory. There is, in fact, variability in

human working memory capacity in the population. The study

by Friedman et al. (2008) claims that individual differences in

executive function and, by implication, human working memory

are almost completely genetic in origin. However, despite decades

of research on working memory, its measurement still remains

uncertain in many regards (Ando et al., 2001; Cowan, 2001;

Carruthers, 2013; Ma et al., 2014; Oberauer et al., 2016; Friedman

andMiyake, 2017; Chuderski and Jastrzȩbski, 2018). Although only

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 8

The CCA6 architecture with the duplication of the TempMap temporary memory areas in Navigation Module B.

a single TempMap memory was required by the CCA5 or CCA6

versions of the architecture for compositional language processing

(Schneider, 2024), it is known that in humans, higher working

memory capacity is associated with higher intellectual performance

(e.g., Aubry et al., 2021). As noted above, Navigation Module B

is associated with compositional operations. Thus, the additional

temporary memories incorporated into Navigation Module B, as

shown in Figure 8, could allowmore complex instinctive primitives

and more complex learned primitives to emerge that require

additional temporary memory storage. This will be explored below.

3.2 Duplication of Navigation Module B’s

While it is possible to navigate by simple rules/heuristics

or similarly generate words of communication by simple

rules/heuristics, planning a navigation route, planning words to

generate in communication, or planning any other similar task

can be advantageous. In any task where planning can improve the

outcome, there are usually many possible paths that can be chosen,

and it can be very advantageous to run possible plans in parallel.

Thus, it is hypothesized that another step in the evolution

of the Causal Cognitive Architecture could be the duplication of

Navigation Module B into many such Navigation Module B’s. As

noted above, various mechanisms are feasible for the duplication of

brain structures (e.g., Rakic, 2009; Chakraborty and Jarvis, 2015).

Thus, as the next step in the continued evolution of the CCA6

version of the architecture, there are multiple duplications of the

Navigation Module Bs. This is shown in Figure 9. The evolved

architecture (i.e., multiple Navigation Module Bs and multiple

temporary memories within each of the Navigation Module Bs) is

named the Causal Cognitive Architecture 7 (CCA7).

In the CCA7 version of the architecture shown in Figure 9,

there are 1,024 copies of Navigation Module B. In every single

Navigation Module B, there are 1,024 TempMap temporary

memories (the number is not shown in the figure). Temporary

memories are accessible for the operations of present and future

instinctive primitives and learned primitives. Each TempMap

temporary memory is capable of storing and representing a

navigation map.

Consider the well-known traveling salesperson problem where

a salesperson, or in this case an agent controlled by a CCA7

version of the architecture, must find the shortest route to visit

only once each of a number of different cities and then return to

the starting city. This is an NP-hard problem where the number of

possible navigation routes to consider in finding the best solution

increases exponentially with the number of cities. However, in the

CCA7 version of the architecture, given that there are now over

1,000 Navigation Module Bs, then many of the possible routes (or

promising routes given the exponential nature of the problem)

can be evaluated in parallel, and a more optimal route planned

ahead of time. This will be explored below in more detail, including

a detailed examination of the CCA7 version of the architecture’s

internal operations and internal navigation maps.

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 9

The Causal Cognitive Architecture 7 (CCA7). This is the architecture shown in Figure 8 with duplication (1,024 copies) of Navigation Module B.

3.3 The traveling salesperson problem

As noted above, in the traveling salesperson example, the

salesperson (or, in this case, an agent controlled by a CCA7

version of the architecture) must find the shortest route to

visit only once each of a number of different cities and then

return to the starting city. The many Navigation Module Bs

should allow the CCA7 to evaluate many of the possible (or

promising) routes in parallel and plan a more optimal route ahead

of time.

For example, if there are a half-dozen cities (or locations or

other equivalent destinations) that need to be visited, then this

represents (6-1)! or 120 navigation routes (actually, only 60 of these

routes need to be considered—returning home to the original city

creates a cyclic graph that can be navigated forwards or backwards).

If each possible route can be represented in a separate navigation

module and there are hundreds of navigation modules in the

architecture available, with each running a different combination

of routes, then this problem can be solved much faster than if only

a single navigation module was available.

If there were, for example, a dozen cities (or locations) that need

to be visited, then this represents (12-1)!/2 or nearly 20 million

navigation routes to explore to find the best solution. Even with

a thousand navigation modules, this would not be enough to run

each possible navigation route in a separate navigation module.

However, having the thousand navigation modules, in combination

with other instinctive primitives and learned primitives of the

architecture, can still greatly accelerate a reasonable solution in

this case. For example, the nearest neighbor solution algorithm

is a relatively simple algorithm where the agent chooses the

nearest city (or location) as the next city to visit (Rosenkrantz

et al., 1977). However, this algorithm can sometimes give very

poor solutions, i.e., very lengthy navigation routes to the problem

(Bang-Jensen et al., 2004). However, since there are over a 1,000

different navigation modules, it is possible to consider over

a thousand different implementations of the nearest neighbor

solution algorithm. Without any sophisticated algorithms (e.g.,

simply apply random choices for some cities rather than the nearest

and, e.g., simply apply various local properties such as avoiding

crossings or not avoiding crossings of paths, etc.) by using the

over 1,000 navigation modules to run slightly different solutions to

the problem, the architecture can better ensure that the solution

produced is less likely to be one of the worst solutions.

There is a very large body of literature on solutions to the

traveling salesperson problem. A myriad of algorithms have been

proposed, including many parallel solutions (e.g., Tschoke et al.,

1995). For example, Dorigo and Gambardella (1997) describe using

an algorithm based on a colony of ants to find successively shorter

routes by laying down pheromone trails. Of interest, for certain

variants of the problems, humans can visually produce solutions

that are close to the optimal solution (Dry et al., 2006). While

the literature gives much more sophisticated possible solutions, the

traveling salesperson is considered here simply as an example to

illustrate that having multiple navigation modules can be greatly

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

advantageous to various planning strategies the architecture is

required to perform.

3.4 small_plan() instinctive primitive

As discussed above, instinctive primitives are effectively small

procedures operating on the contents of the navigation map(s) in

the navigation module(s). The instinctive primitives are inspired

by the work of Spelke et al., who have described many innate

behaviors in human infants (Spelke, 1994; Spelke and Kinzler,

2007). Human infants do have innate behaviors with regard to

simple planning (e.g., Claxton et al., 2003; McCormack and Atance,

2011; Liu et al., 2022). Thus, given the brain-inspired origins of the

architecture, it is reasonable that the CCA7 architecture contains

an instinctive primitive capable of simple planning (as opposed to

learning how to do simple planning via a learned primitive). The

CCA7 architecture now includes an additional instinctive primitive

“small_plan() ” for simple planning.

The instinctive primitive “small_plan() ” can use a single

Navigation Module B as in the case of the CCA6 version of the

architecture (Figure 5), or in the case of the CCA7, it will make use

of all the Navigation Module Bs present (which in Figure 9 consists

of 1,024 modules). The simultaneous usage of over a thousand

navigation modules does not reflect, of course, a similar innate

behavior described by Spelke et al. The details and operation of

“small_plan() ” are discussed in the section below (of course,

with education, the CCA7 can acquire learned primitives that allow

it better planning strategies, including better algorithms for the

solution of the traveling salesperson problem. This is beyond the

scope of this paper and is not discussed here).

3.5 Operation of the Causal Cognitive
Architecture 7 (CCA7)

Consider an agent, i.e., a robot, controlled by the CCA7

architecture shown in Figure 9. For simplicity, the CCA7

architecture and the robot embodiment will be called the “CCA7”

or “CCA7 robot.” The CCA7 robot comes to location “X” in

Figure 10. It receives the instruction that starting at its existing

position (i.e., “X”), it must visit each object and then return to the

starting location.

While in location “X,” the CCA7 robot maps a sensory scene

into the navigation map in Navigation Module A, which is what

it automatically does in each available cognitive cycle when there

are new sensory inputs to process. The resulting navigation map

in Navigation Module A is shown in Figure 11A. The CCA7 robot

receives distances (either with the visual sensory information or

via a separate ultrasonic distance sensory system). The numbers

refer to the distance (in centimeters) between the objects in the

different cells (the distance number can be determined bymatching

the same number in the path between two cells. In addition, note

a clockwork recording of distances in each cell). The instruction

“go to all objects and go back” is placed in Navigation Module B, as

shown in Figure 11B. These operations are similar in nature to ones

already described above for the CCA6 version of the architecture

in its initial processing of the example of the sensory scene and

instruction concerning the “placing a black sphere on top of the

black block which is not near a cylinder” (Figures 6, 7).

However, as described above and shown in Figure 9, there are

now in the CCA7 multiple Navigation Modules—one Navigation

Module A and over a thousand (1,024) duplicated Navigation

Module Bs. Equation (115) (taken from Appendix A) indicates that

the Working Navigation Map B’ WNMB’ (upon which primitives

operate in Navigation Module B) is an array like before, but now

can be one of 1,024 different navigation maps (corresponding to a

different navigation map in each of the Navigation Module Bs.)

The Navigation Module Bs are numbered n = 1 to n =

1,023. The top (or first) Navigation Module B appears to be the

n = 1 Navigation Module B, as shown in Figure 9. However, a

n = 0 Navigation Module B exists and is used to store a copy

of the compositional instructions so that if the other layers are

overwritten, there is still a copy of the instructions. Layer n = 0 is

considered “reserved” and will not be overwritten. If there is other

information that an instinctive or learned primitive needs to ensure

remains intact for the current operations, other NavigationModule

Bs can be temporarily designated “reserved” as well.

Equation (116) indicates that the same instinctive primitive

or the same learned primitive (i.e., procedure) is initially applied

to all of the Navigation Module Bs. As discussed below, random

fluctuations can be introduced in the different Navigation Module

Bs to produce a variety of results to choose from. In the example

below (i.e., a traveling salesperson problem), the same instinctive

primitives are used by all the Navigation Module Bs, and this

does not cause any particular issues. However, in other types

of problems, in subsequent cognitive cycles, the initial primitive

applied may trigger different primitives in different Navigation

Modules. This issue is discussed below in the Section 6.

At present, there is no energy-saving operation or Autonomic

Module (Figure 9) interaction to turn off the multiple Navigation

Module Bs and use only a sole Navigation Module B n = 0

or n = 1, i.e., much like the previous CCA6 version of the

architecture functioned. However, if an instinctive primitive or

learned primitive does not require the thousand-plus Navigation

Module Bs, it can simply ignore the results in the multiple modules

and use the results of operations in Navigation Module B n = 1.

This is also discussed below in the Section 6.

As shown in Figure 11A, Navigation Module A contains the

Working Navigation Map (WNMA) of the sensory scene of the

various places the agent has to navigate to. In Navigation Module

B, n = 1 (Figure 11B) is a Working Navigation Map (WNMBn=1)

of the instruction sentence to “go to all the objects and go back.”

The word “go” in the first cell of the navigation map

in Navigation Module B (Figure 11A) is matched against the

Causal Memory Module as an action word and triggers the

instinctive primitive “goto() ” (Equation 117). “WNMA’t =

Nav_ModA.goto() ” indicates that this instinctive primitive, i.e.,

“goto() ,” is being applied to the Working Navigation Map A in

Navigation Module A.

The instinctive primitive “goto() ” causes the CCA7 robot to

tag a location(s) and then essentially move to whatever location is

indicated by the tag(s). The word “all,” which is associated with the

active word <“go”> (until another action word is encountered, as

in an earlier example above), will cause the tag<“all”> to be placed

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 10

Starting at location “X,” the CCA7 robot must go to the white sphere, the black sphere, and the white cube in any order and then return back to the

starting location. The instruction does not specify that the CCA7 should visit each object only once, but this will be implicit in the instinctive primitive

triggered, as described in the text. Similarly, the instruction does not specify this, but implicit in the instinctive primitive triggered, it should attempt to

do this using the navigation path with the shortest distance.

in all the cells with objects in the navigation map in Navigation

Module A (Figure 12A).

The words “go back” are also associated with the instruction

word <“go”> and will cause the tag <“back”> to be placed in the

starting cell [which is (0,0,0) in this example]. This can be seen in

Figure 12A.

Once the instinctive primitive “goto() ” tags the cell(s) where

it has to move to, it then decides if it will move (i.e., “go to”)

the cell with the tag. However, if there are multiple tags, i.e.,

multiple locations to navigate to [“locations > 1” in Equations

(118–123)], then the “small_plan() ” instinctive primitive is

activated instead of moving to a single location. As discussed above,

this instinctive primitive will plan a navigation route to whatever

multiple tagged locations are indicated on the navigation map(s).

Once activated (Equation 118), the instinctive primitive

“small_plan() ” (regardless of its argument) will copy the

NavigationMap A to all “non-reserved” NavigationModule Bs, i.e.,

n= 1. . . 1,023 in this example. It will remove any action words such

as “go” in the example above. This copying is indicated by the arrow

in Figure 12. Thus, the instruction sentence in Navigation Module

B n = 1 (Figure 11B) is overwritten here (Navigation Module B n

= 0 is “reserved” for a copy of the instruction sentence, although

it actually will not be used again in this example). A number of

existing operations in various instinctive primitives have properties

whereby they compare the contents of Navigation Module A and

Navigation Module B with each other. Thus, the emergence of this

step is a feasible one in the continued evolution of architecture.

Equation (118) describes instinctive primitive

“small_plan(random =False) ” acting on the Working

Navigation Map (WNMB’t,n=1) in Navigation Module

B n = 1 (Nav_ModBn=1) at time t = t (i.e., during

the current cognitive cycle). The instinctive primitive

“small_plan(random =False) ” follows the nearest neighbor

algorithm discussed above. In making a plan where to navigate,

this primitive will choose the tag (i.e., location) that is closest to

the tag (i.e., location) from where it is navigating. The argument

random = Fals e indicates that this instinctive primitive does

not introduce any random variations. As will be seen below, in the

other Navigation Module Bs, n = 2. . . 1,023 random variations will

be introduced.

In the n = 1 Navigation Module B,

“small_plan(random =False) ” operates on the navigation

map shown in Figure 12B and determines which tagged cell to

navigate first. It uses a nearest-neighbor algorithm in its planning

actions. For example, in Figure 12B, the cell (0,0,0) in which the

CCA7 is starting has a distance of 25, 31, and 42 units (actually

centimeters, but “small_plan() ” will disregard the actual

units) to the other objects [they are listed as “25, 42, 31” in cell

(0,0,0) in Figure 12B due to a clockwise organization of distances].

According to the nearest neighbor algorithm, it chooses the

shortest distance, which is 25, i.e., it plans to navigate first to cell

(2,2,0) containing the white sphere. Thus, it changes the <“all”>

tag to a <1>. This can be seen in Figure 12C.

The instinctive primitive then considers navigating from cell

(2,2,0)—which object to navigate to next? As can be seen in

Figures 12B, C, 22 is the shortest distance; thus, it decides to

navigate to cell (3,0,0), which contains the black sphere. It

changes the <“all”> tag to a <2>. It then considers navigating

from cell (3,0,0)—which object should be navigated to next?

Actually, the only untagged object remaining is the white block

in cell (4,2,0), which is then tagged with a <3>. This is shown

in Figure 12C.

If this was the previous CCA6 version of the architecture

(albeit retrofitted with these new equations) with only one

Navigation Module B, then at this point, the instinctive primitive

“small_plan(random =False) ” would trigger the instinctive

primitive “move() ” to move a CCA6 robot to cell (2,2,0)

containing the white sphere. Then, the instinctive primitive

“move() ” is triggered again to move to cell (3,0,0) containing the

black sphere. Next, the instinctive primitive “move() ” is triggered

again to move to cell (4,2,0) containing the white block. Finally,

the instinctive primitive “move() ” is triggered again to move to

Frontiers inComputationalNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 11

(A) While in location “X,” the CCA7 robot maps the sensory scene of Figure 10 into the navigation map in Navigation Module A. The numbers refer to

the distance (in centimeters) between the objects in the di�erent cells (the distance number can be determined by matching the same number in the

path between two cells. In addition, note a clockwork recording of distances in each cell). (B) The instruction “go to all objects and go back” is placed

in Navigation Module B n = 1, as shown.

cell (0,0,0), which was the starting point. From Figure 12C, note

that the sum of the distances is 25+22+20+42 = 109 cm in this

navigation route.

However, in the CCA7 version of the architecture being

considered here, there are over a thousand Navigation

Module Bs. As Equation (120) indicates, for Navigation

Module B n = 2. . . 1,023, the instinctive primitive

“small_plan(random =weight_distance)” will perform

a similar nearest neighbor planning algorithm in the other modules

for this same navigation map (Figure 12B). However, as indicated

by the argument random = weight_distance random

fluctuations are introduced now, so a slightly different navigation

route may occur in different Navigation Module Bs n = 2. . . 1,023

(Figure 12D).

The instinctive primitive

“small_plan(random =weight_distance) ” follows

a similar nearest neighbor algorithm to the one described

above. However, now random fluctuations may (or may not)

be introduced at each step a navigation decision is made. These

fluctuations are weighted by distance position, as explained below.

Normally, the destination with the shortest distance will be chosen,

as seen above for Navigation Module B n = 1 (Figure 12C).

Here, this is likely to occur also, but some randomness means

another destination can be chosen (e.g., Figure 12D), although the

destinations the farthest away are the least likely to be chosen as

the next destination, as will be shown below.

Consider that at any given decision point, the list destination

contains sorted destinations [a, b, c, d, e. . .], which still can be

Frontiers inComputationalNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 12

(A) The navigation map in Navigation Module A is tagged via the operation of the “goto() ” instinctive primitive operating on the navigation maps in

Navigation Module A and Navigation Module B. (B) The instinctive primitive “small_plan() ” copies Navigation Module A into the 1,023 (n = 1..1023)

navigation maps in Navigation Module Bs, removing any action words and just leaving the tagged cells to navigate to. One of the navigation maps of

Navigation Module B is shown here. (C) Navigation Module B n = 1: The instinctive primitive “small_plan() ” is used as the starting point for the

tagged cell and considers which distance to another tagged cell (i.e., representing an object) is the shortest. The cell that has the shortest distance is

tagged with a <1>. Then, it considers cell <1> as the starting point and considers which distance to another tagged cell is the shortest. This

continues until all the tagged cells in the navigation map are considered and re-tagged with a number indicating in which order they should be

(Continued)

Frontiers inComputationalNeuroscience 20 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 12 (Continued)

navigated. After all cells are navigated, there is a return to starting position which has been tagged with a <0>. This simple nearest neighbor

algorithm occurs in the navigation map in the n = 1 Navigation Module B. Note that the sum of the distances is 25+22+20+42 = 109cm in this

navigation map. (D) Navigation Module B n = 2: The simple nearest neighbor algorithm occurs again in the navigation map in the n = 2 Navigation

Module B; however, random fluctuations have been introduced (see text). The instinctive primitive “small_plan() ” considers the starting tagged cell

and considers which distance to another tagged cell (i.e., representing an object) is the shortest. Random fluctuations are now introduced. Note that

when deciding which cell to navigate to after cell (2,2,0) containing the white sphere, the random fluctuation introduced here causes

“small_plan() ” to choose cell (4,2,0) even though the distance of 24 to that cell was not the nearest neighbor. Note that the sum of the distances is

25+24+20+31 = 100cm in this navigation map.

navigated to Equation (124). This list is sorted by distance such

that navigation to destination “a” is the shortest, navigation to

destination “b” is the next shortest, and so on (Equation 125). The

value a in the list is the distance to destination “a,” the value b in the

list is the distance to destination “b,” and so on.

Consider an example where there are five possible destinations

which the CCA7 can now navigate to from some starting point, i.e.,

to object “a,” to object “b,” to object “c,” to object “d,” or to object

“e.” As per Equation (124), destination = [a, b, c, d, e], where the

distance from the starting point to “a” is less than or equal to the

distance from the starting point to “b,” and so on (Equation 125).

Object “a” represented by element a in destination is considered to

have position = 1 in the list, while object “b” has position = 2, and

so on. Similarly, object “a” is considered to have inverse_position=

5 in this list, while object “b” has inverse_position = 4, and so on

(Equation 124).

Equation (126) shows that when the instinctive primitive

“small_plan(random = weight_distance) ” is

triggered, a parameter “weight” is given a value of 4.

Equation (127) shows that when the instinctive primitive

“small_plan(random = weight_distance) ” is triggered,

the probability of selecting destination “x” to navigate to is

given by “probability_destinationx” which can be computed

as “inverse_position∧x
weight/

∑

inverse_position∧weight .”

Continuing with the example above of choosing to navigate

to locations “a,” “b,” “c,” “d,” or “e,” consider Equations (126,

127). Consider navigating to the first destination “a” (which is the

shortest navigation path from the starting point since it is the first

element in destination). Thus, as per (Equation 127), x = “a” and

the value of the term “inverse_position∧a
weight” is thus 5∧ weight . The

parameter weight is 4 (Equation 126); thus, the value of the term

“inverse_position∧a
weight” is 5∧4, or 625. Similarly, the value of all

the inverse positions raised to the fourth power (weight = 4) added

up, i.e., “
∑

inverse_position∧weight” is 625+256+81+16+1 = 979

(Equation 127).

In the actual CCA7 version of the architecture, other than as

needed internally (and encapsulated) for artificial neural networks

being used, only very simple arithmetic is explicitly available.

Thus, in Equation (127), the “probability_destinationx” is shown

as being approximately equal to a term that must be calculated via

high exponential powers and involves the manipulation of many

decimal places. While Equation (127) is fine for some simulations

of the architecture, the relationship shown in Equation (127) can

be achieved more realistically by the architecture by making use

of stored probability distributions (see below). A limited number

of such probability distributions can approximate (Equation 127)

when deciding which object or city to navigate next to in a

planning task.

Continuing with the example above of choosing to navigate

to locations “a,” “b,” “c,” “d,” or “e,” the instinctive primitive

“small_plan(random = weight_distance) ” has just

been triggered. Thus, weight is given a value of 4 (Equation 126).

The probability of the algorithm in this instinctive primitive

choosing, for example, destination “a” to navigate next to, is

probability_destinationa. By Equation (127), this is equal to “=

inverse_position∧a
weight/

∑

inverse_position∧weight .” Above, the

term “inverse_position∧a
weight” was calculated to be 625, and the

term “
∑

inverse_position∧weight” to be 979. Thus, the probability

of the algorithm in this instinctive primitive to choose destination

“a” to navigate next to is 625/979, or 64%.

From similar calculations, the probability of choosing any

of these sorted destinations (i.e., “a” is closer and “e” is

the farthest away from the starting point) in this example

of [a, b, c, d, e] is [64, 26, 8, 2,. . . 0.1%]. Thus, when

small_plan(random =weight_distance) is used in this

example, of the five potential destinations to choose from in [a, b,

c, d, e], there is a 64% chance of navigating to the nearest neighbor

“a” and a 26% chance of navigating to the next nearest neighbor “b,”

but only a 0.1% chance of navigating to the farthest neighbor “e.”

In Equation (128), it can be seen that when the instinctive

primitive “small_plan(random = False) ” is triggered, a

parameter “weight” is given a value of 30. The result of this high

weight is that the nearest neighbor destination is always used,

i.e., there is no randomness (Equation 129). Thus, the probability

distribution for navigation to potential objects/cities [a, b, c, d,

e] is [100%, 0, 0, 0, 0], i.e., there is a 100% chance of choosing

an object/location “a” to navigate, and 0% chance of choosing

object/location “b,” “c,” “d,” or “e” to navigate.

As noted above, if there is only one Navigation Module B in

the system, or if this is a CCA7 version of the architecture and this

is Navigation Module B n = 1, then as Equation (118) indicates,

the instinctive primitive “small_plan(random =False) ” is

triggered. The nearest neighbor (i.e., shortest distance) from the

starting point of the cell (0,0,0) (Figure 12C; there is a <0> put in

that cell) is cell (2,2,0)—there is a <1> put tag in that cell. The next

nearest neighbor is cell (3,0,0)—there is a <2> put tag in that cell.

The next nearest neighbor is the only one left, which is cell (4,2,0)—

there is a <3> tag put in that cell. Then, with no more active cells

to navigate to the left, there is navigation back to the starting point

of (0,0,0)—there is a <0> tag there.

Once all cells are tagged, the instinctive primitive

“small_plan(random =False) ” would trigger the instinctive

primitive “move() ” to move a CCA7 robot to the tagged cells

(Equations 122, 123). The instinctive primitive “move() ” first

moves the CCA7 to cell (2,2,0) with the tag <1> containing the

white sphere. Then, the instinctive primitive “move() ” is triggered

Frontiers inComputationalNeuroscience 21 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

again to move to cell (3,0,0) with the tag <2> containing the black

sphere. Next, the instinctive primitive “move() ” is triggered again

to move to cell (4,2,0) with the tag<3> containing the white block.

Finally, the instinctive primitive “move() ” is triggered again to

move to cell (0,0,0) containing the tag <0>, which was the starting

point. From Figures 10, 12C, note that the sum of the distances is

25+22+20+42= 109 cm in this navigation route.

Now consider the Navigation Module Bs n =

2. . . 1,023 in the CCA7 version of the architecture. In

Figure 12D, Navigation Module B n = 2 is shown.

As Equation (120) indicates, the instinctive primitive

“small_plan(random =weight_distance) ” is triggered.

As before, the instinctive primitive “small_plan() ” considers

which possible destination it can navigate to will be the shortest,

albeit now with a random fluctuation introduced. From the starting

point of the cell (0,0,0), the CCA7 can navigate next to cells (2,2,0),

(3,0,0), or (4,2,0). From Figure 10, it can be seen these correspond

to possible distances of 25, 31, and 42 cm.

As discussed above, “small_plan(random =weight_

distance) ” will introduce a random fluctuation in deciding

which object/location to navigate to via Equations (124–127).

The sorted list is [25, 31, 42] (Equations 124, 125). The sum

of the inverse positions is 3∧4+2∧4+1∧4 or 98, and thus the

probability distribution is [81/98,16/98,1/98] or [83%, 16%, 1%].

The likelihood of navigating to the first position destination of

25 cm corresponding to cell (2,2,0) is 83%, while the probability

of navigating to (3,0,0) is 16% and the probability of navigating

to (4,2,0) is 1%. A cumulative probability distribution results

essentially from considering these probabilities: [=<83%,=<99%,

=<100%]. A random number between 0 and 1 is obtained, which

happens to be, for example, 0.55 or 55%. It is within the 83%

cumulative probability of the first position destination. Thus, the

CCA7 architecture tags cell (2,2,0) with a <1>.

The instinctive primitive “small_plan(random =

weight_distance) ” must consider navigating to the next

object/location. From the starting point of cell (2,2,0), the CCA7

can navigate next to cells (3,0,0) or (4,2,0). From Figure 10, it

can be seen that these correspond to possible distances of 22 and

24 cm. The sum of the inverse positions is 2∧4+1∧4 or 17, and

thus the probability distribution is [16/17,1/17] or [94%, 6%].

The likelihood of navigating to the first position destination of

22 cm corresponding to cell (3,0,0) is 94%, while the probability of

navigating to (4,2,0) is 6%. A cumulative probability distribution

results essentially from considering these probabilities: [=<94%,

=<100%]. A random number between 0 and 1 is obtained which

happens to be, in this case, 0.95 or 95%. Thus, instead of navigating

to the nearest neighbor (3,0,0), the CCA7 will tag the second

nearest neighbor, i.e., (4,2,0), as the next destination to navigate to

with a <2> (Figure 12D). The next nearest neighbor is the only

one left, which is cell (3,0,0)—there is a <3> tag put in that cell.

Then, with no more active cells to navigate to the left, there is

navigation back to the starting point of (0,0,0)—there is a <0> tag

there. The tagged cells can be seen in Figure 12D.

From Figures 10, 12D note that the sum of the distances is

25+24+20+31 = 100 cm in this navigation route. Thus, even

though this route ended up taking a path between two locations

which was not the shortest distance [i.e., going from cell (2,2,0) to

cell (4,2,0), which was 24 cm rather than going to cell (3,0,0), which

was 22 cm], it turned out that the total distance in navigating to all

object/locations turned out to be shorter than the path obtained in

Navigation Module B n = 1 where the nearest neighbor algorithm

was followed at each decision point.

Similar algorithms are also running in the other Navigation

Module Bs at the same time. The total distance sum obtained in

each Navigation Module B is transferred to the TempMapmemory

areas of NavigationModule B n= 0 (Equations 119, 121). Although

there are many more TempMapmemory areas now available in the

CCA7 version of the architecture, this instinctive primitive actually

just keeps track of the navigation map number (i.e., which “n” from

n = 1. . . 1,023), which has yielded the smallest total distance of

the best (i.e., shortest) navigation plan found (Equation 122). Thus,

Nav_ModBn=best, where “best” is the Navigation Module B “n,”

showed the shortest total navigation distance.

The instinctive primitive “small_plan() ” then activates the

instinctive primitive move (WNMB’t,n=best) (Equation 123). To

continue the above example, “best” is Navigation Module B n =

2, i.e., shown in Figure 12D (the total distance here was 100 vs.

109 cm in Navigation Module B n = 1, and vs. 119 cm obtained

in other Navigation Module Bs). It will then repeatedly trigger

the instinctive primitive “move() ” to navigate to <1> (the white

sphere), then <2> (the white cube), then <3> (the black sphere),

and then return to the starting cell <0>.

This navigation planning example involves navigating to three

locations and then returning back to the starting position. Thus,

there are only a handful of possible variations in navigation

to consider, and thus, despite the random fluctuations, many

variations will repeat among the over thousand Navigation Module

Bs. However, many real-world problems may involve more

locations (or social situations or other analogous “locations”) than

this simple problem. In the next section, the CCA7 architecture will

be applied to a larger dataset of navigation locations.

The instinctive primitive “small_plan() ” effectively helps

to decide what sequence to perform operations in. While such

problems can be physically moving to different locations, they

can also range from navigating in the social hierarchy space of

society to navigating through an idea space of more abstract

concepts. With regard to the traveling salesperson problem or

other particular planning problems, note that with education (i.e.,

assumes a larger set of instinctive primitives than exist at present

and acquisition of more basic concepts), the CCA7 can acquire

learned primitives that are more specific and more sophisticated

for particular planning purposes.

WNMB’n=0...1023 = ǫRmxnxoxp (115)

(WNMB’n=x 6= reserved AND WNMB’n=y 6= reserved)

⇒initial_primitiveWNMB’n=x = initial_primitiveWNMB’n=y

(116)

< “go” >
{

H⇒WNMA’t = Nav_ModA.goto() (117)

locations > 1,
[

H⇒WNMB’t,n=1

= Nav_ModBn=1.small_plan(random=False) (118)

Frontiers inComputationalNeuroscience 22 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

(

H⇒TempMapWNMB’n=0
= minimum (total_distancen=1)

)

(119)

H⇒WNMB’t, n=2...1023

= Nav_ModBt,n=2...1023.

small_plan(random=weight_distance) (120)

(

H⇒TempMapWNMB’n=0
= minimum (total_distancen=2...1023)

)

(121)

H⇒best = TempMapWNMB’n=0,minimum (total_distance)
(122)

H⇒Nav_ModBn=best.move(WNMB’t,n=best)
]

}

(123)

destination = [a, b, c, d, e . . .] (124)

distancea <= distanceb, distanceb <= distancec, (125)

small_plan(random=weight_distance) ,
{

H⇒weight = 4 (126)

H⇒probability_destinationx≈inverse_position
∧weight
x

/
∑

inverse_position∧weight
}

(127)

small_plan(random=False) ,
{

H⇒weight = 30 (128)

H⇒probability_destinationa,weight>9 = 1
}

(129)

4 Methods

4.1 Computer simulation of the Causal
Cognitive Architecture 7 (CCA7)

The Equations (1–129; Appendix A) are computer-simulated

via the Python language to represent the CCA7. The computer

simulation does not interface with real-time actual video camera

or microphone inputs or with real robotic actuators. Sensory

inputs are simulated in all simulations, and actuator outputs are

similarly simulated.

The navigation maps in the Python simulation have 6x6x0

dimensions (although internally, a larger number of dimensions are

actually used to represent the segmentation of objects and binding

with motion and action). As noted above, navigation maps are

essentially arrays. Thus, the more efficient Numpy library (Harris

et al., 2020) is called by the Python program for most operations

on the navigation maps. For future larger simulations of the

architecture, more classical deep learning software and hardware

can be used. However, in the current simulation, the FuzzyWuzzy

string matching library (via pypi.org) is used for pattern matching.

The Python simulation of the architecture at this time contains

a very limited set of instinctive primitives. It mainly contains the

ones specified in Equations (1–129; Appendix A), which relate to

very basic operations and the ability for causal reasoning, analogical

induction, compositionality, and, as discussed above in the section

on new work, simple planning. At this time, instinctive primitives

must be hand-crafted. Automatedmethods for instinctive primitive

creation are being explored.

Here, Python version 3.11 is used. The parallel elements of

Equations (1–129; Appendix A) are simulated sequentially—a new

cognitive cycle starts when all the operations of the previous

cognitive cycle have been completed.

The main purpose of this computer simulation is to show

that the operation of the CCA7 version of the architecture is

feasible, particularly its ability to perform planning operations.

The simulation, i.e., based on the representation of the CCA7

version of the architecture via Equations (1–129; Appendix A), can

be tested below on a traveling salesperson dataset. The distances

between a starting city and a dozen other cities are given in

Supplementary Table B1 (Google-OR-Tools, 2023). The results are

discussed below.

4.2 Alternative weightings for the
probability distribution of the
next destination

The literature on the traveling salesperson problem is vast,

and there are many strategies for choosing the next location to

navigate (e.g., as mentioned above—Tschoke et al., 1995; Dorigo

and Gambardella, 1997; Dry et al., 2006). Both strategic decisions

and random fluctuations can be introduced into the solution

algorithm in many ways. As noted above, the traveling salesperson

problem is considered here simply as an example to illustrate that

having multiple navigation modules can be greatly advantageous to

various planning strategies the architecture is required to perform.

Nonetheless, it is useful to consider how random fluctuations

are inserted into the planning decisions. Of interest is that the

positional weighting used in Equations (124–127) does not take

into account the relative values of the different distances, e.g., [12,

13, 44] will be weighted the same as [12, 42, 44], i.e., the probability

of the choosing the location that is 42 units away will be the same

as choosing the location that is 13 units away.

The reason for using the positional weighting is that the actual

CCA7 version of the architecture only explicitly has access to very

simple arithmetic. Thus, in weighting the probability distributions,

pre-stored distributions were used, which could readily be accessed

rather than involve complex calculations. Although Equations

(124–127) are used in the Python simulation of the architecture

(albeit necessitating the Python “Decimal” class due to the many

digits created by the high-power exponents), the architecture can

simply access a limited number of probability distributions based

on the positions of the nearest city/location/object in a list, with no

complex arithmetical calculations required.

Frontiers inComputationalNeuroscience 23 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://pypi.org
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

It is possible, of course, to weight by the relative values: calculate

the reciprocals of the difference of each number (nominal value

of 1) in the list from the smallest value (thus, a smaller difference

will give a larger reciprocal) and normalize as probabilities. For

example, if there are three possible locations to navigate to with

distances (arbitrary units not specified) of [12, 13, 44], then the

weight probabilities would be normalize ([1/1, 1/1, 1/32]) or

[49, 49, 2%]. Thus, there would be a 49% chance of navigating to

the location 12 units away vs. a 2% chance of navigating to the

location 44 units away. The probability distribution for the example

above of three possible locations [12, 42, 44] is normalize

([1/1, 1/30, 1/32]) or [94, 3.1, 2.9%]. In contrast, the positional

probability distribution [i.e., via Equations (124–127)] of either

example yields [83, 16, 1%], i.e., 83% chance of navigating to

the first-closest location, 16% chance of navigating to the second-

closest location, and a 1% chance of navigating to the third-closest

location, regardless of the actual distances.

In a modified computer simulation, random fluctuations are

introduced by comparing a normalized random number with

the probability distributions calculated via relative weights as

discussed above:

a. Calculate the reciprocals of the difference of each number

(nominal value of 1) in the list from the smallest value;

b. Normalize the probabilities.

This alternative “value weighted” version can also be

tested below on a traveling salesperson dataset. The distances

between a starting city and a dozen other cities are given in

Supplementary Table B1 (Google-OR-Tools, 2023). The results are

discussed below.

4.3 Comparative experiments

As noted above, the CCA7 architecture, functionally based on

a possible further evolution of the brain as modeled by previous

versions of the Causal Cognitive Architecture, is expected to be

able to perform simple planning in terms of navigating to multiple

locations with a certain degree of higher efficiency than if the

previous versions of the architecture were used.

Computer simulations of the CCA7 architecture can be tested

on a traveling salesperson dataset. The distances between a starting

city and a dozen other cities are given in Supplementary Table B1

(Google-OR-Tools, 2023).

The optimal (i.e., shortest) solution obtained via brute

force (non-CCA7) computation is 7,293 miles (the data

in Supplementary Table B1 of distances between the cities

was given in miles). The route giving this shortest path is

City #0,7,2,3,4,12,6,8,1,11,10,5,9,0.

The traveling salesperson problem city data from

Supplementary Table B1 was simulated as sensory input data

to the CCA7 architectures. The same CCA7 version of the

architecture shown in Figure 9 was used. However, Equations

(126–129) were modified in different runs of the architecture as

described below. As described above, the CCA7 architecture, via

the instinctive primitives associated with Equations (126–129),

attempts to produce the shortest path in a planning problem. In the

case of the city data from Supplementary Table B1, the architecture

attempts to produce the shortest path to navigate once to the dozen

cities listed in Supplementary Table B1 and return back to the

starting city (i.e., 13 cities in total).

The following questions were asked, and the accompanying

comparative experiments were then performed:

a. The position-weighted algorithm used to inject random

fluctuations into the nearest neighbor algorithm

(Equations 126–129) uses a weight parameter to create a

probability distribution to select the next destination to navigate

to. At present, a weight value of 4 is used.

What is the effect of varying the weight parameter on the

shortest path yielded in the traveling salesperson problem, i.e.,

is the value of weight used in Equation (126) a reasonable one

based on a typical planning problem represented by the data in

Supplementary Table B1?

b. Do the multiple Navigation Module Bs allow better planning

in terms of this traveling salesperson problem represented by

the data in Supplementary Table B1?

Multiple runs to ensure statistical significance (or

insignificance) of the following are to be examined: the shortest

distance obtained by a CCA7 architecture modified to use only

1 Navigation Module B vs. a CCA7 architecture using 1,023

Navigation Module Bs.

Note: When multiple Navigation Module Bs are used,

Navigation Module B n = 0 is restricted to holding a copy of

any instructions; hence, 1K-1 results in 1,023 Navigation Module

Bs available.

Note: As per Equation (118), Navigation Module B n = 1 uses

the instinctive primitive small_plan(random =False) ; thus,

weight is set to 30 for this case, i.e., nearest-neighbor algorithm

without any random fluctuations. However, the NavigationModule

Bs n = 2. . . 1,023 per Equation (120) use the instinctive primitive

small_plan(random =weight_distance) ; thus, weight is

set to 4 for these Navigation Modules, and there will thus be the

possibility of random fluctuations injected in choosing the next

destination city at every decision point.

Note: Due to the generation of high exponents and large

decimal arithmetic seen in Equation (127), when the weight

parameter exceeds 9, as per Equation (129), the probability of

choosing the shortest distance becomes 100%, i.e., nearest-neighbor

algorithm without any random fluctuations is used.

c. Do higher quantities of Navigation Module Bs result in

significantly better results?

Multiple runs to ensure statistical significance (or

insignificance) of the following is to be examined: the shortest

distance obtained by a CCA7 architecture using 1,023 (i.e.,

“1K”) Navigation Module Bs vs. versions of the architecture

using 4,095 (i.e., “4K”) and 16,383 (i.e., “16K”) Navigation

Module Bs.

Note: Navigation Module B n = 0 is restricted for holding a

copy of any instructions, and thus the availability of 1K-1, 4K-1,

Frontiers inComputationalNeuroscience 24 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

and 16K-1 Navigation Module Bs, which are rounded and simply

referred to as “1K,” “4K,” or “16K,” respectively.

d. Does a “value-weighted” algorithm to introduce random

fluctuations (i.e., Section 4.2) give better results (i.e., a

shorter distance) than the “position weighted” algorithm [i.e.,

Equations (124–127)]?

Multiple runs to ensure statistical significance (or

insignificance) of the following is to be examined: the shortest

distance obtained by the usual “position weighted” version of

the CCA7 architecture using 1,023 Navigation Module Bs vs.

the shortest distance obtained by “value weighted” version of

the architecture.

Note: “Position weighted” refers to Equations (124–127), which

create a probability distribution of which location to choose next in

deciding where to navigate to, simply in terms of which location

is the nearest, the next-nearest, the third-next-nearest, and so

on, without considering the actual values (i.e., there is a relative

ranking but without consideration of any scale) of the distances.

In contrast, “valued weighted” refers to the modifications of these

equations given by Section 4.2 such that the reciprocals of the

difference of each distance value from the smallest value (i.e., its

actual value and the actual value of the smallest distance, rather

than just its position of where it is relative to the other possible

destinations) are calculated and normalized to create a probability

distribution of which location to choose next in deciding where to

navigate to.

5 Results

5.1 E�ect of varying the weight parameter

As noted above, the position-weighted algorithm creates

random fluctuations in the nearest neighbor algorithm

(Equations 126–129). Lower weight values (Equation 126)

make it less likely that the closest next destination will be navigated

to, i.e., more likely another destination will be selected. At present,

a weight value of 4 is used. To see if this value is reasonable in

terms of a typical planning problem, as represented by the data

in Supplementary Table B1, the shortest distance obtained by the

CCA7 for different values of the weight parameter was examined.

Supplementary Table B2 shows the shortest distance obtained

by single runs of the CCA7 architecture for weight values varying

from 1 to 30. The results shown in the column on the right side

are for a version of the architecture with the full set of Navigation

Module Bs n = 1. . . 1,023. For comparison, in the column on

the left, only a single Navigation Module B is used, so rather

than restrict it to Equations (118, 119) which will yield each

time a value of 8,131 miles per the nearest-neighbor algorithm,

it is also running Equations (120, 121), i.e., small_plan

(random =weight_distance) .

The data from Supplementary Table B2’s left and right columns

are plotted in Figures 13A, B, respectively. As can be seen from

these figures, the lower values of the weight parameter in the single

Navigation Module B variant of the architecture give significantly

poorer results than in the multiple Navigation Module B’s version

(i.e., what is shown in Figure 9) of the architecture.

In the multiple NavigationModule B variant of the architecture

(Figure 13B), it can be seen that weights of 1 and 2 give

poorer results than the weights between 3 and 9 [weights over

9 automatically cause the nearest neighbor algorithm to be used

(Equations 128, 129)].

5.2 Multiple Navigation Module Bs vs.
original architecture (single Nav Module B)

Multiple runs to ensure statistical significance (or

insignificance) of the data were done. As shown in

Supplementary Table B3, 100 runs were observed for each

variant of the architecture considered. The traveling salesperson

problem data of Supplementary Table B1 was used.

Supplementary Table B3 in the middle column contains the

shortest distances obtained with a version of the architecture

using a single Navigation Module B utilizing the nearest neighbor

algorithm. There is no randomness involved here, and as can be

seen, the shortest distance of 8,131 miles was obtained in each of

the 100 runs.

In Supplementary Table B3, in the right column, are the

shortest distances obtained with a version of the architecture as

shown in Figure 9 using 1,024 Navigation Module Bs. Navigation

Module B n = 0 is reserved. Navigation Module n = 1 is used

but set to use the nearest neighbor algorithm without randomness.

Navigation Module Bs n = 2. . . 1,023 uses the nearest neighbor

algorithm with the injection of random fluctuations with weight

= 4 as per Equations (120–127). The mean shortest distance

obtained was 7,432.2 miles, with a standard deviation of 141.8

miles; 1% of the runs yielded the shortest distance possible of

7,293 miles.

In Supplementary Table B3, in the left column, are the shortest

distances obtained with a version of the architecture using a single

Navigation Module B but with the injection of random fluctuations

with a weight parameter value of 4 as per Equations (120–127).

It does not reflect the CCA6 or the CCA7 architectures but was

obtained to see that if running the single Navigation Module B

variant (i.e., more similar to the CCA6 architecture) with random

fluctuations would give better results. Note that the results show

that the mean shortest distance was 9,965.5 miles with a standard

deviation of 1,532.5 miles, i.e., worse results than obtained with the

multiple Navigation Module Bs variant shown in the right column.

No runs yielded the optimal path of 7,293 miles, with the shortest

distance of the 100 runs being 7,647 miles.

The three columns of Supplementary Table B3 are plotted in

Figure 14. The green dots represent a version of the architecture

using a single Navigation Module B but with the injection of

random fluctuations with a weight parameter value of 4 as per

Equations (120–127). As can be seen from the figure, this variant

of the architecture gives the largest distances, i.e., the worst results.

In Figure 14, the constant line of orange dots represents a

version of the architecture using a single Navigation Module B

following the nearest-neighbor algorithm without any randomness

injected. The blue dots represent the CCA7 version of the

Frontiers inComputationalNeuroscience 25 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 13

Simulation of the CCA7 robot navigating from a home city to 12 other cities (13 cities in total) and then returning home (Supplementary Table B1).

Lower values of weight introduce more randomness in choosing the next destination city (Equation 127). (A) Only a single Navigation Module B is

used, so rather than restrict it to Equation (118) (which will yield each time a value of 8,131 miles per the nearest-neighbor algorithm), it is running

Equation (120), i.e., small_plan(random =weight_distance) . (B) The results are shown when the full set of Navigation Module Bs n = 1…1,023

are used. Here too, all modules use small_plan(random =weight_distance) , but note that at higher values of the weight parameter, the CCA7

follows the nearest neighbor algorithm.

architecture shown in Figure 9, i.e., multiple NavigationModule Bs.

As can be seen from this figure, these blue dots tend to give shorter

distances, i.e., better results, than the orange dots.

To test for statistical significance between the results produced

by the multiple Navigation Module Bs version of the architecture

(right-most column of Supplementary Table B3) vs. the single

Navigation Module B running the nearest neighbor algorithm

(middle column of Supplementary Table B3), the probability of test

results occurring due to random chance was calculated. A Welch’s

one-tailed t-test was performed, yielding a p-value of <0.001.

Statistical significance of the results produced by the multiple

Navigation Module Bs version of the architecture (right-most

column of Supplementary Table B3) vs. the single Navigation

Module B running the similar position-weighted algorithm

(left-most column of Supplementary Table B3) was calculated via

Welch’s one-tailed t-test. Again, a small p-value was obtained and is

recorded as p < 0.001 in Supplementary Table B3.

5.3 1K vs. 4K vs. 16K Navigation Module Bs

The CCA7 version of the architecture (Figure 9) arbitrarily

allowed 1,024 Navigation Module Bs in the emergence of the

duplication of navigation modules. However, any other number is

possible, albeit with neurophysiological considerations in the case

of a biological brain or engineering considerations in the case of an

artificial implementation of the architecture.

Supplementary Table B4 compares 100 runs of the CCA7

version of the architecture operating on traveling salesperson

Frontiers inComputationalNeuroscience 26 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 14

Simulation of the CCA7 robot navigating from a home city to 12 other cities (13 cities in total) and then returning home. One hundred simulated runs

with the same dataset (Supplementary Table B1). Comparison of architecture with one Navigation Module B (with and without random fluctuations)

versus with 1,023 Navigation Module Bs.

problem data of Supplementary Table B1. All versions use a

position-weighted method to inject randomness in the nearest

neighbor algorithm, as per Equations (118–129). While in the left-

most column of Supplementary Table B4, the architecture shown

in Figure 9 and represented by Equations (118–129) is run, in the

middle column is a similar architecture except for the utilization

of 4,095 Navigation Module Bs, and in the right-most column is a

similar architecture except for the utilization of 16,383 Navigation

Module Bs.

Navigation Module B n = 0 is restricted for holding a copy of

any instructions, and thus the availability of 1K-1, 4K-1, and 16K-1

Navigation Module Bs, which are rounded and simply referred to

as “1K,” “4K,” or “16K,” respectively.

The CCA7 version with 4K Navigation Module Bs has a mean

shortest distance of 7,309.1miles (standard deviation 29.8miles) vs.

7,432.2 miles (standard deviation 141.8 miles) for the 1K version;

27% of the runs of the 4K version yielded an optimal shortest

distance path of 7293 miles vs. only 1% of the runs of the 1K

version. As shown in Supplementary Table B4, Welch’s 1-tail t-test

was applied to this data and shows it is statistically significant at

p < 0.001.

The CCA7 version with 16K Navigation Module Bs has a mean

shortest distance of 7,296.8 miles (standard deviation 6.9 miles) vs.

7,309.1 miles (standard deviation 29.8 miles) for the 4K version;

67% of the runs of the 16K version yielded an optimal shortest

distance path of 7,293miles vs. 27% of the runs of the 4K version. As

shown in Supplementary Table B4, Welch’s 1-tail t-test was applied

to this data and shows it is statistically significant at p < 0.001.

The three columns of Supplementary Table B4 are plotted

in Figure 15. The dark blue dots represent the 1K version of

the architecture, the orange dots represent the 4K version

of the architecture, and the green dots represent the 16K

version of the architecture. As can be seen from this

figure, while the 4K and 16K distances are close together,

albeit with the 16K distances slightly smaller (although

statistically significant, as noted above), they are significantly

smaller than the results produced by the 1K version of

the architecture.

5.4 Position weighted algorithm vs.
value-weighted algorithm

As noted above, “position weighted” refers to Equations

(124–127), which create a probability distribution of which

location to choose next in deciding where to navigate to,

simply in terms of which location is the nearest, the next-

nearest, the third-next-nearest, and so on, without considering

the absolute or relative values of the distances. In addition, as

noted above, “valued weighted” refers to the modifications of

these equations given by Section 4.2 such that the reciprocals

of the difference of each distance value from the smallest

value are calculated and normalized to create a probability

distribution of which location to choose next in deciding where to

navigate to.

Supplementary Table B5 compares 100 runs of the CCA7

version of the architecture operating on traveling salesperson

problem data of Supplementary Table B1. The column on the

left represents the usual CCA7 version of the architecture

Frontiers inComputationalNeuroscience 27 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

FIGURE 15

Simulation of the CCA7 robot navigating from a home city to 12 other cities (13 cities in total) and then returning home. One hundred simulated runs

with the same dataset (Supplementary Table B1). Comparison of architecture with 1K, 4K, and 16K Navigation Module Bs, and comparison with 1K

version running value-weighted algorithm (light blue dots).

position-weighted method to inject randomness in the

nearest neighbor algorithm, as per Equations (118–129).

However, the column on the right represents a version of

the CCA7 architecture using a valued weighted method to

decide the probability of which location to navigate to at each

decision point. Both architectures are using 1,023 Navigation

Module Bs.

As shown in Supplementary Table B5, the usual position-

weighted CCA7 version yields a mean shortest distance of 7,432.2

miles (standard deviation 141.8 miles) vs. 7,572.6 miles (standard

deviation 58.0 miles) for the version using the valued-weighted

method. The shortest distance (i.e., among the 100 runs performed)

was 7,293 miles for the position-weighted CCA7 version vs.

7,534 miles for the value-weighted version of the architecture;

1% of the runs of the position-weighted architecture yielded the

optimal shortest distance of 7,293, miles while 0% of the value-

weighted architecture runs yielded an optimal shortest distance.

A Welch’s one-tailed t-test was performed, yielding a p-value

of <0.001.

The two columns of Supplementary Table B5 are

also plotted in Figure 15. The dark blue dots represent

the 1K version of the position-weighted version of

the architecture, while the light blue dots represent

the 1K version of the value-weighted version of

the architecture.

6 Discussion

6.1 Interpretation of the results

In the CCA7 architecture using 1,023 Navigation Module Bs,

Figure 13B shows that a weight value between 3 and 9 gives

the shortest paths, i.e., the best results. Thus, in Equation (126),

setting the weight value to 4 appears reasonable for use with the

further experiments done in this study. Figure 13A was included

for comparison, and it shows that in an architecture using only

one Navigation Module B, the lowest weight values also give even

poorer results.

Supplementary Table B3 and Figure 14 compare a CCA7

version of the architecture using a single Navigation Module B

with a CCA7 version of the architecture using 1,023 Navigation

Module Bs. The CCA7 version using 1,023 Navigation Module

B’s produced statistically significant (p < 0.001) shorter paths

with a mean of 7,432.2 miles (standard deviation 141.8 miles)

than the CCA7 version using only one Navigation Module B

producing paths with a mean of 8,131.0 miles (standard deviation

0 miles since the nearest neighbor algorithm is followed the

same each run). Suppose a CCA7 version using one Navigation

Module B includes random fluctuations at each decision point,

then the results are even worse with a shortest path mean of

9,965.5 miles (standard deviation 1,535.5 miles). Thus, the data

Frontiers inComputationalNeuroscience 28 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

support the premise of the CCA7 version of the architecture with

multiple Navigation Module Bs, reflecting a hypothetical evolution

of the previous architecture (intended to model the human brain,

albeit very loosely in a functionalist fashion as per Lieto, 2021b)

and performing better in this traveling salesperson problem, and

potentially, all planning problems.

Many humans who look at the traveling salesperson problem

distance values in Supplementary Table B1 can be shown how to

perform the nearest neighbor algorithm, although without paper

and a writing instrument, once the number of cities exceeds

the limits of working memory, they often have trouble recalling

which cities have already been navigated to, in addition to

requiring good attention to find the smallest next number. In

addition, even with good attention and good recall of which

cities have been navigated to, humans cannot readily produce

much better results from the numbers than such a nearest-

neighbor solution. However, as MacGregor et al. (2004) note,

humans can use a variety of cognitive processes to do better

than expected on visual, Euclidean versions of the traveling

salesperson problem. Nonetheless, as planning problems get

larger or involve more dimensions, it becomes even harder

for humans to obtain better results than is given by the

CCA7 architecture.

Given that 1,023 Navigation Module Bs produce better

results than a single Navigation Module B, it is interesting to

consider the results of Supplementary Table B4 and Figure 15.

The mean shortest distance for the traveling salesperson problem

in Supplementary Table B1 is 7,432.2 miles (standard deviation

141.8 miles) for 1K Navigation Module Bs vs. 7,309.1 miles

(standard deviation 29.8 miles) for 4K Navigation Module Bs vs.

7,296.8 miles (standard deviation 6.9 miles) for 16K Navigation

Module Bs. Note that the theoretical shortest path of 7,293

miles is quite close to the mean results of the 4K, particularly

the 16K architectures. Indeed, two-thirds of the runs done

on the 16K version of the architecture yielded the theoretical

shortest path. Thus, larger numbers of Navigation Module Bs

allow better planning solutions as represented by this particular

traveling salesperson problem. In larger planning problems, the

16K architecture will not as easily be able to find the optimal

solution, but nonetheless, having additional Navigation Module Bs

provides a larger solution space.

To avoid artificially creating arithmetic capabilities that the

architecture did not possess, the utilization of the position

weighting of the possible locations to navigate to next was

discussed above. The results above of Supplementary Table B5

and Figure 15 compare a CCA7 version of the architecture using

the position weighting method (given in Equations 124–127) vs.

the value weighting method given in Section 4.2. In the value

weighting method, the actual values of the distance to the next

possible locations to navigate to are considered with each other.

Supplementary Table B5 shows that the mean of the position

weighting method gave a somewhat mean shortest distance of

7,432.2 miles (standard deviation 141.8 miles) vs. 7,534 miles

(standard deviation 58.0 miles) for the value weighting method.

This difference was statistically significant at p < 0.001. Thus,

the position weighting method used by the CCA7 is reasonable

compared to a simple value weighting method.

6.2 Parallel operation of di�erent instinctive
and learned primitives and their simulation

As noted above, Equation (116) indicates that the same

instinctive primitive or the same learned primitive is initially

applied to all of the Navigation Module Bs (Figure 9).

As discussed above, random fluctuations can be introduced

in the different Navigation Module Bs to produce a variety of

results to choose from. In the example shown above and simulated,

i.e., the traveling salesperson problem, despite these random

fluctuations, the same instinctive primitives were used by all the

Navigation Module Bs, so it was not an issue [the instinctive

primitive small_plan() did use a different argument in the n

= 1 Navigation Module B, but it is automatically selected by the

Navigation Module per Equation (118)].

However, what if a different type of problem is being operated

on by the Navigation Module Bs such that there are also random

fluctuations in the different modules, and as a result, at certain

logical decision points, different instinctive or learned primitives

are triggered, and must be obtained by the module? What if there

are a million Navigation Module Bs, for example, all attempting

to trigger and retrieve navigation maps at the same time from

the instinctive primitives and learned primitives from the Causal

Memory Module, Instinctive Primitives Module, and the Learned

Primitives Module?

At present, the Python simulation of the CCA7 version of

the architecture simply runs everything sequentially. Training of

neural networks used by various modules is performed ahead

of time, although, in the present version of the simulation,

a pattern recognition library is used rather than the previous

PyTorch machine learning Python library. The speed of modern

computers is fast enough to handle simple simulations of the

architecture, even with a slow language such as Python (albeit

the data structure of the code is based on the Python library

Numpy, which is written in efficient C code), so there has not

been a need to pay attention to executing the simulation on

parallel processors. In the present simulation, when all operations

of a cognitive cycle have been completed, the next cognitive

cycle starts without considering of how long the cognitive cycle

actually took. Thus, even if a different type of problem, where the

Navigation Module Bs must retrieve and write different navigation

maps and primitives from different modules of the architecture, is

simulated, the simulation will sequentially perform the operations

and then consider the cognitive cycle completed. At present, there

generally are no multiple comparisons between different modules

within one cognitive cycle, which could cause problems with a

sequential simulation.

There is a need for future work on the architecture to better

specify the real-time parallel operation of the different Navigation

Module Bs as well as to better simulate the architecture on

parallel central processing units (CPUs)/graphics processing units

(GPUs). A full consideration of parallel computing is beyond the

scope of this article. However, the initial instinctive or learned

primitive applied to all the Navigation Module B modules (i.e.,

n = 1. . . 1,023 of Figure 9) is effectively a single instruction

stream, multiple data streams (SIMD) arrangement per Flynn’s

classification (Flynn, 1972). However, as processing occurs, this

Frontiers inComputationalNeuroscience 29 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

can essentially become a multiple instruction streams, multiple

data streams (MIMD) arrangement. In future work, the CCA7

version of the architecture (i.e., Figure 9) and the associated

equations/pseudocode describing it (i.e., Appendix A) need to be

enhanced to better meet MIMD requirements. In particular, the

multiple TempMap areas in each of the Navigation Module Bs

are designed to hold not a “byte” of information but rather a

“navigation map” of information, i.e., they can hold copies of

instinctive primitives, learned primitives as well as portions of the

Causal Memory Module. This resource can obviate many of the

difficulties in implementing MIMD requirements.

6.3 Improved autonomic module control of
the Navigation Module Bs and its simulation

The current Python simulation of the CCA7 version of the

architecture does not simulate the Autonomic Module (Figure 9)

in much detail. Given its brain-inspired origins, the Causal

Cognitive Architecture has long had an Autonomic Module, as

does the CCA7 (Figure 9; Schneider, 2021). Just as the autonomic

nervous system in mammals plays a key role in maintaining

homeostasis, so does the Autonomic Module in the Causal

Cognitive Architecture, which involves itself with maintaining

energy usage, heat production, sleep cycles, and the reliability of

the architecture’s physical embodiment.

Although sleep cycles do exist in the Python simulation of

the Autonomic Module of the architecture, they are not very

sophisticated. Either the architecture is on, or it is in a low-energy

sleep-like state. Indeed, even though biological, mental activity

is associated with region-specific increased energy consumption,

the overall energy expenditure of the mammalian brain tends to

be more constant than would be expected, whether the brain is

problem-solving or idle but awake (Raichle and Gusnard, 2002).

Indeed, when the mind is idle, a significant default mode network

(DMN) of mammalian brain areas becomes active (Raichle, 2015).

However, during sleep, the overall energy expenditure of the brain

does indeed decrease (Dworak et al., 2010).

Thus, at present, the Autonomic Module in the Causal

Cognitive Architecture, including the CCA7 version (Figure 9),

simply has an awake/sleep functionality with regard to the energy

expenditure of the architecture. However, in the CCA7 version of

the architecture, there are now over a thousand Navigation Module

Bs, and there could be, for example, in another implementation,

millions of such Navigation Module Bs all working in parallel.

The large numbers of Navigation Module Bs are not based on

current mammalian including human brains, but instead on the

hypothetical possibility that might arise in response to the question

where in the Introduction section the question is asked: what if

the evolution of the human brain were to continue as it has in the

past, and given an environment for such evolution, as reflected in a

model such as the Causal Cognitive Architecture.

A thousand, or especially a million, Navigation Module Bs

operating all the time would seem to be wasteful with regard to

the consumption of energy, as well as perhaps cause problems

with regard to the dissipation of heat produced. In future work,

there is a need for the Autonomic Module of Figure 9 to directly

connect with the NavigationModule Bs so that it could regulate the

activity of this ever-increasing portion of the architecture. Similarly,

there is a need for principles of such regulation to be included in

the equations and pseudocode of Appendix A. It is hypothesized

that many planning situations and problems could be resolved

with a limited number of Navigation Module Bs so that perhaps

the entire repertoire of modules could be selectively activated by

the Autonomic Module in response to repeated feedback loops of

inability to yield a solution to a problem [e.g., Equation (95) above],

or directly by triggering by an instinctive or learned primitive.

6.4 Enhanced intelligence from a
brain-inspired cognitive architecture

As discussed above, the Causal Cognitive Architecture

developed from the hypothesis that hundreds of millions of years

ago, the navigation circuits in the amniotic ancestors of mammals

duplicated many times to eventually form the neocortex. Thus,

millions of neocortical minicolumns are functionally modeled in

the architecture as millions of spatial maps, i.e., the “navigation

maps” of the architecture. From this starting point, the properties

of a cognitive architecture based on these navigation maps and

inspired by the mammalian brain were investigated.

Without special feedback operations, a cognitive architecture

based on navigation maps readily showed the reflexive and pre-

causal behavior seen in most mammals (Schneider, 2021). Then

modest changes, inspired by modest genetic changes from the

last chimpanzee human common ancestor in the emergence of

human cognitive abilities, were considered. Relatively modest

changes were made, which simply allowed for enhanced feedback

operations and the addition of extra instinctive primitives. With

these modest changes, full causal decision-making emerged from

the architecture (Schneider, 2022a). Further exploration revealed

very small changes that allowed the emergence of full inductive

analogical reasoning abilities (Schneider, 2023) and the very ready

emergence of compositional comprehension and language in the

CCA6 version of the architecture (Schneider, 2024).

While the CCA6 version of the architecture is very conceptual

other than for a Python simulation, it seems to hold many of

the features unique to human cognition—full causal reasoning,

full analogical reasoning, near-full compositional (as opposed to

combinatorial) language, and unfortunately the development of a

vulnerability to psychosis (Schneider, 2020). In addition, note that

navigation maps and consequential reasoning are fully grounded in

the architecture (Schneider, 2023). In addition, note that the CCA6

is based on a cognitive architecture, which in its own right, forms

the basis for an autonomous agent, i.e., tries to achieve goals by

interactions with the environment (Paisner et al., 2014; Lieto et al.,

2018).

In this study, it was considered whether further biologically

plausible changes, as modest as possible, would allow significant

improvements to the CCA6 architecture, such that super-human

aspects of cognition would emerge. This study is particularly

interested in enhancing core aspects of cognition in a human

brain-inspired cognitive architecture. Integrating a calculator, for

example, or perhaps a state-of-the-art large language model (LLM),

Frontiers inComputationalNeuroscience 30 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

would certainly boost the cognitive abilities of the architecture in

a certain sense. Indeed, hybridization of the CCA6 architecture

with other tools would seem to yield promising results. Liu et al.

(2023) note that cognitive architectures and generative models have

complementary strengths and weaknesses and discuss their fusion.

These are valid topics for future consideration in the enhancement

of Causal Cognitive Architecture. However, this study asks how

modest, biologically plausible changes could allow core aspects of

cognition to surpass normal human abilities.

Genetic and developmental mechanisms have been put forward

for the duplication of mammalian brain circuits and their

divergence to new functions (e.g., Rakic, 2009; Chakraborty and

Jarvis, 2015). Thus, an increase in temporary memories and

the increase in Navigation Module Bs as a biologically plausible

theoretical modification of the architecture has been hypothesized

above, resulting in the Causal Cognitive Architecture 7 (CCA7;

Figure 9). The evolution of new instinctive primitives such as

“small_plan()” may be more involved from a mechanistic point of

view. While learned primitives can more readily acquire millions

or billions of bytes of information, the genetic acquisition of an

instinctive primitive has obvious resource and chance limitations

[e.g., Weber et al. (2013) regarding the instinct for the burrowing

habits of Peromyscus mice]. However, chimpanzees plan tool

utilization (e.g., for use at termite nests), so some instinctual

planning abilities may have been present for a long time, i.e.,

if present in the last chimpanzee human common ancestor,

there is a longer period for such instincts to have evolved over

time (Musgrave et al., 2023). Thus, the instinctive primitive

“small_plan()” really should have been included in earlier versions

of the Causal Cognitive Architecture and would have had enough

time for any small changes to the version used in the CCA7.

As shown above, a large-scale duplication of the Navigation

Module B circuits allows the architecture to have better planning

abilities. This is readily apparent in Figure 14. The cognitive ability

to imagine and plan for future events has long been considered

a very advantageous aspect of cognition (e.g., Suddendorf and

Corballis, 2007). Having super-human planning abilities, for

example, such as the ability to simultaneously consider 1,023 (or

16,383) navigation routes (or analogous routes for other actions) as

shown above, can allow the architecture to analyze and plan for its

environment at a higher level than normally possible for the CCA6

with its single Navigation Module B, or a human.

Future work on the Causal Cognitive Architecture 7′s

simulation includes enlarging its set of instinctive primitives and

better educational experiences via (and better functioning of) the

learned primitives system. In addition, with regard to planning,

there is a myriad of other algorithms that are possible to consider

rather than just introducing random fluctuations via the weight

parameter. For example, the nearest-neighbor algorithm and even

its modification with random fluctuations are susceptible to falling

into a local optimum trap. For some planning problems, at

the decision points, in addition to local information concerning

which location is the closest, second closest, and so on, global

information can be very advantageous to a more efficient shortest

path. For example, in the ant colony optimization solution

mentioned briefly above, accumulated knowledge from previous

attempts to solve a route problem is used in addition to the

local information at decision points. Further work is needed to

apply these strategies to the CCA7′s instinctive and/or learned

primitives. In addition, the effect of random fluctuations and

planning in other areas besides the traveling salesperson problem

needs to be considered. Once more of this work is done, it

becomesmore relevant to benchmark the architecture against other

intelligent agents.

At present, the CCA7 is largely conceptual, its Python

simulation notwithstanding, and cannot do useful work compared

to a modern LLM-based chatbot, for example. However, as

noted above, it seems to hold many features unique to human

cognition—full causal reasoning, full analogical reasoning, near-

full compositional language, and now planning. In addition, it

is fully grounded and autonomous. Thus, in a conceptual sense,

the CCA7 represents human-level artificial intelligence (HLAI)

abilities. Given that the simultaneous multi-planning abilities of

the CCA7 can be used for many cognitive processes at a level

exceeding what humans are capable of, the CCA7 shows, in a

conceptual sense, some sparks of superintelligence [the emphasis

should be on “sparks” rather than “superintelligence,” with homage

to Bostrom (2014) and Bubeck et al. (2023)]. As brain-inspired

cognitive architectures such as the CCA7 become developed

enough to realize their theoretical potential (or possibly fail at

it), they should be considered as a viable alternative pathway

toward the development of HLAI and then superintelligence, as

well as giving insight into the emergence of natural human-

level intelligence.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

HS: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inComputationalNeuroscience 31 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncom.

2024.1367712/full#supplementary-material

References

Adams, S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B., et al. (2012). Mapping
the landscape of human-level artificial general intelligence AI. Magazine 33, 25-42.
doi: 10.1609/aimag.v33i1.2322

Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., and Moser, M. B. (2014).
Place cells in the hippocampus: eleven maps for eleven rooms. Proc. Natl. Acad. Sci. U.
S. A. 111, 18428–18435. doi: 10.1073/pnas.1421056111

Ando, J., Ono, Y., and Wright, M. J. (2001). Genetic structure of spatial and verbal
working memory. Behav. Genet. 31, 615–624. doi: 10.1023/A:1013353613591

Aubry, A., Gonthier, C., and Bourdin, B. (2021). Explaining the high working
memory capacity of gifted children: contributions of processing skills and executive
control. Acta Psychol. 218:103358. doi: 10.1016/j.actpsy.2021.103358

Bang-Jensen, J., Gutin, G., and Yeo, A. (2004). When the greedy algorithm fails.
Discr. Optimizat. 1, 121–127. doi: 10.1016/j.disopt.2004.03.007

Behrens, T. E., Muller, T. H., Whittington, J. C., Mark, S., Baram, A. B., Stachenfeld,
K. L., et al. (2018). What is a cognitive map? Organizing knowledge for flexible
behavior. Neuron 100, 490–509. doi: 10.1016/j.neuron.2018.10.002

Bostrom, N. (2014). Superintelligence: Paths, Strategies, Dangers. Oxford: Oxford
University Press.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E.,
et al. (2023). Sparks of artificial general intelligence: early experiments with GPT-4.
arXiv:2303.12712. doi: 10.48550/arXiv.2303.12712

Burmeister, S. S. (2022). Ecology, cognition, and the hippocampus: a tale of two
frogs. Brain Behav. Evol. 97, 211–224. doi: 10.1159/000522108

Butler, A. B., Reiner, A., and Karten, H. J. (2011). Evolution of the amniote
pallium and the origins of mammalian neocortex. Ann. N. Y. Acad. Sci. 1225, 14–27.
doi: 10.1111/j.1749-6632.2011.06006.x

Buzsaki, G., and Moser, E. I. (2013). Memory, navigation and theta rhythm in the
hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138. doi: 10.1038/nn.3304

Carruthers, P. (2013). Evolution of working memory. Proc. Natl. Acad. Sci. U. S. A.
110(Suppl.2), 10371–10378. doi: 10.1073/pnas.1301195110

Chakraborty, M., and Jarvis, E. D. (2015). Brain evolution by brain pathway
duplication. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 370:20150056.
doi: 10.1098/rstb.2015.0056

Chuderski, A., and Jastrzȩbski, J. (2018). Much ado about aha! insight problem
solving is strongly related to working memory capacity and reasoning ability. J. Exp.
Psychol. 147:257. doi: 10.1037/xge0000378

Claxton, L. J., Keen, R., and McCarty, M. E. (2003). Evidence of motor planning
in infant reaching behavior. Psycholo. Sci. 14, 354–356. doi: 10.1111/1467-9280.
24421

Cowan, N. (2001). The magical number 4 in short-term memory: a
reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114.
doi: 10.1017/S0140525X01003922

Dhein, K. (2023). The cognitive map debate in insects: a historical perspective
on what is at stake. Stud. Hist. Philos. Sci. 98, 62–79. doi: 10.1016/j.shpsa.2022.
12.008

Dorigo, M., and Gambardella, L. M. (1997). Ant colonies for the travelling salesman
problem. Biosystems 43, 73–81. doi: 10.1016/S0303-2647(97)01708-5

Dry, M., Lee, M. D., Vickers, D., and Hughes, P. (2006). Human performance on
visually presented traveling salesperson problems with varying numbers of nodes. J.
Probl. Solv. 1:4. doi: 10.7771/1932-6246.1004

Dworak, M., McCarley, R. W., Kim, T., Kalinchuk, A. V., and Basheer, R. (2010).
Sleep and brain energy levels: ATP changes during sleep. J. Neurosci. 30, 9007–9016.
doi: 10.1523/JNEUROSCI.1423-10.2010

Flemming, T. M., Thompson, R. K., and Fagot, J. (2013). Baboons, like humans,
solve analogy by categorical abstraction of relations. Anim. Cogn. 16, 519–524.
doi: 10.1007/s10071-013-0596-0

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Trans. Comput. 100, 948–960. doi: 10.1109/TC.1972.5009071

Fournier, J., Müller, C. M., and Laurent, G. (2015). Looking for the roots of cortical
sensory computation in three-layered cortices. Curr. Opin. Neurobiol. 31, 119–126.
doi: 10.1016/j.conb.2014.09.006

Frégnac, Y. (2023). Flagship afterthoughts: could the human brain project (HBP)
have done better? Eneuro 10:2023. doi: 10.1523/ENEURO.0428-23.2023

Friedman, N. P., and Miyake, A. (2017). Unity and diversity of executive functions:
individual differences as a window on cognitive structure. Cortex 86, 186–204.
doi: 10.1016/j.cortex.2016.04.023

Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., and Hewitt,
J. K. (2008). Individual differences in executive functions are almost entirely genetic in
origin. J. Exp. Psychol. 137:201. doi: 10.1037/0096-3445.137.2.201

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Georgeon, O. L., Lurie, D., and Robertson, P. (2024). Artificial enactive inference in
three-dimensional world. Cogn. Syst. Res. 86:101234. doi: 10.1016/j.cogsys.2024.101234

Google-OR-Tools (2023). Traveling Salesperson Problem. Available online at:
https://developers.google.com/optimization/routing/tsp (accessed December 20,
2023).

Güntürkün, O., von Eugen, K., Packheiser, J., and Pusch, R. (2021). Avian pallial
circuits and cognition: a comparison to mammals. Curr. Opin. Neurobiol. 71, 29–36.
doi: 10.1016/j.conb.2021.08.007

Hagmann, C. E., and Cook, R. G. (2015). Endpoint distinctiveness
facilitates analogical mapping in pigeons. Behav. Process. 112, 72–80.
doi: 10.1016/j.beproc.2014.11.007

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585, 357–362.
doi: 10.1038/s41586-020-2649-2

Hawkins, J., Lewis, M., Klukas, M., Purdy, S., and Ahmad, S. (2019). A framework
for intelligence and cortical function based on grid cells in the neocortex. Front. Neural
Circuit. 12:121. doi: 10.3389/fncir.2018.00121

Hofstadter, D. R. (2001). “Analogy as the core of cognition,” in The Analogical Mind:
Perspectives from Cognitive Science, eds. D. Gentner, K. J. Holyoak and B. N. Kokinov
(Cambridge, MA: MIT Press), 499–538.

Joshi, H., and Ustun, V. (2023). Augmenting cognitive architectures with large
language models. Proc. AAAI Symp. Ser. 2, 281–285. doi: 10.1609/aaaiss.v2i1.27689

Kaas, J. H. (2019). The origin and evolution of neocortex: from early mammals to
modern humans. Progr. Brain Res. 250, 61–81. doi: 10.1016/bs.pbr.2019.03.017

Kahneman, D. (2011). Thinking, Fast and Slow. NewYork, NY: Farrar, Straus
and Giroux.

Kinzler, K. D., and Spelke, E. S. (2007). Core systems in human cognition. Progr.
Brain Res. 164:14. doi: 10.1016/S0079-6123(07)64014-X

Kotseruba, I., and Tsotsos, J. K. (2020). 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artif. Intell. Rev. 53, 17–94.
doi: 10.1007/s10462-018-9646-y

Kwon, K. (2014). Expressing algorithms as concise as possible via computability
logic. IEICE Trans. Fund. Electr. Commun. Comput. Sci. 97, 1385–1387.
doi: 10.1587/transfun.E97.A.1385

Laird, J. E., Lebiere, C., and Rosenbloom, P. S. (2017). A standard model
of the mind: toward a common computational framework across artificial
intelligence, cognitive science, neuroscience, and robotics. AI Magazine 38, 13–26.
doi: 10.1609/aimag.v38i4.2744

Laird, J. E., Wray, R. E., Jones, S., Kirk, J. R., and Lindes, P. (2023).
Proposal for cognitive architecture and transformer integration: online learning
from agent experience. Proc. AAAI Symp. Ser. 2, 302–306. doi: 10.1609/aaaiss.v2i1.
27692

Legg, S., and Hutter, M. (2007). Universal intelligence: a and definition of machine
intelligence. arXiv: 0712.3329. doi: 10.48550/arXiv.0712.3329

Lieto, A. (2021a). Cognitive Design for Artificial Minds. London: Routledge.

Frontiers inComputationalNeuroscience 32 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://www.frontiersin.org/articles/10.3389/fncom.2024.1367712/full#supplementary-material
https://doi.org/10.1609/aimag.v33i1.2322
https://doi.org/10.1073/pnas.1421056111
https://doi.org/10.1023/A:1013353613591
https://doi.org/10.1016/j.actpsy.2021.103358
https://doi.org/10.1016/j.disopt.2004.03.007
https://doi.org/10.1016/j.neuron.2018.10.002
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.1159/000522108
https://doi.org/10.1111/j.1749-6632.2011.06006.x
https://doi.org/10.1038/nn.3304
https://doi.org/10.1073/pnas.1301195110
https://doi.org/10.1098/rstb.2015.0056
https://doi.org/10.1037/xge0000378
https://doi.org/10.1111/1467-9280.24421
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1016/j.shpsa.2022.12.008
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.7771/1932-6246.1004
https://doi.org/10.1523/JNEUROSCI.1423-10.2010
https://doi.org/10.1007/s10071-013-0596-0
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1016/j.conb.2014.09.006
https://doi.org/10.1523/ENEURO.0428-23.2023
https://doi.org/10.1016/j.cortex.2016.04.023
https://doi.org/10.1037/0096-3445.137.2.201
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/j.cogsys.2024.101234
https://developers.google.com/optimization/routing/tsp
https://doi.org/10.1016/j.conb.2021.08.007
https://doi.org/10.1016/j.beproc.2014.11.007
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.3389/fncir.2018.00121
https://doi.org/10.1609/aaaiss.v2i1.27689
https://doi.org/10.1016/bs.pbr.2019.03.017
https://doi.org/10.1016/S0079-6123(07)64014-X
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1587/transfun.E97.A.1385
https://doi.org/10.1609/aimag.v38i4.2744
https://doi.org/10.1609/aaaiss.v2i1.27692
https://doi.org/10.48550/arXiv.0712.3329
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Schneider 10.3389/fncom.2024.1367712

Lieto, A. (2021b). “Functional and structural models of commonsense reasoning
in cognitive architectures,” in Virtual International Symposium on Cognitive
Architecture VISCA 2021, ed. J. Laird Available online at: https://visca.engin.
umich.edu/wp-content/uploads/sites/27/2021/06/Lieto.pdf (accessed August 28,
2023).

Lieto, A., Bhatt, M., Oltramari, A., and Vernon, D. (2018). The role of
cognitive architectures in general artificial intelligence. Cogn. Syst. Res. 48, 1–3.
doi: 10.1016/j.cogsys.2017.08.003

Liu, S., Pepe, B., Kumar, M. G., Ullman, T. D., Tenenbaum, J. B., and
Spelke, E. S. (2022). Dangerous ground: one-year-old infants are sensitive to
peril in other agents’ action plans. Open Mind 6, 211–231. doi: 10.1162/opmi_a_
00063

Liu, Y., Liu, Y., and Shen, C. (2023). Combining minds and machines:
investigating the fusion of cognitive architectures and generative models for general
embodied intelligence. Proc. AAAI Symp. Ser. 2, 307–314. doi: 10.1609/aaaiss.v2i1.
27693

Ma, W. J., Husain, M., and Bays, P. M. (2014). Changing concepts of working
memory. Nat. Neurosci. 17, 347–356. doi: 10.1038/nn.3655

MacGregor, J. N., Chronicle, E. P., and Ormerod, T. C. (2004). Convex hull or
crossing avoidance? Solution heuristics in the traveling salesperson problem. Mem.
Cogn. 32, 260–270. doi: 10.3758/BF03196857

Madl, T., Baars, B. J., and Franklin, S. (2011). The timing of the cognitive cycle. PLoS
ONE 6:e14803. doi: 10.1371/journal.pone.0014803

Marcus, G., Davis, E., and Aaronson, S. (2022). A very preliminary analysis of Dall-e
2. arXiv:2204.13807. doi: 10.48550/arXiv.2204.13807

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55.
doi: 10.1038/scientificamerican0612-50

McCormack, T., and Atance, C. M. (2011). Planning in young children: a review
and synthesis. Dev. Rev. 31, 1–31. doi: 10.1016/j.dr.2011.02.002

Millidge, B., Seth, A., and Buckley, C. L. (2021). Predictive coding: a theoretical and
experimental review. arXiv preprint arXiv:2107.12979. doi: 10.48550/arXiv.2107.12979

Musgrave, S., Koni, D., Morgan, D., and Sanz, C. (2023). Planning abilities of wild
chimpanzees (Pan troglodytes troglodytes) in tool-using contexts. Primates 4, 1–15.
doi: 10.1007/s10329-023-01106-4

Oberauer, K., Farrell, S., Jarrold, C., and Lewandowsky, S. (2016). What limits
working memory capacity? Psychol. Bullet. 142:758. doi: 10.1037/bul0000046

O’Keefe, J., and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford:
Oxford University Press.

Olsen, A. L. (2005). Using pseudocode to teach problem solving. J. Comput. Sci. Coll.
21, 231–236.

Paisner, M., Cox, M., Maynord, M., and Perlis, D. (2014). Goal-driven autonomy for
cognitive systems. Proc. Ann. Meet. Cogn. Sci. Soc. 36:36.

Penn, D. C., Holyoak, K. J., and Povinelli, D. J. (2008). Darwin’s mistake: explaining
the discontinuity between human and nonhumanminds. Behav. Brain Sci. 31, 109–130.
doi: 10.1017/S0140525X08003543

Raichle, M. E. (2015). The brain’s default mode network. Ann. Rev. Neurosci. 38,
433–447. doi: 10.1146/annurev-neuro-071013-014030

Raichle, M. E., and Gusnard, D. A. (2002). Appraising the brain’s energy budget.
Proc. Natl. Acad. Sci. U. S. A. 99, 10237–10239. doi: 10.1073/pnas.172399499

Rakic, P. (2009). Evolution of the neocortex: a perspective from developmental
biology. Nat. Rev. Neurosci. 10, 724–735. doi: 10.1038/nrn2719

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extraclassical receptive-field effects. Nat. Neurosci.
2, 79–87. doi: 10.1038/4580

Rosenkrantz, D. J., Stearns, R. E., and Lewis, I. I. P. M. (1977). An analysis of
several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581.
doi: 10.1137/0206041

Samsonovich, A. V. (2010). “Toward a unified catalog of implemented cognitive
architectures,” in Proceedings of the 2010 Conference on Biologically Inspired Cognitive
Architectures 2010: Proceedings of the First Annual Meeting of the BICA Society
(Amsterdam: IOS Press, NLD), 195–244.

Schafer, M., and Schiller, D. (2018). Navigating social space. Neuron 100, 476–489.
doi: 10.1016/j.neuron.2018.10.006

Schneider, H. (2020). The meaningful-based cognitive architecture model of
schizophrenia. Cogn. Syst. Res. 59, 73–90. doi: 10.1016/j.cogsys.2019.09.019

Schneider, H. (2021). Causal Cognitive Architecture 1: integration of connectionist
elements into a navigation-based framework. Cogn. Syst. Res. 66, 67–81.
doi: 10.1016/j.cogsys.2020.10.021

Schneider, H. (2022a). Causal cognitive architecture 3: a solution to the binding
problem. Cogn. Syst. Res. 72, 88–115. doi: 10.1016/j.cogsys.2021.10.004

Schneider, H. (2022b). Navigation map-based artificial intelligence. AI 3, 434–464.
doi: 10.3390/ai3020026

Schneider, H. (2023). An inductive analogical solution to the grounding problem.
Cogn. Syst. Res. 77, 74–216. doi: 10.1016/j.cogsys.2022.10.005

Schneider, H. (2024). The emergence of compositionality in a brain-inspired
cognitive architecture. Cogn. Syst. Res. 86:101215. doi: 10.1016/j.cogsys.2024.101215

Schuck, N. W., Cai, M. B., Wilson, R. C., and Niv, Y. (2016). Human
orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412.
doi: 10.1016/j.neuron.2016.08.019

Spelke, E. S. (1994). Initial knowledge. Cognition 50, 431–445.
doi: 10.1016/0010-0277(94)90039-6

Spelke, E. S., and Kinzler, K. D. (2007). Core knowledge. Dev. Sci. 10, 89–96.
doi: 10.1111/j.1467-7687.2007.00569.x

Suddendorf, T., and Corballis, M. C. (2007). The evolution of foresight: what
is mental time travel, and is it unique to humans? Behav. Brain Sci. 30, 299–313.
doi: 10.1017/S0140525X07001975

Sun, R. (2024). Can a cognitive architecture fundamentally enhance LLMs? or vice
versa? arXiv preprint arXiv:2401.10444. doi: 10.48550/arXiv.2401.10444

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55:189.
doi: 10.1037/h0061626

Tschoke, S., Lubling, R., and Monien, B. (1995). “Solving the traveling salesman
problemwith a distributed branch-and-bound algorithm on a 1024 processor network,”
in Proceedings of 9th International Parallel Processing Symposium (Santa Barbara, CA:
IEEE), 182–189.

Wang, P. (2019). On defining artificial intelligence. J. Artif. Gen. Intell. 10, 1–37.
doi: 10.2478/jagi-2019-0002

Weber, J., Peterson, B., and Hoekstra, H. (2013). Discrete genetic modules are
responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405.
doi: 10.1038/nature11816

Whittington, J. C., McCaffary, D., Bakermans, J. J., and Behrens, T.
E. (2022). How to build a cognitive map. Nat. Neurosci. 25, 1257–1272.
doi: 10.1038/s41593-022-01153-y

Frontiers inComputationalNeuroscience 33 frontiersin.org

https://doi.org/10.3389/fncom.2024.1367712
https://visca.engin.umich.edu/wp-content/uploads/sites/27/2021/06/Lieto.pdf
https://visca.engin.umich.edu/wp-content/uploads/sites/27/2021/06/Lieto.pdf
https://doi.org/10.1016/j.cogsys.2017.08.003
https://doi.org/10.1162/opmi_a_00063
https://doi.org/10.1609/aaaiss.v2i1.27693
https://doi.org/10.1038/nn.3655
https://doi.org/10.3758/BF03196857
https://doi.org/10.1371/journal.pone.0014803
https://doi.org/10.48550/arXiv.2204.13807
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1016/j.dr.2011.02.002
https://doi.org/10.48550/arXiv.2107.12979
https://doi.org/10.1007/s10329-023-01106-4
https://doi.org/10.1037/bul0000046
https://doi.org/10.1017/S0140525X08003543
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1073/pnas.172399499
https://doi.org/10.1038/nrn2719
https://doi.org/10.1038/4580
https://doi.org/10.1137/0206041
https://doi.org/10.1016/j.neuron.2018.10.006
https://doi.org/10.1016/j.cogsys.2019.09.019
https://doi.org/10.1016/j.cogsys.2020.10.021
https://doi.org/10.1016/j.cogsys.2021.10.004
https://doi.org/10.3390/ai3020026
https://doi.org/10.1016/j.cogsys.2022.10.005
https://doi.org/10.1016/j.cogsys.2024.101215
https://doi.org/10.1016/j.neuron.2016.08.019
https://doi.org/10.1016/0010-0277(94)90039-6
https://doi.org/10.1111/j.1467-7687.2007.00569.x
https://doi.org/10.1017/S0140525X07001975
https://doi.org/10.48550/arXiv.2401.10444
https://doi.org/10.1037/h0061626
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.1038/nature11816
https://doi.org/10.1038/s41593-022-01153-y
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	The emergence of enhanced intelligence in a brain-inspired cognitive architecture
	1 Introduction
	2 Previous work: the Causal Cognitive Architecture
	2.1 Sensory inputs
	2.2 The Navigation Module(s)
	2.3 Feedback operations
	2.4 Analogical reasoning
	2.5 Compositionality
	2.6 Comparison of the Causal Cognitive Architecture with other cognitive architectures
	2.7 Cognitive maps

	3 New work: the Causal Cognitive Architecture 7 (CCA7)
	3.1 Duplication of the TempMap memory areas
	3.2 Duplication of Navigation Module B's
	3.3 The traveling salesperson problem
	3.4 small_plan() instinctive primitive
	3.5 Operation of the Causal Cognitive Architecture 7 (CCA7)

	4 Methods
	4.1 Computer simulation of the Causal Cognitive Architecture 7 (CCA7)
	4.2 Alternative weightings for the probability distribution of the next destination
	4.3 Comparative experiments

	5 Results
	5.1 Effect of varying the weight parameter
	5.2 Multiple Navigation Module Bs vs. original architecture (single Nav Module B)
	5.3 1K vs. 4K vs. 16K Navigation Module Bs
	5.4 Position weighted algorithm vs. value-weighted algorithm

	6 Discussion
	6.1 Interpretation of the results
	6.2 Parallel operation of different instinctive and learned primitives and their simulation
	6.3 Improved autonomic module control of the Navigation Module Bs and its simulation
	6.4 Enhanced intelligence from a brain-inspired cognitive architecture

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

