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The first step in spatial normalization of magnetic resonance (MR) images 
commonly is an affine transformation, which may be  vulnerable to image 
imperfections (such as inhomogeneities or “unusual” heads). Additionally, 
common software solutions use internal starting estimates to allow for a more 
efficient computation, which may pose a problem in datasets not conforming 
to these assumptions (such as those from children). In this technical note, three 
main questions were addressed: one, does the affine spatial normalization step 
implemented in SPM12 benefit from an initial inhomogeneity correction. Two, 
does using a complexity-reduced image version improve robustness when 
matching “unusual” images. And three, can a blind “brute-force” application of a 
wide range of parameter combinations improve the affine fit for unusual datasets 
in particular. A large database of 2081 image datasets was used, covering the full 
age range from birth to old age. All analyses were performed in Matlab. Results 
demonstrate that an initial removal of image inhomogeneities improved the 
affine fit particularly when more inhomogeneity was present. Further, using a 
complexity-reduced input image also improved the affine fit and was beneficial 
in younger children in particular. Finally, blindly exploring a very wide parameter 
space resulted in a better fit for the vast majority of subjects, but again particularly 
so in infants and young children. In summary, the suggested modifications were 
shown to improve the affine transformation in the large majority of datasets in 
general, and in children in particular. The changes can easily be implemented 
into SPM12.
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1 Introduction

Spatial normalization is commonly used to compare magnetic resonance (MR) images 
between subjects. Usually, the first step is an affine procedure, correcting for global differences 
in orientation and brain size; this is then commonly followed by regional feature matching 
using non-linear approaches (Friston et al., 1995; Wilke et al., 2002; Ashburner and Friston, 
2005). As the ensuing non-linear deformations and/or tissue segmentations depend and rely 
on a good initial fit, this step is an important part in the complete processing stream. In a 
classical paper, Ashburner et al. (1997) developed a first set of reference values for the initial 
affine part of this process within the popular SPM software package, from a population of 51 
subjects. The mean scaling factor for each dimension were determined and then used as 
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starting estimates for the affine procedure. In the current version of 
the software (SPM12, 2023), these starting estimates are now based on 
227 subjects (as detailed in the corresponding function spm_affine_
priors, V7377). They are used to inform the initial guess for the affine 
spatial normalization procedure, which is then iteratively modified to 
achieve the best overlap between the individual image and the 
reference image. To this effect, the procedure is using a mutual 
information goodness-of-fit criterion (D’Agostino et al., 2004). Within 
the SPM12 software, this particular set of starting estimates is referred 
to as “MNI regularization” and is used by default. This procedure is 
computationally highly efficient: providing a mean and a standard 
deviation for each parameter-to-be-optimized substantially narrows 
the search space, avoids excessive values, and consequently, saves time 
(Ashburner et al., 1997). However, while providing reasonable starting 
estimates for most datasets, it may be not optimal for unusual datasets 
in general, and in three specific settings in particular.

One, a (technical) issue with spatial normalization in general and 
the affine part in particular is that MR images are usually corrupted 
by smoothly-varying intensity fluctuations induced by 
inhomogeneities of the magnetic field (Bernstein et al., 2006). Such 
bias fields are usually modelled, and removed, during processing 
(Vovk et  al., 2007; Weiskopf et  al., 2011; Ganzetti et  al., 2016). 
Crucially, this often happens only after the initial affine registration: 
in SPM, for example, non-linear spatial normalization, tissue 
segmentation, and bias field estimation are jointly achieved in one 
iterative process (Ashburner and Friston, 2005), but only after the 
initial affine step. Similar approaches are used by other packages as 
well, such as FAST, or FreeSurfer (Despotović et al., 2015). Hence, the 
initial affine part of spatial normalization is performed on uncorrected 
(and therefore, still inhomogeneous) images. Consequently, such 
inhomogeneity-induced intensity variations might end up being 
“matched” to true tissue boundaries in the template image (Vovk et al., 
2007; Wilke et al., 2017; SPM Manual, 2023), and misregistration 
may ensue.

Two, image registration may fail if the image-to-be-registered and 
the target (template) image are too different (Fookes and Bennamoun, 
2002). Intensity-based approaches in particular may fail if the 
registration process encounters a local maximum, which may then 
be “matched” instead of finding a more appropriate global solution 
(Yokoi et al., 2004; Gao et al., 2008). Such issues may be avoided by 
reducing the input image complexity (Ince et al., 2017), for example 
by simply dividing an image into “head” and “background.” This may 
be  beneficial as less features in a complexity-reduced image may 
be matched more robustly.

Three, there are issues with the starting estimates/prior 
information approach when it comes to images that do not conform 
to the assumptions underlying it. In this context, this most notably 
includes the brains of children, which are not only significantly 
smaller than the brains of adults (Mennes et al., 2014; Martini et al., 
2018; Barkovich et  al., 2019) but also change rapidly (with head 
circumference increasing by about 150% in the first 3 years of life 
alone; CDC, 2021). While this difference in overall brain size was 
suggested to be less of an issue as of about 6 years of age (Huttenlocher, 
1979; Wilke et al., 2002; Wilke, 2014), it must be expected to be of high 
relevance in younger children. Also, differences in shape and 
volumetric as well as spatial relations may persist for much longer, and 
may also be  relevant when investigating ethnicities that did not 
contribute to the default starting estimates (Uchiyama et al., 2013; Xie 

et al., 2015; Dong et al., 2020). As a normal distribution is used to 
describe the starting estimates (cf. the Gaussian curve fitted to the 
distribution in Figure 3 of Ashburner et al., 1997), this method will 
inherently favor datapoints within (and punish those outside) the 
thus-defined normal range. While a “no regularization” option is also 
available, this only “makes and provides no assumptions” about 
meaningful starting estimates in so far as that a scaling of 1 is assumed 
in each dimension. Therefore, “unusual brains” may not be treated 
appropriately by this approach.

The aim of this manuscript, therefore, is threefold: one, to assess 
the utility of performing affine spatial normalization on already bias-
corrected images. For this aim, the hypothesis is that this will result in 
a better match to the template image as a function of image 
inhomogeneity. Two, to implement a robust initial matching step of a 
complexity-reduced input image to decrease the vulnerability toward 
local maxima. For this aim, the hypothesis is that an initial coarse 
match will lead to a better final match for unusual images in particular. 
Three, to develop and evaluate a new approach to assess and apply 
“broader” starting estimates in an unbiased, “brute force” fashion, 
which first requires the determination of a wide range of possibly 
normal scaling factors. The hypothesis is that blindly exploring this (as 
compared to “adults only”) widened parameter space will result in a 
better affine matching for “unusual” (e.g., pediatric) brain MR images 
in particular. An overview of the three steps is provided in Figure 1.

2 Subjects and methods

2.1 Subjects

A dataset of a total of 2081 images was compiled from open data 
repositories, covering the age range from 0 to 1,036 months 
(0–86 years). As before (Wilke et al., 2017), data from four sources was 
used, namely the NIH Study of Normal Brain Development (NIH, 
2021; n = 500), the Cincinnati MR Imaging of Neurodevelopment 
study (C-MIND, 2023; n = 235), the 1,000 functional connectome 
study (fCONN, 2023; n = 783) and the Information eXtraction from 
Images study (IXI, 2023; n = 563). Other than in that previous 
publication, all subjects were used here, including those below 1 year 
and those above 75 years of age. For a broad categorization, minors 
were subdivided into young (group YM, <6 years), middle (group 
MM, ≥6, <12 years) and old (group OM, ≥12, <18 years) subgroups, 
as opposed to adults (group AD, ≥18 years). Demographic details of 
all subjects can be  obtained from Table  1. More details on the 
individual datasets used are also available in the 
Supplementary material.

2.2 MRI data preparation

Whole-brain 3D-T1-datasets from both 1.5T and 3T MR 
scanners were used. To minimize effects of initial positions and 
voxel sizes, all images were aligned with a T1-template using an 
automated rigid-body approach (Larroque, 2021), and the 
orientation of each image was manually adapted when necessary. 
Thereafter, images were resliced to a spatial resolution of 
1.5 mm × 1.5 mm × 1.5 mm voxel size in native space using a 7th 
degree B-spline interpolation approach (Unser, 1999). As an 
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unnecessary large field of view impairs data processing based on 
similarity measures (such as spatial normalization; Ou et  al., 
2018), images were automatically cropped to remove ~90% of 
empty slices. All processing and analysis steps were done 
employing functionality available within SPM12 (v7771, 
Wellcome Department of Imaging Neuroscience, University 
College London, United Kingdom) or using custom scripts and 
functions, running within Matlab (The Mathworks, Natick, 
United  States). Visualization was achieved using violin plots 
(Bechtold, 2016) as these provide more information about the 
distribution of values.

2.3 Image registration metrics (mutual 
information criterion and Dice index)

To assess image registration performance, two metrics were used. 
For one, the magnitude of the final mutual information similarity 
criterion (D’Agostino et  al., 2004) was used. This goodness-of-fit 
parameter is internally derived and used to optimize the overlap 
between the input and the reference image; a higher value means “better 
overlap.” This parameter is used by the affine registration algorithm to 
define “registration accuracy”; as such, it is a logical choice to assess if 
the one or the other approach performs “better.”

FIGURE 1

Overview of the 3 step approach: top row (inhomogeneity removal): from an MR image (A), image inhomogeneities are removed (B) and the bias-
corrected image (C) is then used to derive the affine transformation parameters; middle row (complexity-reduced image): an MR image (D) is binarized 
and smoothed (and thus, complexity-reduced; E) and is then matched to a similarly-reduced template (F); bottom row (iterative processing): from an 
initial, unbiased exploration of the whole search space, the best of 1,000 combination is identified (highest “goodness of fit” value in G, arrow); 
thereupon, each scaling parameter (in X, Y, and Z) is further refined in 51 smaller steps (H) to finally yield an optimized parameter set for affine spatial 
normalization (I).
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However, there are concerns regarding the reliability of this 
parameter (Rohlfing, 2012), and a high values does not in and of itself 
necessarily indicate an optimal overlap. Further, a “better” affine 
registration does not necessarily mean that the tissue segmentation 
resulting from this is also “better.” Further, only using the parameter 
that is optimized in the process as the sole outcome criterion for 
success would render the procedure open to criticism regarding 
circularity (Kriegeskorte et  al., 2009). Hence, as an independent 
measure of actual tissue overlap, the Dice similarity coefficient (DSC; 
Dice, 1945) was also calculated. The DSC is a comprehensive indicator 
of overlap between two images and is commonly used to assess results 
of tissue segmentation (Eelbode et al., 2020). It is calculated taking 
into account the true positives (TP), the false positives (FP) and the 
false negatives (FN) to calculate DSC = 2 × TP/(2 × TP + FP + FN). The 
DSC ranges from 0 to 1, with 0 indicating no and 1 indicating perfect 
correspondence. To this effect, gray matter maps were obtained using 
unified segmentation (Ashburner and Friston, 2005) using either the 
traditional or the new approaches (see below) to initialize affine 
matching. Here, true positives would be  voxels identified as gray 
matter in the map-under-study as well as in the reference map, false 
positives would be voxels identified in the map-under-study but not 
in the reference map, and false negatives would be voxels erroneously 
not identified in the map-under-study while they are present in the 
reference map. To assess only the effect of affine spatial normalization, 
later non-linear matching was disabled (by setting the respective 
regularization parameters to Inf). Of note, to compare two tissue 
partitions using the Dice index, binary values are required. Hence, 
tissue maps were binarized at a threshold of 0.1, as recommended for 
gray matter voxel-based morphometry studies (Gaser, 2023). These 
binary maps were then compared with the gray matter tissue prior to 
which they were normalized, resulting in one value per subject, 
per step.

2.3.1 Objective 1: pre-affine inhomogeneity 
correction step

Within SPM’s unified segmentation approach, inhomogeneity 
correction, tissue segmentation, and non-linear spatial normalization 
are iteratively performed in succession within one comprehensive 
generative model (Ashburner and Friston, 2005). Consequently, the 
initial affine registration (the first step in spatial normalization) is 
derived from uncorrected images. To circumvent this, a simple two-step 
procedure was implemented similar to the one used before (Wilke et al., 
2017). Here, images are initially “segmented” (omitting the affine 
registration, and hence, the inhomogeneity vulnerability inherent in it) 
to allow for the estimation and removal of the bias field using SPM’s 
own approach (Ashburner and Friston, 2005). As bias correction was 

the main aim, bias field regularization was set to “very light” (instead of 
the default “light”), and the “bias FWHM” cutoff option was set to 
“50 mm” (instead of the default “60 mm”). These slightly more liberal 
settings were chosen as completely disabling regularization would lead 
to unrealistic results (as then, true tissue boundaries would 
be “recognized” as inhomogeneity, and labeled as such). From this step, 
only the bias-corrected image was written out in native space. This was 
then used to determine the affine spatial normalization parameters, 
under the assumption that less inhomogeneity in the input image will 
allow a better fit to the tissue priors (as these of course also are 
inhomogeneity-corrected). Of note, the temporary bias-corrected 
image was only used to obtain the affine parameters, which were then 
applied to the original image. This ensures that “unified segmentation” 
is ultimately performed on the (inhomogeneous, but “optimally affine 
registered”) original image, to allow regular bias field modeling as part 
of the integrative model (Ashburner and Friston, 2005). This avoids the 
dangers of overcorrection (by applying bias correction twice) as well as 
of violating assumptions inherent in the bias-field estimation.

2.3.1.1 Experiment 1a
To assess the utility of this approach, the affine matching using 

both the original as well as the bias-corrected images was compared 
using both image registration metrics described above. All other 
settings were left at their respective defaults. The number of images 
benefitting from this approach (in terms of higher values for the 
mutual information criterion and the DICE-index, respectively) and 
the actual values of both criteria were compared, for each age group.

2.3.1.2 Experiment 1b
To test the assumption that the effect of such an approach is a 

function of the amount of inhomogeneity in a given image, the bias 
field itself was obtained by dividing the bias-corrected by the original 
image; here, all deviations from 1 reflect the effect of inhomogeneity 
correction. “Total inhomogeneity” was therefore determined by 
summing the voxelwise absolute magnitudes of the bias field. This 
value (in arbitrary units) was then compared between images 
benefitting and not benefitting from this approach.

2.3.2 Objective 2: robust fitting
Tissue matching within SPM’s unified segmentation approach is 

based on a six-class tissue prior, containing gray and white matter, 
cerebrospinal fluid (CSF), bone, soft tissue, and background (for an 
illustration, see Wilke et al., 2017). Unless stated otherwise, the default 
tissue prior coming with SPM12 (in …\TPM\TPM.nii) was used for 
all analyses. The idea here was to reduce the complexity of the input 
image [and thus, of the matching procedure (Ince et al., 2017)] by 
binarizing it, with the aim to make the procedure more robust. 
Dividing the image into only two categories (“head” and 
“background”) and matching it to a similarly complexity-reduced 
tissue prior should avoid local minima as fewer solutions to the thus-
simplified problem must be expected (Yokoi et al., 2004).

2.3.2.1 Experiment 2
For each image under study, identifying the head (and separating 

it from background) was achieved by finding the mean value of all 
non-zero voxels and then isolating the largest cluster of above-average 
values (similar to an approach used in CAT12; Gaser, 2023). Small 

TABLE 1 Overview of demographic details of the whole cohort and the 
four subgroups, including the proportion of 3T images.

Minors Adults 
(AD)

Whole 
group

Young 
(YM)

Middle 
(MM)

Old (OM)

n 221 323 200 1,337 2081

Male 112 (50.6%) 144 (44.6%) 110 (55%) 600 (44.9%) 966 (46.4%)

3T 93 (42.1%) 103 (31.8%) 70 (35%) 1,121 (83.8%) 1,387 (66.6%)
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holes (default: up to 100 mL) were filled, and the binary image was 
finally smoothed by a Gaussian filter (FWHM = 4 mm) to yield a 
smoother, complexity-reduced source image. The target image (in the 
context of the SPM approach to affine registration, the standard 
6-class tissue prior) was similarly reduced by summing all brain and 
head classes into one and contrasting it with the background class to 
yield a new “2-class prior.” This 2-class prior was then used to 
iteratively match the complexity-reduced input image to, using the 
standard spm functions. As done above, the effect of using the thus-
derived parameters on the original image registration was assessed 
using the goodness-of-fit parameter and the DSC.

2.3.3 Objective 3: unbiased brute-force 
exploration of the affine parameter space

The aim is to blindly assess a multitude of combinations from the 
full range of even remotely plausible values (see below) iteratively in a 
“brute force” approach. While not efficient, recent advances in 
computing power make such blind exploration of the whole parameter 
space increasingly feasible (Heule and Kullmann, 2017). This approach 
has the advantage of neither favoring one nor discouraging another 
solution, making it particularly suited for the processing of images 
that fall outside of the “normal” range (as implicitly defined by the 
starting estimates). Further, blind search approaches are insensitive to 
issues of bad initial starting estimates as the solutions are dynamically 
generated and are not vulnerable to local minima: as noted before, 
“the only method yielding global extreme solution is an exhaustive 
search” (Zitova and Flusser, 2003). Such “exhaustive search” 
approaches are usually avoided due to their vulnerability to the 
“combinatorial explosion” effects (Heule and Kullmann, 2017); this is 
particularly true as often, more elegant approaches are available 
(Schuster, 2000; Franz and Schölkopf, 2005; Gaur, 2012; Bapista and 
Poloczek, 2018). However, recent advances in computational power 
now severely reduce the time requirements, making such approaches 
practicable. Hence, in contrast to the “prior information” approach 
(using an empirically-derived set of starting estimates which is then 
iteratively refined; Ashburner et al., 1997), the approach suggested 
here is to first determine a very wide range of possible (not necessarily 
equally plausible) values and sample this parameter space 
systematically in a first step. From this first round, an “initial best 
guess combination” is selected, again based on the mutual information 
goodness-of-fit parameter (D’Agostino et al., 2004). This is then used 
as the basis for a second round with a finer-grained search window 
around the results from the first run. This “best final fit” is then 
supplied to SPM’s affine registration algorithm as the final, unbiased 
and optimized starting estimate, which is then iteratively refined as 
usual. As this objective requires a (p)redefined “normal range,” it 
involves several experiments.

2.3.3.1 Experiment 3a
To assess the full range of normal in our large population from 

birth to old age, affine spatial normalization available within SPM12 
was performed on all images, with regularization set to “none” (as the 
aim was to obtain unbiased solutions). All other settings were left at 
their respective default, including the standard tissue priors used in 
SPM12, spatial sampling, smoothing, and the iterative determination 
of whether the image origin or the center of the field of view provided 
better starting estimates. From the resulting affine matrices, the scaling 
in each dimension was derived, as well as the resulting overall scaling. 
These results provide the full range of scaling in each dimension.

2.3.3.2 Experiment 3b
To cover this newly-defined normal range (cf. experiment 3a, 

above), the range of possible scaling parameters in each dimension was 
defined using z-scores. Due to the skewed distribution (higher scaling 
factors for minors in general, and young minors in particular, see below), 
the initial z-score range to-be-explored was chosen to be asymmetrical 
as well and was set from z = −5 to +15, for each dimension, amounting 
to 21 values each and a total of 9.261 unique initial scale factor 
combinations. To save processing time, the full parameter set of initial 
scaling parameters (n = 9.261) was by default systematically sampled to 
yield a subset of 1.000 combinations (see also experiment 3c, below), 
which were then applied to the input image. The initial best combination 
was again identified by the goodness-of-fit, and its scale factors were 
then modified in 2% steps from 90 to 110% and explored again (original 
position ±25 modifications in each direction = 51 scaling factors for each 
dimension = 153 final combinations) in a second round, intended to 
fine-tune the initial parameter set and to identify their best combination. 
This was then submitted as the starting estimate for the routine iterative 
optimization, and the resulting final fit from this was compared with the 
parameter obtained using the default approach, again using both image 
registration metrics.

2.3.3.3 Experiment 3c
To ensure that the time-saving data reduction step does not 

impair image registration quality, all combinations (n = 9.261) instead 
of the reduced parameter set (n = 1.000) were explored, and results 
were compared.

2.3.3.4 Experiment 3d
To assess the effect of the complete processing stream, the 

algorithm was evaluated in its entirety with all parameters set at 
defaults (use inhomogeneity correction and bias correction only if 
beneficial and use a reduced initial parameter set of n = 1,000).

2.4 Statistical analyses

Statistical testing was also performed within Matlab. Variables 
were initially tested regarding the assumption of normality using a 
Kolmogorov–Smirnov–Lilliefors-Test. If this assumption was met, 
two-sided Student’s T-tests were used, and mean values with standard 
deviations were reported. If the assumption of normality was not met, 
variables were compared using the non-parametrical Mann–Whitney-
U-test, and median values with the median absolute deviation (MAD) 
were reported. For assessing the effect of an optimization step in a 
given group, paired T-Tests were used if applicable. For comparing 
proportions between groups, a chi-square test was used. Significance 
in all cases was assumed at p ≤ 0.05, Bonferroni-corrected for multiple 
comparisons where appropriate.

3 Results

3.1 Experiment 1a

When assessing the impact of using the inhomogeneity-corrected 
image to perform affine registration (step  1), the goodness-of-fit 
criterion demonstrated superiority of the approach in the subgroups 
in 25/221 (YM; 11.3%), 55/324 (MM; 17.9%), 33/201 (OM; 16.4%), 
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338/1338 (AD; 25.2%) and in the whole group in 451/2081 (21.7%), 
respectively. The effect was significant in neither group. When 
assessing the impact on the Dice similarity index, the approach was 
beneficial in the subgroups in 17/221 (YM; 7.7%), 53/324 (MM; 
16.4%), 33/201 (OM; 16.4%), 152/1338 (AD; 11.4%), and in 255/2081 
(12.2%) in the whole group, respectively. The effect was significant in 
groups MM (p = 0.00347, Mann–Whitney), OM (p = 0.00224, Mann–
Whitney) and in the whole group (p = 0.00347, Mann–Whitney) and 
remained so in all cases after correcting for five comparisons. See 
Figure 2 for details.

3.2 Experiment 1b

When comparing datasets where using the inhomogeneity-
corrected image was beneficial with those where it was not, there was 
a clear effect of the amount of image inhomogeneity: significantly 
more inhomogeneity was present in those images where the approach 
was beneficial (889161.8 [MAD: 261223.3] versus 401044.7 [MAD: 
226733.8] arbitrary units), resulting in p < 0.00001 (Mann–Whitney; 
see Figure  3). There was no independent effect of field strength 
(21.12% vs. 22.09% in 1.5T and 3.0T data, respectively, p > 0.05, 
chi-square).

3.3 Experiment 2

When assessing the impact of using the complexity-reduced 
image to perform affine registration (step 2), the goodness-of-fit 
criterion demonstrated superiority of the approach in the subgroups 
in 174/221 (YM; 89.6%), 97/324 (MM; 29.9%), 58/201 (OM; 28.9%), 
687/1338 (AD; 51.3%) and in the whole group in 1016/2081 
(48.8%), respectively. The effect was significant in group YM 
(p < 0.00001, Mann–Whitney) and remained so after correcting for 
five comparisons. When assessing the impact on the Dice similarity 

index, the approach was beneficial in the subgroups in 198/221 
(YM; 89.6%), 301/324 (MM; 92.9%), 180/201 (OM; 89.6%), 
769/1338 (AD; 57.5%) and in the whole group in 1448/2081 
(69.6%), respectively. The effect was significant in groups YM 
(p < 0.00001, Mann–Whitney), MM (p < 0.00001, Mann–Whitney), 
OM (p = 0.00018, Mann–Whitney) and in the whole group (p = 0. 
00001, Mann–Whitney) and remained so in all cases after correcting 
for five comparisons. See Figure 4 for details.

3.4 Experiment 3a

When visually assessing the scaling factors, a clear effect of age 
was present and most pronounced in the youngest participants. 
Confirming this, total scaling was significantly different between each 
group of minors and adults (YM vs. AD, MM vs. AD, and OM vs. AD; 
each p < 0.001, Mann–Whitney-U) and remained significant after 
correcting for three comparisons. See Figure  5 for details. The 
parameters describing the scaling across the whole age range in each 
dimension are also provided in Table 2.

3.5 Experiment 3b

When assessing the impact of using iterative processing only to 
perform affine registration (step  3), the goodness-of-fit criterion 
demonstrated superiority of the approach in the subgroups in 197/221 
(YM; 89.1%), 306/324 (MM; 94.4%), 191/201 (OM; 95%), 1261/1338 
(AD; 94.2%) and in the whole group in 1955/2081 (93.9%), 
respectively. The effect was significant in neither group. When 
assessing the impact on the Dice similarity index, the approach was 
beneficial in the subgroups in 193/221 (YM; 87.3%), 301/324 (MM; 
92.9%), 180/201 (OM; 89.6%), 761/1338 (AD; 56.9%) and in the whole 
group in 1435/2081 (69%), respectively. The effect was significant in 
groups YM (p < 0.00001, Mann–Whitney), MM (p < 0.00001, 

FIGURE 2

Violin plots of the effect of inhomogeneity removal (step 1) across groups on the goodness of fit (top row) and the gray matter Dice similarity index 
(bottom row). *Significant differences following correction for multiple comparisons. O, original; N, new approach. See text for details.
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Mann–Whitney), OM (p < 0.00001, Mann–Whitney), AD (p = 0.00687, 
Mann–Whitney) and in the whole group (p < 0.00001, Mann–
Whitney) and remained so in all cases after correcting for five 
comparisons. See Figure 6 for details.

3.6 Experiment 3c

When assessing the impact of using a reduced initial parameter 
set for iterative processing (n = 1.000 vs. n = 9.621), the mutual 
information “goodness of fit” criterion demonstrated no superiority 
of the extensive approach in either the whole group or any of the 

subgroups (all p > 0.05, Mann–Whitney [3] and 2-sample t-test [2]). 
Similarly, the Dice similarity index was not significantly different 
between the extensive and the reduced approach in either the whole 
group or any of the subgroups (all p > 0.05, Mann–Whitney).

3.7 Experiment 3d

When assessing the impact of using the complete processing 
stream (steps 1, 2, and 3 with default settings, i.e., inhomogeneity 
correction [when beneficial], complexity-reduced processing [when 
beneficial] and iterative processing [with initial n = 1,000]) to perform 
affine registration, the goodness-of-fit criterion demonstrated 
superiority of the approach in the subgroups in 210/221 (YM; 95%), 
312/324 (MM; 96.3%), 195/201 (OM; 97%), 1293/1338 (AD; 96.6%) 
and in the whole group in 2010/2081 (96.6%), respectively. The effect 
was significant in group YM (p = 0.00496, Mann–Whitney) and in the 
whole group (p = 0.04118, Mann–Whitney) but survived comparison 
for 5 multiple comparisons only in group YM. When assessing the 
impact on the Dice similarity index, the approach was beneficial in the 
subgroups in 198/221 (YM; 89.6%), 298/324 (MM; 92%), 180/201 
(OM; 89.6%), 753/1338 (AD; 56.3%) and in the whole group in 
1429/2081 (68.7%), respectively. The effect was significant in groups 
YM (p < 0.00001, Mann–Whitney), MM (p < 0.00001, Mann–
Whitney), OM (p < 0.00001, Mann–Whitney), AD (p = 0.00643, 
Mann–Whitney) and in the whole group (p < 0.00001, Mann–
Whitney) and remained so in all cases after correcting for five 
comparisons. See Figure 7 for details.

4 Discussion

This technical note was meant to address three main objectives in 
a large population across a very wide age range: one, can affine spatial 

FIGURE 3

Violin plot of the inhomogeneity between subjects not benefitting 
from inhomogeneity correction (NB, left plot) and those benefitting 
from it (B, right plot), in arbitrary units (AU). *Significant difference. 
See text for details.

FIGURE 4

Violin plots of the effect of using a complexity-reduced approach (step 2) across groups on the goodness of fit (top row) and the gray matter Dice 
similarity index (bottom row). *Significant differences following correction for multiple comparisons. O, original; N, new approach. See text for details.
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normalization be improved by performing an initial bias correction; 
two, can affine spatial normalization be improved by initially using a 
complexity-reduced input, and three, can affine spatial normalization 
be improved by performing an unbiased, brute-force exploration of 
numerous affine scaling parameter combinations (see Figure 1 for an 
overview). Two metrics were used, the goodness of fit (the parameter 
used internally to optimize affine processing) and Dices similarity 
index (reflecting the actual impact the procedure has on the resulting 
segmented maps). Results shall now be discussed in succession.

With regard to objective 1, does affine processing benefit from 
prior inhomogeneity removal, the approach was beneficial in only 
about 22% of images. However, it was beneficial particularly in those 
where more image inhomogeneity was present. While the goodness 
of fit was not significantly better in either group, the resulting 
segmentation partitions benefitted significantly in the whole and in 
two of the minor groups (Figure  2), incidentally confirming the 
complementary nature of our two indicators. These results 
demonstrate that image inhomogeneity indeed interferes with image 

registration and confirms previous suggestions to this effect (Vovk 
et al., 2007; Wilke et al., 2017; SPM Manual, 2023). While it may seem 
surprising that there was no independent effect of field strength, it 
must be borne in mind that many of the images from higher-field 
datasets were acquired more recently (such as the CMIND or the IXI 
datasets). Hence, there may be  an effect of particular scanners, 
improved image acquisition, or better shimming techniques that could 
outweigh a possible effect of field strength per se. While the approach 
was only beneficial in a minority of our datasets, our results suggest 
that it may be particularly helpful in datasets where inhomogeneity is 
prominent (Figure 3), such as images from ultra-high-field strength 
scanners (Kraff and Quick, 2017). In the algorithm, it is therefore 
suggested by default but will only be  used if found to improve 
the result.

With regard to objective 2, using a complexity-reduced input image 
for the initial matching, the approach was beneficial in about 49% of 
images (Figure 4). While it resulted in a significantly better fit only in 
the young group, the impact on the resulting gray matter partitions was 

FIGURE 5

Scaling factors in each dimension (gray markers, top plots) and total scaling factor (blue markers, bottom plot) as a function of age, derived from the 
whole cohort. Gray lines indicate groups (young, middle, and old minors). All differences in total scaling between minors and adults were significant 
after correcting for multiple comparisons. See text for details.

TABLE 2 Empirically-derived scaling factors across the whole age range (experiment 3a): mean and standard deviation, as well as actually-observed 
minimum and maximum values.

Mean SD Minimum 
[actual value]

Maximum 
[actual value]

Minimum 
[z =  −5]

Maximum 
[z =  15]

“MNI”

X-dimension 1.088 0.078 0.909 1.661 0.698 2.258 1.069

Y-dimension 1.075 0.086 0.895 1.694 0.645 2.365 1.0339

Z-dimension 1.179 0.073 0.911 1.834 0.814 2.274 1.113

Total scaling 1.401 0.335 0.965 5.184 1.2301

See Figure 4. Also provided are the minimum and maximum values (as defined by z-scores) here explored by the algorithm. For comparison, the scaling applied by default within SPM12 using 
the “MNI” regularization scheme is also provided.
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significant in all minor as well as the whole group, clearly suggesting an 
effect of age. This demonstrates that the brains of infants and children 
in particular seem to be matched better if their complexity is reduced. 
Reducing the complexity of the input image likely reduces the 
complexity of the differences between the individual brain and the 
template, which, being a group average, is complexity-reduced by 
default; consequently, it must be expected to be of the strongest benefit 
where these differences are large. This effect confirms that scaling 
differences alone (see below) are not the only hindrance when it comes 
to matching these “unusual” brains to an adult template, in line with 
previous observations (Sanchez et al., 2012; Wilke et al., 2017; Dong 

et al., 2020). It must be borne in mind that all images in this dataset were 
already “nicely oriented” as suggested (Ashburner, 2021; Larroque, 
2021), but this image position, too, is iteratively optimized as the 
positional information from each step is automatically used as the basis 
for the next step if it provides a better fit than the original one. This 
approach may consequently be more beneficial in images with a less-
than-optimal initial orientation. Further, matching using the whole 
head may seem rather course, and tissue-specific matching would 
theoretically be advantageous. However, increasing accuracy is achieved 
in the later stages of unified segmentation, where the initial affine 
parameters (provided here) are iteratively updated and optimized. 

FIGURE 6

Violin plots of the effect of using an iterative brute-force exploration (step 3) across groups on the goodness of fit (top row) and the gray matter Dice 
similarity index (bottom row). *Significant differences following correction for multiple comparisons. O, original; N, new approach. See text for details.

FIGURE 7

Violin plots of the effect of using the complete processing stream (steps 1–3) across groups on the goodness of fit (top row) and the gray matter Dice 
similarity index (bottom row). *Significant differences following correction for multiple comparisons. O, original; N, new approach. See text for details.
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Therefore, prior skull stripping is not part of the segmentation algorithm 
of SPM12 (Wang et al., 2018) as non-brain tissue is explicitly modelled 
during this process. The aim of the approach presented here was to 
optimize the initial starting estimates to provide a better basis for this 
later optimization; hence, the balance between greater robustness and 
greater accuracy can be weighed toward the former in this particular 
instance. An option to base the complexity-reduced matching on brain 
tissue only (Wilke et  al., 2011) was also implemented and tested; 
however, this approach did not show superiority over the head-based 
approach and requires an additional processing step; it is therefore 
disabled by default. Of note, the complexity-reduced approach is 
implemented in the algorithm such that, if no 2-class prior matching the 
supplied 6-class prior is found, one is generated “on the fly” (such that 
it can seamlessly be used with each supplied prior, standard or custom). 
As with the inhomogeneity correction, it is suggested by default but, if 
the goodness-of-fit parameter is not improved, its solution will not 
be used.

With regard to objective 3, several experiments were performed, 
to first define and then blindly explore the full range of even remotely 
plausible values. With regard to experiment 3a, our results show that 
a very wide range of values must be expected in a healthy human 
population, with a clear and substantial effect of age on the total 
scaling factor especially in younger children (Figure  5). This 
underlines the fact that appropriate data processing for the brains of 
children in general, and younger children in particular, requires 
solutions that differ from standard adult reference data, as suggested 
before (Wilke et al., 2008; Sanchez et al., 2012; Bednarz and Kana, 
2018). In the context of affine transformation, the issue arises when 
starting estimates from adults only is used, as in SPM12 (initially 
generated in Ashburner et al., 1997 and subsequently updated). The 
effect is most pronounced in the Z-dimension (inferior–superior), 
where the actually observed minimum and maximum values differ by 
a factor of more than 2. Clearly, the higher mean scaling factors in our 
population along each dimension (when compared to the current 
standard from and for adults, cf. Table 2) are due to the inclusion of 
minors. This is confirmed by assessing the scaling factors from our 
adult group only, which are 1.0587 ± 0.0443, 1.0513 ± 0.053, and 
1.161 ± 0.0514 (mean ± SD), for scaling in X, Y, and Z, respectively. 
These values are much closer to the default values used in SPM12 (cf. 
Table 2), confirming that those clearly are appropriate for use with 
datasets conforming to the assumptions (i.e., adults).

With regard to experiment 3b, does an unbiased application of a 
wide range of affine scaling parameter combinations alone result in an 
improved fit, the initial answer is no. While the approach is clearly 
beneficial and improves the goodness of fit in the vast majority of 
datasets, independently of group (range, 89–95% of subjects), the 
differences do not reach significance. Interestingly, however, 
segmentation quality improves significantly in all groups, minors and 
adults alike (Figure 6). Experiment 3c demonstrates that results do not 
suffer from using a less-extensive exploration of the full parameter space 
(n = 1.000 vs. n = 9.621), which is reassuring and helpful in practical 
terms as this reduction naturally reduces processing time substantially. 
Finally, experiment 3d demonstrates that the full processing stream 
(using steps 1, 2, and 3 with their respective defaults), the goodness of 
fit improves in 95–97% of images, although the effect is significant only 
in the young minors group. The segmentation partitions, however, 
benefit significantly across all groups (Figure 7), but substantially more 
so in the minor groups (89.6/92/89.6%, respectively) than in adults 
(56.3%). This demonstrates that the strength of the approach must 

be expected to come to bear mainly for “unusual” datasets where the a 
priori assumptions may be off. In the algorithm, the goodness of fit will 
be compared to the “traditional” approach, and will not be used if no 
improvement is found. Hence, the approach will only result in an equal-
or-higher goodness of fit, as in the minority of images not benefitting 
from the approach, the traditional approach will be used. By default, 
information about the two solutions and the “better choice” is visually 
presented and saved as a graphics file, allowing for later quality control. 
Some examples from each group are shown in Supplementary Figure S1.

In post hoc analyses, our results also illustrate that the mutual 
information goodness-of-fit criterion itself shows a clear age-dependency, 
irrespective of the approach, when using an adult template. Here, the fit 
achieved in all minors (groups YM, MM, and OM) is significantly lower 
than that in adults (cf. Figure 7; each p < 0.001, Mann–Whitney-U, all 
surviving Bonferroni-correction for 3 comparisons). The same is true 
for the Dice coefficient (YM vs. AD, p < 0.001; MM vs. AD, p = 0.0022; 
OM vs. AD, p = 0.00656, all Mann–Whitney-U, all surviving Bonferroni-
correction for 3 comparisons). This demonstrates that the brains of 
minors (all groups) are not equally-well fitted to the standard adult 
template as are those of adults, which again is generally in line with 
previous observations (Sanchez et al., 2012; Richards et al., 2016; Wilke 
et al., 2017). However, it is surprising that this effect is already clear, and 
significant, for the affine spatial normalization, where previously, an 
age-dependency of the scaling parameters was not found after the age of 
about 6 years (Muzik et al., 2000; Wilke et al., 2002). The here-used 
goodness-of-fit parameter and the Dice coefficient, therefore, seem to 
be more sensitive to the differences between a child’s brain and the adult 
template. To test this hypothesis, each group of minors was matched to 
an age-appropriate template (Wilke et al., 2017). Here, the goodness of 
fit was significantly higher when matching to a custom template than 
when matching to an adult template for all groups of minors (each 
p < 0.001, Mann–Whitney-U, Bonferroni-corrected for 3 comparisons). 
This was also the case for the Dice coefficient for groups YM and MM 
(each p < 0.001, Mann–Whitney-U, Bonferroni-corrected for 3 
comparisons), but not for group OM (p = 0.0357, Mann–Whitney-U, 
not surviving Bonferroni-correction). This underlines the positive effect 
of using an age-appropriate template even for the affine registration, in 
younger subjects in particular.

4.1 Implementation and resulting “pipeline”

The algorithm was implemented by modifying a single file 
(function spm_maff8 from the latest SPM12 developmental version, 
last modified August 17, 2023). It will be executed automatically if 
spatial normalization is performed in the context of unified 
segmentation (Ashburner and Friston, 2005), but not otherwise (e.g., 
if called from the command line or from other software solutions), 
unless specifically requested. With the default settings, inhomogeneity 
correction will be performed first, and solutions from the original as 
well as the bias-corrected image are generated. The solution with the 
better fit will then be  used to inform the next step (complexity-
reduced processing), from which (again) the better of the two 
solutions will be used to inform the last step (iterative processing). Yet 
again, the solution obtained here will be compared to the standard 
approach, and the one leading to a better fit is used as the final 
solution. As already mentioned, this process ensures that no solution 
will be  worse than the solution obtained by the standard, 
original approach.
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4.2 Possible limitations of this study

It was argued that using brute force to solve a problem is 
unsatisfactory as “brute force does not contribute to understanding the 
problem” (Heule and Kullmann, 2017). However, it has the undeniable 
advantage of being blind, and hence, unbiased. A more elegant approach 
might be  to reparameterise the results obtained in the different age 
groups to instead be modelled by age, sex, and/or field strength, as done 
with structural MRI data in the past (Wilke et al., 2008, 2017). This 
would provide a theoretically “optimal” solution for the affine parameter 
starting estimates, based on technical and/or the individual subject’s 
demographics characteristics. However, the range of normal even among 
subjects of similar age is quite large, as can be seen from Figure 5. Hence, 
the theoretically “optimal” solution for a given subject may still not 
be optimal at all for an individual at hand, and be less-suited than a 
solution found blindly. Further, this would introduce new assumptions 
which may or may not apply (e.g., in cases of macro- or microcephaly), 
and would be less blind to “non-modelled anomalies” such as brain 
lesions. Also, the interdependency, and potentially, multicollinearity 
(Alin, 2010) of the three input variables (changes in X and Y might 
influence Z, and vice versa) would make any such optimization complex. 
Additionally considering that any optimization approach would also 
require “non-trivial computation time” to determine, or exclude, the 
next solution (McLeod et  al., 2018), this does not seem sensible 
considering that each single computation of the goodness-of-fit criterion 
used here only takes a few milliseconds when using parallel processing. 
Therefore, while admittedly not an elegant approach, the 2–3 min of 
extra processing time (usually less time than required for the ensuing 
standard segmentation itself) per subject to find the best-possible, 
individual parameter set blindly seems to be time well-invested.

It could also be argued that the inhomogeneity removal should 
be done using one of the many other approaches available out there 
(Sled et al., 1998; Vovk et al., 2007; Weiskopf et al., 2011; Ganzetti et al., 
2016), particularly if additional MRI data was obtained that allows to 
explicitly model, and remove, such inhomogeneities (Tabelow et al., 
2019). However, while this is of course technically feasible, mixing 
different data processing approaches within one processing stream is 
not always a good idea, due to the unpredictable interactions between 
them. Using “unified segmentation” to remove inhomogeneity also has 
the practical advantage of not requiring (interactions with) other 
software solutions, but of course such solutions could be implemented.

Our sample was, by design (multiple sites, scanners, and sequences) 
inhomogeneous, including some images acquired a long time ago. 
Apart from image inhomogeneity, no attempt was made to identify 
factors that may have contributed to some images benefitting more 
from the approach presented here. However, the overall clear benefit of 
the individual steps as well as the combined approach in a diverse 
sample such as this one clearly demonstrates its real-world usability.

Our approach “only” explored combinations of the three scaling 
parameters in each dimension, as these are also those for which starting 
estimates are used (Ashburner et al., 1997). It would be theoretically 
more appealing to blindly explore each of the 12 affine parameters, but 
this would result in not 9.261 combinations (213) but in 7.35583 × 1015 
(2112) which is not feasible. Also, the “other” parameters encoding 
shears, rotations, and shifts, are already determined by an early, almost 
rigid-body matching using either the center of the image or the origin. 
This initial match is then optimized further using each newly-generated 
affine matrix. It therefore does not seem necessary to also iterate over 
all of these, clearly less-important parameters.

Finally, the z-score range that was explored in this study was 
deliberately chosen to be  extremely wide and consequently also 
includes unrealistically small or large values; to cover the range of 
values actually observed in this sample, a range of z = −4:9 would 
have been sufficient (instead of the −5:15 range actually chosen; cf. 
Table  2). This means that, in most cases, a wider range than 
realistically necessary is explored, which is not very efficient. 
Consequently, this setting can be adapted in the code to restrict the 
initially-explored parameter space. Ultimately, however, the setting 
that is more relevant to how long the code actually runs is how fine-
grained that space is finally explored as this is the speed-limiting step 
(default: 1.000 values, cf. experiment 3c).

5 Summary and conclusion

A lower vulnerability toward image inhomogeneity and “unusual 
brains” of the popular affine transformation step in SPM12 could 
be  achieved using an initial bias correction step and using a 
complexity-reduced input image, respectively. Following the 
exploration of a wider range of normal values, it was also shown that 
the vast majority of datasets benefit from applying a blind, brute-force 
search of all possible parameter combinations. At each step, results are 
compared with the traditional approach to ensure that no solution 
worse than the original one is used, such that effectively, only an equal 
or better solution is obtained. For the complete processing stream, 
significant superiority is demonstrated across the whole group, as well 
as in young minors. The approach, while more time-consuming, may 
therefore be particularly beneficial when exploring inhomogeneous 
and/or unusual datasets, such as those stemming from high-field 
scanners and those containing data from children in general, and from 
younger children in particular.
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SUPPLEMENTARY FIGURE S1

Examples of actual algorithm output for the three subjects with the biggest 
improvement of the mutual information criterion per group (Y = young; 
M = middle, O = old children; A = adults). Note more realistic scaling (e.g., 
case Y1 or case M3) or improved rotation of the input data (e.g., case Y3).
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