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Automatic segmentation of vestibular schwannoma (VS) from routine clinical

MRI has potential to improve clinical workflow, facilitate treatment decisions,

and assist patient management. Previous work demonstrated reliable automatic

segmentation performance on datasets of standardized MRI images acquired

for stereotactic surgery planning. However, diagnostic clinical datasets are

generally more diverse and pose a larger challenge to automatic segmentation

algorithms, especially when post-operative images are included. In this work,

we show for the first time that automatic segmentation of VS on routine MRI

datasets is also possible with high accuracy. We acquired and publicly release

a curated multi-center routine clinical (MC-RC) dataset of 160 patients with a

single sporadic VS. For each patient up to three longitudinal MRI exams with

contrast-enhanced T1-weighted (ceT1w) (n = 124) and T2-weighted (T2w) (n

= 363) images were included and the VS manually annotated. Segmentations

were produced and verified in an iterative process: (1) initial segmentations by

a specialized company; (2) review by one of three trained radiologists; and (3)

validation by an expert team. Inter- and intra-observer reliability experiments

were performed on a subset of the dataset. A state-of-the-art deep learning

framework was used to train segmentation models for VS. Model performance

was evaluated on a MC-RC hold-out testing set, another public VS datasets,

and a partially public dataset. The generalizability and robustness of the VS

deep learning segmentation models increased significantly when trained on

the MC-RC dataset. Dice similarity coe�cients (DSC) achieved by our model

are comparable to those achieved by trained radiologists in the inter-observer

experiment. On the MC-RC testing set, median DSCs were 86.2(9.5) for ceT1w,

89.4(7.0) for T2w, and 86.4(8.6) for combined ceT1w+T2w input images. On

another public dataset acquired for Gamma Knife stereotactic radiosurgery our

model achieved median DSCs of 95.3(2.9), 92.8(3.8), and 95.5(3.3), respectively.

In contrast, models trained on the Gamma Knife dataset did not generalize well
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as illustrated by significant underperformance on theMC-RC routineMRI dataset,

highlighting the importance of data variability in the development of robust VS

segmentation models. The MC-RC dataset and all trained deep learning models

were made available online.

KEYWORDS

vestibular schwannoma, segmentation, deep learning, convolutional neural network,

volumetry, surveillance MRI

1 Introduction

Vestibular Schwannoma (VS) is a slow growing, benign tumor

that develops in the internal auditory canal. It originates from an

abnormal multiplication of Schwann cells within the insulating

myelin sheath of the vestibulo-cochlear nerve. It typically presents

with hearing loss but also frequently causes tinnitus and balance

disturbance. Larger tumors may also cause headaches, cranial

neuropathies, ataxia, and hydrocephalus. It is estimated that 1 in

1000 people will be diagnosed with a VS in their lifetime (Marinelli

et al., 2018); however, improvements in magnetic resonance

imaging (MRI) that facilitate the detection of smaller VS have

led to an increased incidence of VS in recent years (Stangerup

et al., 2006). Treatment options include conservative management,

radiosurgery, radiotherapy, and microsurgery for tumors that are

growing or exhibit mass effect (Carlson et al., 2015).

Previous studies have demonstrated that a volumetric

measurement is more accurate than linear measurements and

smaller interval changes in VS size may be detected (Varughese

et al., 2012; MacKeith et al., 2018). Implementing routine

volumetric measurements would enable clinicians to more

reliably demonstrate tumor growth and potentially offer earlier

interventions. However, available tools make calculating tumor

volume assessment a labor-intensive process, prone to variability

and subjectivity. Consequently, volumetric methods of measuring

tumor size have not been widely implemented in routine clinical

practice (MacKeith et al., 2018).

To reduce the workload for clinical staff and free resources,

deep learning models have recently been developed to automate

this time-consuming and repetitive task. Shapey et al. (2019) and

Wang et al. (2019) previously presented a deep learning framework

for automatic segmentation of VS that achieved high accuracy

on a large publicly available dataset of MR images acquired for

Gamma Knife (GK) stereotactic radiosurgery. According to Shapey

et al. (2019), “the main limitation of [their] study is [...] that it

was developed using a uniform dataset and consequently may not

immediately perform as well on images obtained with different

scan parameters.”

Such scan parameters include the type of pulse sequence and

hardware-specific parameters relating to the MRI scanner and

radio-frequency coil such as the magnetic field strength and field

inhomogeneities as well as the use and type of contrast agent. These

parameters influence the degree of T1-weighted (T1w) and T2-

weighted (T2w) contrast, determine the image resolution and field-

of-view (FOV) and regulate the image noise and other acquisition

artifacts. As there are no official national guidelines for MRI

acquisition protocols for VS in the UK imaging centers choose

and optimize pulse sequences independently from each other so

that images from different centers are rarely equivalent with scan

parameters varying widely.

Although deep-learning models have pushed performance in

medical image segmentation to new heights, they are particularly

sensitive to shifts between the training and testing data (Donahue

et al., 2014; Van Opbroek et al., 2014). Thus, a model that

is trained on data from a single scanner with a fixed set

of settings might perform well on images acquired with the

same scanner/settings but fail on images acquired differently.

Nevertheless, 3D-segmentation models for VS published to date

rely on standardized radiosurgery treatment planning data from

individual institutions with minimal differences in acquisition

parameters (Shapey et al., 2019, 2021c; Wang et al., 2019; Lee

et al., 2021; Dorent et al., 2023). Previous studies have focused on

retrospectively collected radiosurgery datasets because they often

contain high quality verified manual segmentations required for

treatment planning and dose calculation. However, standardized

acquisition protocols mean that these datasets lack variability in

terms of their acquisition parameters.

Furthermore, tumor characteristics in such datasets are biased

toward tumors which are suitable for radiosurgery whereas

tumors suitable for conservative management or microsurgery

are under-represented. Post-operative cases are also typically not

included in radiosurgery datasets although they account for a

significant fraction of VS images in routine clinical practice

as patients undergo regular follow-up scans to monitor tumor

residuals and recurrence. After surgery, a disrupted anatomy in

the cerebellopontine angle (CPA), accumulation of cerebrospinal

fluid in the former tumor cavity, and the usually small size of

residual tumor tissue can make the segmentation of post-operative

VS particularly challenging. Moreover, these structural alterations

vary depending on the surgical approach and the size of the resected

volume which introduces significant variability in post-operative

VS presentation on medical images. Consequently, deep learning

models trained on standardized pre-operative datasets are unlikely

to perform robustly in a general clinical setting.

In this work, we present for the first time deep learning models

for automatic 3D-segmentation that perform well on routine

clinical scans acquired for diagnosis and surveillance and which

generalize to a wide range of scan parameters. We acquired a large

multi-center routine clinical (MC-RC) longitudinal dataset with

images from 10 medical centers and devised a multi-stage, iterative

annotation pipeline to generate high quality manual ground truth

segmentations for all 3D images. The new dataset was used to

train segmentation models and assess their performance on a hold

out subset of this MC-RC dataset and on 2 public VS datasets.
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Results show that the models perform robustly on most images and

generalize to independent datasets. In particular, on independent

datasets, they outperform earlier models trained on images that

were acquired for Gamma Knife (GK) stereotactic radiosurgery

when evaluated on unseen data.

In clinical practice, the models can be applied to monitor tumor

size, post-operative residuals, and recurrence more accurately and

efficiently, thereby facilitating the VS surveillance andmanagement

of patients. The MC-RC dataset will help to facilitate further

research into automatic methods for VS diagnosis and treatment

and can serve as a benchmark dataset for VS segmentation

methods. The dataset and all trained deep learning models were

made available online.

2 Materials and methods

2.1 Ethics statement

This study was approved by the NHS Health Research

Authority and Research Ethics Committee (18/LO/0532). Because

patients were selected retrospectively and the MR images were

completely anonymised before analysis, no informed consent was

required for the study.

2.2 Multi-center routine clinical dataset

Our MC-RC dataset including all manual segmentations

is available for download on The Cancer Imaging Archive

(TCIA) (Kujawa et al., 2023a).

2.2.1 Study population
The dataset contains longitudinal MRI scans with a unilateral

sporadic VS from 10 medical sites in the United Kingdom. The

data acquired at these medical sites was accessible and collected

at the skull base clinic at the National Hospital of Neurology

and Neurosurgery (London, UK) where all included patients

were consecutively seen over an approximate period from April

2012–May 2014. All adult patients aged 18 years and above

with a single unilateral VS were eligible for inclusion in the

study, including patients who had previously undergone previous

surgical or radiation treatment. Patients with Neurofibromatosis

type 2 (NF2) were excluded. All patients had a minimum 5-year

surveillance period.

2.2.2 Uncurated dataset
Imaging data from 168 patients with dates of imaging ranging

between February 2006 and September 2019 were screened for

the study. The median number of time points at which each

patient underwent an MRI examination was 4 [interquartile range

(IQR) 3–7], and the median number of MRI sequences acquired

per session was 7 (IQR 4–9). The complete uncurated image

dataset comprised MRI sessions from 868 time points with 5,805

MRI scans.

2.2.3 Automatic image selection
To select the images most relevant for VS delineation and

volumetry an automatic selection pipeline illustrated in Figure 1

was employed. For each patient images from at most 3 time points

were included in the final dataset to limit the number of manual

segmentations required. If more than 3 time points were available

the first, last, and the time point closest to the midpoint were

included while data from all other time points were discarded.

Consequently, initial diagnostic as well as post-operative images

were included in the final dataset. Images with a slice thickness of

more than 3.9 mm were excluded due to the decreased sensitivity

to small lesions and partial volume effects, which make accurate

VS delineation and volumetric analysis difficult. Finally, for each

of the remaining time points, image series were selected subject to

the following selection rules which were designed to automatically

select the most suitable MRI scans for manual segmentation.

1. If a high-resolution contrast enhanced T1 (ceT1w) image was

available the image was selected. High-resolution was defined as

a voxel spacing of less than 1 mm in the three directions of the

voxel grid (19 time points).

2. If a low-resolution (defined as not high-resolution) ceT1w image

and a high-resolution T2w image (hrT2w) were available, both

were selected. The low-resolution ceT1w image was selected

with preference for axial orientation (60 time points).

3. If a low-resolution ceT1w image was available but no

hrT2w image, the low-resolution ceT1w image was selected

(45 time points).

4. If no ceT1w image was available a T2w image was selected with

preference for high resolution (303 time points).

Finally, for cases where multiple images of the same modality

passed the selection process, the image with the smallest average

voxel spacing was chosen.

2.2.4 Exclusion of imaging data
Subsequently, during the manual annotation process, 59 time

points were excluded either because parts of the tumor were outside

the FOV (n = 39), because a different tumor type (meningioma,

trigeminal schwannoma) was identified (n = 4) or because severe

imaging artifacts prevented accurate VS delineation (n = 4). Post-

operative images in which no residual tumor could be identified

(n = 12) were excluded from the MC-RC training dataset, because

the corresponding ground truth segmentations without foreground

pixels complicate the model training and evaluation in terms of

Dice Similarity Coefficient (DSC). However, model performance on

these images was considered in a separate evaluation.

2.2.5 Demographic data
The final MC-RC dataset after the above exclusion and curation

included 160 patients (males/females 72:88; median age 58 years,

IQR 49–67 years). 11 patients had imaging data from a single time

point, 31 patients from two time points, and 118 patients from

three time points, resulting in a total of 427 time points and 487

3D images. The average time between the first two time points was

2.4± 1.6 years and between the first and third time point 4.9± 2.7

years. With respect to the image modality, 64 time points included
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FIGURE 1

Pipeline for data curation, iterative generation of manual vestibular schwannoma ground truth segmentations, and review of the annotated

multi-center routine clinical (MC-RC) dataset.

FIGURE 2

Comparison of multi-center clinical (MC-RC) and single-center Gamma Knife (SC-GK) datasets. Distributions of (A) slice thickness and (B) image

resolution in terms of voxel volume across all ceT1w and T2w images. Parameter values of the MC-RC dataset vary significantly, while parameters of

the SC-GK dataset are fixed to a small range of values. (C) Comparison of the normalized voxel intensity distributions of the whole image and the

voxels belonging to the vestibular schwannoma (VS). The standardized acquisition protocol of the SC-GK dataset results in similar intensity

distributions for each scan and hence more pronounced peaks in the average intensity distribution, while the increased variability in the MC-RC

dataset leads to a wider spread of intensity values.

only a ceT1w image, 303 time points only a T2w image, and 60

time points included both. The ceT1w images comprised 19 high-

resolution and 105 low-resolution images, while the T2w images

comprised 349 high and 14 low-resolution images.

2.2.6 Scanner/acquisition settings
Out of 427 MRI exams, 205 were acquired on a SIEMENS, 111

on a Philips, 110 on a General Electrics, and 1 on a Hitachi MRI

scanner. The magnetic field strength was 1.5T for 314 exams, 3.0T

for 78 exams, 1.0 T for 34 exams, and 1.16T for 1 exam. Figure 2

shows the distributions of slice thickness and voxel volume and the

intensity distribution of the dataset in comparison to a Gamma-

Knife dataset acquired for stereotactic radiosurgery (described in

Section 2.3). Similarly, the MRI scanner details are shown in

Table 1.

2.2.7 Ground truth segmentations
A multi-stage manual annotation pipeline illustrated in

Figure 1 was designed to obtain high quality ground truth

segmentations. At the center of the pipeline is an iterative process in
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TABLE 1 MRI scanner details for datasets used to train segmentation

models [multi-center routine clinical (MC-RC) and single-center Gamma

Knife (SC-GK)].

MC-RC SC-GK

Number of images 427 484

Scanner vendor

Siemens 205 484

Philips 111 0

General Electrics 110 0

Hitachi 1 0

Field strength

3.0T 78 0

1.5T 314 484

1.16T 1 0

1.0T 34 0

which annotations were gradually improved and reviewed at each

iteration. Initial VS segmentations were produced by a technician

at a company specialized in providing brain measurement

services based on MRI scans (Neuromorphometrics, Somerville,

Massachusetts, USA) according to our specified guidelines. Focus

was placed on the accuracy of segmentation edges, the brain/tumor

interface, tumor within the internal acoustic meatus, the exclusion

of obvious neurovascular structures from the segmentation, and for

post-operative images the exclusion of scar tissue and fat. Capping

cysts were included in the segmentation. If a time point included

both ceT1w and T2w images, the segmentation was performed

on the voxel grid of the higher resolution image and under

additional visual assessment of the other image. Subsequently, each

segmentation was reviewed by one of three trained radiologists

(MI, AV, EM) who either accepted the segmentation or provided

suggestions for improvement in the form of written comments.

Alternatively, reviewers had options to exclude scans that did not

fulfill inclusion criteria or refer ambiguous cases to an expert team

consisting of two consultant neuroradiologists (SC + ST) and a

consultant neurosurgeon (JS). During each iteration, the specialist

technician improved segmentations based on the reviewer feedback

until each segmentation was accepted or the corresponding image

excluded from the dataset. Finally, a subset of segmentations that

had either been flagged by the reviewers as ambiguous or had not

been accepted after 5 iterations was reviewed and jointly annotated

by the expert team. All segmentations were created, edited, and

reviewed using the segmentation tool ITK-SNAP (Yushkevich et al.,

2006).

The time required to annotate a VS varied greatly with the

size of the tumor. Small intrameatal tumors that extend over 2–

3 slices could be annotated in less than 2 min while the largest

tumors, especially with the cystic component, could extend to over

20 slices on high-resolution images and require 20 min and longer.

Similarly, the review of the segmentation depended primarily on

the quality of the initial segmentation. Accepting a segmentation

was relatively quick (under 1 min) while providing feedback to

the annotator could take up to 20 min for a difficult tumor. The

annotation of post-operative VS, and cystic cases often required

consideration of both modalities (if available) and could take up

to 30 min.

2.2.8 Inter- and intra-observer reliability
Inter- and intra-observer reliability was assessed on a subset

of 10 ceT1w (5 high and 5 low resolution) and 41 T2w images

(39 high and 2 low resolution). For intra-observer reliability

assessment, 2 sets of segmentations were provided by the specialist

technician at two time points, approximately 5 months apart.

The first set of segmentations was reviewed according to the

described iterative process, while the second set produced at the

end of the learning curve for the technician was not reviewed.

Thus, themeasured intra-observer reliability reflects the annotators

capability to recreate the first set of validated annotations.

Inter-observer reliability was based on 4 annotators. The first

set of segmentations was provided by the specialist technician,

while the other 3 sets were generated independently by the three

reviewers (trained radiologists). For each pair of annotators and for

both modalities, the mean DSC over all images in the subset was

calculated and the averaged results reported.

2.3 Single-center gamma knife dataset

This dataset was chosen as an example of a GK dataset

acquired on a single scanner with little variation in sequence

parameters. It enables a comparison of models trained on this

dataset with models trained on our MC-RC dataset. The SC-

GK dataset is a publicly available collection (Clark et al., 2013;

Shapey et al., 2021c) of 484 labeled MRI image pairs (ceT1w and

T2w) of 242 consecutive patients with a unilateral VS undergoing

GK Stereotactic Radiosurgery. Fifty one patients had previously

undergone surgery. Images were acquired with a 1.5T MRI scanner

(Avanto Siemens Healthineers). For further details we refer to the

dataset publication (Shapey et al., 2021b,c).

2.3.1 Patient overlap with SC-GK dataset
While 58 patients whose MRI are included in the MC-RC

dataset also have MRIs included in the SC-GK dataset, the time

points and MRI series were mostly different. However, 8 series

are included in both datasets and were considered separately

when creating training and testing sets (Section 2.6.1). A record

of overlapping patients and series is included in the MC-RC

dataset (Kujawa et al., 2023a).

2.4 Tilburg single-center gamma knife
dataset

This dataset served as a fully independent testing set. While

the previous two datasets were acquired at centers in the UK, this

dataset was acquired in the Netherlands, ensuring no overlap of

patients or acquisition settings/protocols. The T-SC-GK dataset

was released as part of the cross-modality domain adaptation
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(crossMoDA) VS segmentation challenge (Dorent et al., 2023). In

the present study, the challenge’s ceT1w open-access training data

(n = 105) (Wijethilake, 2023) was adopted as a testing set for the

assessment of the ceT1w based models. The challenge’s T2w private

validation data was used as a testing set for the T2w (n = 32) based

models. Images were acquired on a Philips Ingenia 1.5T scanner

using Philips quadrature head coil. Acquisition of ceT1w images

was performed with a 3D-FFE sequence with in-plane resolution of

0.8 × 0.8 mm, in-plane matrix of 256 × 256, and slice thickness of

1.5 mm (TR = 25ms, TE = 1.82 ms). Acquisition of T2w images was

performed with a 3D-TSE sequence with in-plane resolution of 0.4

× 0.4 mm, in-plane matrix of 512 × 512, and slice thickness of 1.0

mm (TR = 2,700 ms, TE = 160 ms, ETL = 50).

2.5 Image registration for combined input
modalities

For combined ceT1w+T2w input, both images had to be aligned

in the same coordinate space. To reduce information loss by

resampling, the image of the higher resolution (T2w image) was

used as a reference. Hence, the ceT1w image was registered to the

T2w image with an affine transformation and then resampled in the

space of the T2w image. The tool reg_aladin of the NiftyReg

library was used with a single pyramid level and default settings

otherwise (Modat et al., 2014). Images were interpolated with cubic

spline interpolation, labels with nearest neighbor interpolation.

2.6 Model training and testing

2.6.1 Models
Each dataset’s time points were randomly split into two subsets

at a ratio of 80:20 for training and testing while assuring no patient

overlap between sets. Specifically, using Python’s randommodule,

patients were randomly selected from the dataset until the desired

subset length was reached. Furthermore, to avoid the inclusion of a

series in one dataset’s training set and in the other dataset’s testing

set, patients with series present in bothMC-RC and SC-GK datasets

were placed in the respective training sets. In total, 9 deep learning

models were trained and tested:

• 3models were trained on theMC-RC training set, one for each

input modality/modality set.

• 3 models were trained on the SC-GK training set, one for each

input modality/modality set.

• 3 models were trained on a combination of both training

sets (MC-RC + SC-GK) while sampling training cases

from either set with equal probability, one for each input

modality/modality set.

The input modalities/modality sets were ceT1w, T2w, or

ceT1w+T2w.

2.6.2 Training
All models were trained and evaluated with nnU-Net (v2), a

framework for biomedical image segmentation that yields state-

of-the-art results for a wide range of public datasets used in

international biomedical segmentation competitions (Isensee et al.,

2021). Based on the training set, the framework automatically

determines the architecture of a U-Net, a well-established type of

Convolutional Neural Network (CNN) in the field of medical image

segmentation (Ronneberger et al., 2015).

The following nnU-Net pre-processing steps are applied to

all images:

1. Cropping of input images to non-zero region.

2. Intensity normalization (subtraction of the image mean

followed by division by the standard deviation).

3. Resampling to a target resolution: the target resolution

is determined by the median voxel spacing, computed

independently for each spatial dimension.

Models were trained with 2D and 3D U-Net configurations. A

5-fold cross-validation strategy was employed, resulting in 5 sets

of network weights per configuration. To this purpose the training

set was split into 5 non-overlapping subsets for hyperparameter

optimization. The 5 complement sets served as the network input

during training. Inference was performed either with only the

3D U-Net (ensemble of 5 networks) or with an ensemble of 2D

and 3D U-Nets. The best model configuration was determined by

evaluating all configurations on the hyperparameter optimization

sets. Model ensembling was performed by averaging the softmax

outputs of all networks prior to generating the segmentation map

via an argmax operation. The segmentation networks were trained

for 1,000 epochs where one epoch is defined as an iteration over

250 mini-batches. The mini-batch size was 2. The optimizer was

stochastic gradient descent with Nesterov momentum (µ = 0.99).

The initial learning rate of 0.01 was decayed during training

according to the “poly” learning rate policy (Chen et al., 2017). The

loss function was the sum of cross-entropy and Dice loss (Drozdzal

et al., 2016). In addition, deep supervision was applied in the

decoder to all but the two lowest resolutions. The following

data augmentation techniques were applied: rotations, scaling,

Gaussian noise, Gaussian blur, brightness, contrast, simulation of

low resolution and gamma correction. For training scripts and

the full list of hyperparameters we refer to the nnU-Net source

code (https://github.com/MIC-DKFZ/nnUNet) and to the publicly

available model metadata (Kujawa et al., 2023b). The latter includes

training curves and the epoch duration of each training process.

Training was performed on one of multiple NVIDIA A100 GPUs

with 40GBVRAMeach. Training a single fold on one of these GPUs

took approximately 1 day.

2.6.3 Evaluation
Each model’s performance was evaluated on all testing sets of

matching modality. In total, 8 testing sets were considered:

• 3 testing sets constructed from the MC-RC dataset, one for

each input modality/modality set.
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• 3 testing sets constructed from the SC-GK dataset, one for each

input modality/modality set.

• 2 testing sets constructed from the T-SC-GK dataset, one

for ceT1w and one for T2w input. A testing set for

combined ceT1w and T2w input was not available because the

crossMoDA challenged provides unpaired images.

The sample sizes for each experiment are shown in Table 2.

The trained segmentationmodels, example input images, and usage

instructions were made available online (Kujawa et al., 2023b).

2.6.3.1 Evaluation metrics

2.6.3.1.1 Dice similarity coefficient

The main metric applied to assess and compare the models’

segmentation performances was the commonly reported Dice

similarity coefficient which is the recommended evaluation metric

for semantic segmentation (Maier-Hein et al., 2022). It is defined as:

DSC =
2
∑

i SiGi
∑

i Si +
∑

i Gi
(1)

where S and G represent the binary segmentation masks of model

prediction and ground truth segmentation, respectively. The DSC

ranges from 0 (no overlap between model prediction and ground

truth) to 1 (perfect overlap).

Additionally, we report the following metrics: average

symmetric surface distance (ASSD), undirected Hausdorff distance

(HD), relative absolute volume error (RVE), and distance between

the centers of mass (COM).

2.6.3.1.2 Average symmetric surface distance

For model prediction S and ground truth segmentation G, the

average symmetric surface distance is the average distance from

points on the surface of S to the surface of G and vice versa:

ASSD =

∑

i∈δS

d(i, δG)+
∑

j∈δG

d(j, δS)

|δS| + |δG|
(2)

where ∂S and ∂G are the surfaces of S and G and d denotes the

Euclidean distance.

2.6.3.1.3 Hausdorff distance

For model prediction S and ground truth segmentation G, the

undirected Hausdorff distance is defined as:

HD = max

{

sup
i∈S

inf
j∈G

d(i, j), sup
j∈G

inf
i∈S

d(i, j)

}

(3)

Thus, informally, it is given by the distance between the furthest

point on one surface and its nearest neighbor on the other surface.

2.7 Post-operative cases without residual
tumor

Post-operative cases tend to be the most difficult to segment

since the residual tumor is often small and obscured by scar tissue,

fat, and an accumulation of CSF. In cases where no residual tumor

is present the DSC is lessmeaningful. For example, the classification

of a single voxel (or more) as a voxel belonging to the tumor

would lead to a DSC of 0. Moreover, the other metrics described

above are not defined for cases without residual tumor. Therefore,

we examined the performance of our model on these cases in

a separate evaluation by reporting whether residual tumor was

predicted (false positive) and reporting the corresponding volume

of falsely predicted tumor.

3 Results

Example segmentations generated by the deep learning models

trained on the different input modalities of the MC-RC dataset are

shown in Figure 3. The selected example cases have DSCs close

to the median DSCs achieved on the respective testing sets. The

models correctly predict most of the tumor volume and deviate

from the ground truth only in regions of low image contrast

between tumor and surrounding tissues. Especially on T2w images,

tumor boundaries are less pronounced and can be ambiguous

even to human annotators as seen in the jagged through-

plane contour lines of the ground truth in Figure 3B. Notably,

the models avoid inconsistencies between adjacent slices in all

spatial directions and render smoother tumor boundaries. Reduced

performance on T2w images is consistent with the measured inter-

and intra-observer reliability which was significantly higher for

ceT1w images. The average DSC between two annotators was

88.1±3.4% (minimum: 87.5±4.3%, maximum: 89.1±3.4%) when

the segmentation was performed on ceT1w images and 84.5±7.8%

(minimum: 82.5±13.9%, maximum: 85.8±7.9%) when performed

on T2w. Similarly, intra-observer reliability was higher for ceT1w

(87.8±4.4%) than for T2w (84.4±11.5%).

Mean DSCs achieved by all models on MC-RC, SC-GK, and

T-SC-GK testing sets are presented in Table 2. Models which

were trained on our MC-RC training sets performed well on all

testing sets. The model performance in terms of average DSCs was

comparable to that achieved by human annotators in our inter-

and intra-observer experiments. In contrast, the models trained

on the SC-GK training sets performed well only on the SC-GK

and T-SC-GK testing sets but poorly on the MC-RC testing sets.

This highlights that the variability of the MC-RC training set is key

to obtaining robust segmentation results in a clinical setting. The

combined model (SC-GK+MC-RC) performs best on most testing

sets and results in the smallest number of failures. Its capability

for generalization, can further be assessed on the independent

T-SC-GK testing sets on which it outperformed the other models.

The spread of DSCs is shown in the box and whisker

plots of Figure 4. Performance on ceT1w images was generally

slightly better than on T2w. The MC-RC ceT1w+T2w model with

combined input modalities performed worse on the corresponding

MC-RC testing set than the MC-RC models for separate input

modalities. This is due to the relatively small number of training

cases available for the ceT1w+T2wmodel (n = 48) and the presence

of large cystic components in the testing set which the model

failed to include in the segmentation as illustrated in Figure 5.

Although the models trained on theMC-RC training sets generated

some outliers there was always a partial overlap between ground
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FIGURE 3

Example segmentation results generated with the 3 models trained on the multi-center clinical (MC-RC) training sets. Predictions in (A) were

obtained with the ceT1w model, predictions in (B) with the T2w model and predictions in (C) with the ceT1w+T2w model. Each example shows axial,

coronal, and sagittal views of the full MRI image and magnified images of the tumor region. The magnified region is indicated by a red bounding box.

Dice similarity coe�cients (DSC) were 86.3%, 89.0%, and 87.1% respectively, which is close to the median DSC achieved by each model on the

MC-RC testing set.
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TABLE 2 Dice similarity coe�cients (DSC) achieved by all models trained on the multi-center routine clinical (MC-RC), single-center Gamma Knife

(SC-GK), and combined (MC-RC+SC-GK) training sets and evaluated on the MC-RC, SC-GK, and Tilburg single-center Gamma Knife (T-SC-GK) testing

sets.

Testing dataset Modality Training dataset ntrain ntest DSC[%]

MC-RC

ceT1w

MC-RC 52

12

86.9± 5.9

SC-GK 196 65.5± 39.8

MC-RC+SC-GK 248 90.4± 3.6

T2w

MC-RC 291

72

85.0± 15.6

SC-GK 196 16.5± 31.9

MC-RC+SC-GK 248 85.2± 14.1

ceT1w + T2w

MC-RC 48

12

75.8± 27.0

SC-GK 196 21.8± 30.7

MC-RC+SC-GK 248 79.7± 23.7

SC-GK

ceT1w

MC-RC 52

46

90.4± 6.3

SC-GK 196 95.2± 2.2

MC-RC+SC-GK 248 94.8± 2.1

T2w

MC-RC 291

46

87.5± 8.0

SC-GK 196 92.2± 3.4

MC-RC+SC-GK 248 92.0± 3.4

ceT1w + T2w

MC-RC 48

46

90.8± 3.7

SC-GK 196 95.2± 2.2

MC-RC+SC-GK 248 95.2± 2.0

T-SC-GK

ceT1w

MC-RC 52

105

89.9± 11.6

SC-GK 196 88.9± 16.2

MC-RC+SC-GK 248 91.5± 8.1

T2w

MC-RC 291

32

85.6± 8.9

SC-GK 196 76.2± 22.8

MC-RC+SC-GK 248 87.2± 6.5

The DSC values correspond to the mean DSC over all cases in the testing sets, the errors correspond to the standard deviation. A visual representation of these results is shown in Figure 4.

Moreover, the split sample sizes for training sets (including hyperparameter optimization cases) and testing sets for each experiment are shown. Note that the standard deviation may be greater

than the mean if there is a large number of bad predictions (DSC ≈ 0).

truth and segmentation (DSC > 0) so that no tumor was missed

completely. Failure modes of each MC-RC model with examples

of the worst cases are addressed in the next section. In contrast,

the number of outliers and complete misses (DSC = 0) by the SC-

GK models on the other testing sets (MC-RC and T-SC-GK) was

significantly higher. Median DSCs and other commonly reported

metrics for segmentation tasks are reported in Table 3. ASSD, RVE,

HD, and COM follow the same trends as the DSC, for example, the

best performing model in terms of DSC also tends to perform best

in terms of the other reported metrics. While the combined MC-

RC+SC-GK model outperforms the MC-RC model (except when

evaluated on the MC-RC T2w testing set) the differences across all

metrics and test sets are small. In contrast, the median and IQR

values demonstrate the high number of complete failures of the SC-

GK model when applied to the MC-RC testing set. For the ceT1w

testing set, the model failed to predict any tumor in more than 25%

of the testing cases, while this number increased to more than 50%

for T2w and ceT!w+T2w testing sets.

Post-operative cases without residual tumor were assessed

separately for the MC-RCmodels. For ceT1w input, all 7 cases were

correctly labeled without residual tumor. For ceT1w+T2w input,

a residual of 24 mm3 was predicted in 1 of 4 cases. Most false

positives occurred for T2w input where 6 out of 9 predictions were

in agreement with the ground truth, while the other 3 predictions

suggested residuals of 1, 3, and 23 mm3, respectively.

4 Discussion

4.1 Summary of contributions

For an automatic VS segmentation model to be useful in

a routine clinical setting, accurate and reliable performance

irrespective of acquisition parameters and tumor presentation is

essential. In this work, we trained the first model for automatic VS

segmentation whose application is not limited to MRI images from

a specific scanner and acquisition protocol. Rather, by collecting
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TABLE 3 Additional commonly reported segmentation metrics [median and interquartile range (IQR)].

Testing
dataset

Modality Training
dataset

DSC
[%]

ASSD
[mm]

RVE
[%]

HD
[mm]

COM
[mm]

MC-RC

ceT1w

MC-RC 86.2 (9.5) 0.3 (0.3) 19.0 (11.6) 2.6 (1.8) 0.4 (0.4)

SC-GK 83.9 (30.3) 0.5 (∞) 14.7 (38.6) 5.6 (∞) 0.5 (∞)

MC-RC+SC-GK 91.0 (6.1) 0.2 (0.1) 8.4 (7.3) 1.7 (1.0) 0.2 (0.2)

T2w

MC-RC 89.4 (7.0) 0.3 (0.1) 6.6 (10.6) 2.3 (1.6) 0.4 (0.4)

SC-GK 0.0 (3.4) ∞ (∞) 100.0 (7.8) ∞ (∞) ∞ (∞)

MC-RC+SC-GK 88.6 (8.2) 0.3 (0.1) 8.8 (11.4) 2.6 (1.8) 0.4 (0.3)

ceT1w + T2w

MC-RC 86.4 (8.6) 0.5 (0.4) 12.7 (16.9) 3.2 (2.1) 0.8 (0.4)

SC-GK 0.0 (41.6) ∞ (∞) 100.0 (46.0) ∞ (∞) ∞ (∞)

MC-RC+SC-GK 86.4 (4.6) 0.4 (0.3) 10.1 (9.9) 2.2 (2.1) 0.7 (0.5)

SC-GK

ceT1w

MC-RC 92.2 (3.8) 0.2 (0.2) 11.2 (7.0) 2.1 (1.5) 0.2 (0.2)

SC-GK 95.3 (2.9) 0.1 (0.1) 4.1 (4.5) 1.5 (0.4) 0.2 (0.2)

MC-RC+SC-GK 94.8 (2.8) 0.1 (0.1) 6.0 (7.2) 1.7 (0.9) 0.2 (0.2)

T2w

MC-RC 89.4 (6.1) 0.4 (0.4) 9.7 (13.5) 2.6 (3.8) 0.5 (0.6)

SC-GK 92.8 (3.8) 0.2 (0.1) 3.7 (6.2) 1.8 (1.2) 0.3 (0.3)

MC-RC+SC-GK 92.4 (3.1) 0.2 (0.1) 3.8 (5.7) 1.9 (1.3) 0.3 (0.2)

ceT1w + T2w

MC-RC 91.7 (4.0) 0.3 (0.1) 4.5 (8.6) 2.1 (1.4) 0.3 (0.3)

SC-GK 95.5 (3.3) 0.1 (0.1) 3.9 (4.7) 1.5 (0.4) 0.2 (0.2)

MC-RC+SC-GK 95.3 (2.8) 0.1 (0.1) 5.0 (5.0) 1.5 (0.4) 0.2 (0.2)

T-SC-GK

ceT1w

MC-RC 92.8 (4.0) 0.3 (0.2) 7.3 (11.1) 1.8 (0.7) 0.3 (0.2)

SC-GK 93.4 (5.4) 0.2 (0.2) 8.9 (10.8) 1.6 (0.9) 0.2 (0.2)

MC-RC+SC-GK 93.6 (2.7) 0.2 (0.1) 6.6 (10.1) 1.6 (0.7) 0.3 (0.2)

T2w

MC-RC 88.1 (7.1) 0.4 (0.2) 5.6 (7.8) 2.2 (1.3) 0.6 (0.4)

SC-GK 84.6 (8.9) 0.6 (0.4) 19.5 (16.6) 3.0 (1.8) 0.6 (0.7)

MC-RC+SC-GK 88.8 (6.6) 0.4 (0.1) 5.3 (10.8) 2.0 (1.1) 0.6 (0.2)

The values represent the median and interquartile ranges over all cases in the testing sets. The metrics are Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), relative

absolute volume error (RVE), undirected Hausdorff distance (HD), and distance between the centers of mass (COM). A ASSD, HD, or COM value of∞ (infinity) for a single case indicates that

the model did not predict any VS in the image. A median/IQR value of∞ shows that this occurred in over half/a quarter of the testing cases. In this case the metric is not defined. The best result

achieved on each testing set was highlighted in bold.

a large multi-center dataset and providing labor-intensive high-

quality annotations, it was possible to train and evaluate a model

that generalizes well under a wide range of settings and for all time

points encountered in clinical routine, including initial diagnostic

scans as well as scans of post-operative tumor residuals.

The generated automatic segmentations had average DSCs

comparable to those of human annotators as measured by inter-

and intra-observer experiments and performed robustly on

independent datasets. Therefore, this work represents a key

step toward the incorporation of automated segmentation

algorithms in the clinical workflow and management of

VS patients.

For example, based on the model segmentation, automatic

surveillance of the patient’s tumor growth through longitudinal

scans could be performed (Shapey et al., 2021a). Currently,

in routine clinical practice, tumor size is usually assessed

by determination of the maximum extrameatal linear tumor

dimension, although several studies have shown that tumor

volume is a more reliable and accurate metric to measure tumor

growth (Roche et al., 2007; Walz et al., 2012; Tang et al., 2014;

MacKeith et al., 2018). Using our deep learning model, the

automatic calculation of tumor volume is a simple task. Moreover,

the model could be used to generalize methods for automatic

classification of VS according to the Koos scale which requires

accurate tumor segmentations as an initial step (Koos et al., 1998;

Kujawa et al., 2022). Finally, the model could be used as an

initialization for interactive segmentation approaches (Wang et al.,

2018a,b) or as input for subsequent models that further segment

the VS into intra- and extrameatal components (Wijethilake et al.,

2022).

A study similar to ours was published recently. Neve et al.

(2022) employ a private multi-center dataset of ceT1w and T2w

images for model training and evaluation. In contrast to our study,

no longitudinal imaging data but rather a single time point per

patient were considered. Furthermore, all post-operative images

were excluded from the model training and analysis. Although the

detection of residual tumor tissue is more difficult it is essential for

post-operative surveillance and detection of tumor recurrence. A

comparison of segmentation accuracy in terms of DSC is presented

in Table 4.
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FIGURE 4

Dice similarity coe�cients achieved by deep learning models on multi-center clinical (MC-RC) and single-center Gamma Knife (SC-GK) datasets. The

x-axis indicates on which testing set the models were evaluated. The center vertical line indicates the median and the green triangle indicates the

mean. The boxes extend from the lower quartile Q1 to the upper quartile Q3, the whiskers extend from Q1 − 1.5(Q3 −Q1) to Q3 + 1.5(Q3 −Q1). Data

beyond the whiskers are considered outliers and shown as black diamonds.

TABLE 4 Overview over state-of-the-art results in terms of mean Dice similarity coe�cients and standard deviation.

Reference Model Training set Testing set DSC [%]

ceT1w T2w ceT1w+T2w

Shapey et al. (2019) 3D U-Net (attention

module)

Gamma Knife Gamma Knife 93.4± 4.0 88.3± 3.9 93.7± 2.8

Shapey et al. (2021c) 3D U-Net (attention

module)

Gamma Knife Gamma Knife 94.5± 2.2 90.7± 3.6 -

Wang et al. (2019) 3D U-Net (attention

module)

Gamma Knife Gamma Knife - 87.3± 4.9 -

Lee et al. (2021) 3D U-Net (dual

pathway)

Gamma Knife Gamma Knife - - 90± 5

Neve et al. (2022) nnU-Net Multi-Center

(pre-operative)

Multi-Center

(pre-operative)

92± 5 87± 6 -

This work nnU-Net SC-GK SC-GK 95.2± 2.2 92.2± 3.4 95.2± 2.0

This work nnU-Net MC-RC MC-RC 86.9± 5.9 85.0± 15.6 75.8± 27.0

Prior results are based on data extracted from treatment plans for Gamma Knife stereotactic radiosurgery. Another study employs a multi-center dataset with pre-operative images. In each

referenced publication different training and testing datasets were used.

4.2 Overview of state-of-the-art

As in this work, state-of-the-art methods for VS segmentation

employ CNNs based on a U-Net architecture. One approach

integrates an attention module into the 3D U-Net architecture to

supervise the learning of attention maps that focus on the tumor

region (Shapey et al., 2019, 2021c; Wang et al., 2019). Another

approach developed for combined ceT1w+T2w employs separate

input heads for both modalities in the network architecture to

merge them at then end of the encoder branch (Lee et al., 2021).

Table 4 shows an overview of the DSCs reported in these studies.

The referenced average DSCs as well as our DCSs were obtained

on hold-out testing sets that were drawn from the same datasets

as the training sets. Within the margin of error, our results

obtained with the SC-GK dataset are comparable to previously

reported results. On the MC-RC dataset, DSCs are decreased

as a result of the increased variability of the MC-RC testing

sets compared to the more homogeneous datasets used in the

referenced studies. Especially the presence of post-operative cases

with residual tumors increases the complexity of the segmentation

task. This interpretation is supported by the reduced inter-observer

reliability (DSC= 88.1±3.4% on ceT1w images and 84.5±7.8% on

T2w images) compared to the inter-observer reliability reported on

the SC-GK dataset (DSC=93.82±3.08% based on ceT1w and T2w

images). For ceT1w+T2w input, another contributing factor is the

relatively small number of available training cases.

4.3 Worst cases

While the MC-RC models fail in only a small number of cases

the analysis of the corresponding images and faulty predictions
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FIGURE 5

Comparison of the worst model predictions with the manual segmentation ground truth for each input modality. The models were trained on the

multi-center routine clinical (MC-RC) dataset using ceT1w images (A), T2w images (B), or their combination ceT1w+T2w (C). Each example shows an

axial slice of the full MRI image and magnified images of the tumor region. The magnified region is indicated by a red bounding box. Dice similarity

coe�cients were 73.6%, 1.9%, and 4.7% respectively.
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can highlight potential model weaknesses with regards to specific

acquisition settings and tumor presentations. Figure 5 shows the

worst model prediction for each of the three inputs. The ceT1w

case in Figure 5A and T2w case in Figure 5B are post-operative

scans after surgery with translabyrinthine approach. The model

prediction for the ceT1w image has an acceptable DSC of 73.6%

since it captures parts of the tumor with high contrast agent uptake

but misses lower contrast regions in inferior slices. The T2w case

contains a small tumor residual which is almost entirely missed

by the model (DSC=1.9%). Due to the low contrast with adjacent

tissue this tumor residual is particularly difficult to segment. For

this case, a human annotator would require a contrast-enhanced

scan to confirm the boundaries of the residual. The case shown in

Figure 5C is a post-operative scan after surgery with retrosigmoid

approach with a large cystic component. While parts of the solid

tumor residuals are accurately delineated, the cystic component is

missed by the model prediction (DSC=4.7%). It is likely that the

small training set available for ceT1w+T2w input did not contain a

sufficiently large number of cystic tumors to train the model with

respect to their inclusion.

4.4 Post-operative cases without residual
tumor

Cases without residual tumor are edge cases that can be

particularly challenging for segmentation algorithms. While the

MC-RC models correctly predicted no residual tumor in 16 out

of 20 cases, small residuals (<30 mm3) were predicted for the

remaining cases. While the ceT1w model was reliable, the T2w

model led to false positive predictions in 3 of 9 cases. This difference

in robustness is expected because residuals are typically hyper-

intense on ceT1w images while they are difficult to discern in

images without contrast enhancement.

A frequently applied post-processing strategy for segmentation

models is to remove segments below a fixed volume

threshold (Antonelli et al., 2022). A reasonable volume threshold

can be based on an assumed detection limit for VS in routine

clinical MRI of 2 mm, which corresponds to a cubic volume of 8

mm3. In comparison, the smallest tumor residual contained in the

MC-RC dataset was 30 mm3. Application of this post-processing

strategy improved the number of correct predictions to 18 out

of 20 cases without significantly affecting the results presented in

Tables 2, 3.

4.5 Limitations and future work

While the dataset curated and annotated in this work is

the first large multi-center dataset for VS segmentation made

publicly available, sample sizes for ceT1w and ceT1w+T2w images

were small compared to T2w. This is because the slice thickness

of the majority of ceT1w images in routine clinical dataset

exceeded the threshold of the inclusion criterion (3.9 mm).

Detection and manual segmentation of small tumors on these low-

resolution images is difficult and generally not sufficiently accurate

for volumetric measurements. We expect that segmentation

performance can be improved by increasing the number of ceT1w

images in the dataset.

Furthermore, since this study focuses on sporadic unilateral

VS, bilateral tumors in patients with the hereditary condition

NF2 were excluded. Due to the simultaneous presence of

multiple schwannomas and meningiomas, the segmentation task is

disproportionately more difficult. In the future, we plan to integrate

NF2 cases into the model development.

These models can be applied for the automatic generation

of case reports for multidisciplinary team meetings

(MDM) (Wijethilake et al., 2023). The reports in their work

include multiple automatically generated views of the tumor and

the model segmentation and frequently reported tumor measures,

such as volume and extrameatal dimensions. It will be interesting

to assess how the reports might facilitate, on the one hand, MDM

preparation, and on the other hand, the treatment decision process

during the meeting itself.

In conclusion, we trained a model for automatic VS

segmentation for diverse clinical images acquired at different

medical centers with a wide range of scan protocols and parameters.

The application of this model has the potential to monitor tumor

size, post-operative residuals, and recurrence more accurately and

efficiently, thereby facilitating the VS surveillance andmanagement

of patients.
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