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Introduction: MRI is one of the commonly used diagnostic methods in

clinical practice, especially in brain diseases. There are many sequences in

MRI, but T1CE images can only be obtained by using contrast agents. Many

patients (such as cancer patients) must undergo alignment of multiple MRI

sequences for diagnosis, especially the contrast-enhanced magnetic resonance

sequence. However, some patients such as pregnant women, children, etc. find

it difficult to use contrast agents to obtain enhanced sequences, and contrast

agents have many adverse reactions, which can pose a significant risk. With

the continuous development of deep learning, the emergence of generative

adversarial networks makes it possible to extract features from one type of image

to generate another type of image.

Methods: We propose a generative adversarial network model with multimodal

inputs and end-to-end decoding based on the pix2pix model. For the pix2pix

model, we used four evaluation metrics: NMSE, RMSE, SSIM, and PNSR to assess

the effectiveness of our generated model.

Results: Through statistical analysis, we compared our proposed new model

with pix2pix and found significant differences between the two. Our model

outperformed pix2pix, with higher SSIM and PNSR, lower NMSE and RMSE. We

also found that the input of T1W images and T2W images had better effects than

other combinations, providing new ideas for subsequent work on generating

magnetic resonance enhancement sequence images. By using our model, it is

possible to generate magnetic resonance enhanced sequence images based on

magnetic resonance non-enhanced sequence images.
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Discussion: This has significant implications as it can greatly reduce the use of

contrast agents to protect populations such as pregnant women and children

who are contraindicated for contrast agents. Additionally, contrast agents are

relatively expensive, and this generation method may bring about substantial

economic benefits.

KEYWORDS

generative adversarial network, magnetic resonance imaging, multimodal,
convolutional neural network, contrast-enhanced magnetic resonance sequence

1 Introduction

Magnetic resonance imaging (MRI) is one of the most used
imaging protocols in medical diagnosis, especially used in the brain
disease. It is a multifunctional imaging technique that can generate
different tissue contrast based on acquisition parameters (e.g.,
T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery
and T1-weighted contrast enhance). T1-weighted (T1W) MRI
increases adipose tissue signaling and decreases water signaling,
which can show the difference between gray and white matter
tissues, T2-weighted (T2W) MRI increases water signaling and
Fluid Attenuated Inversion Recovery (FLAIR) images provide the
clearer contours of pathological tissues, such as lesion regions. T1-
weighted contrast enhance (T1CE) images is to apply contrast agent
to the blood during MR. The bright area has abundant blood-brain
barrier permeability supply, and the enhanced display indicates
abundant blood flow. The tumor site is the site of rapid blood flow,
and the T1CE images can further show the situation inside the
tumor and distinguish the tumor from non-tumor lesions (that is,
gangrene). Compared with other sequences (T1W, T2W, FLAIR),
T1CE images can show the lesion area more clearly and directly,
allowing doctors to more clearly distinguish disease between
neoplastic and non-neoplastic lesions. However, the contrast agent
we injected is not safe (Strijkers et al., 2007; Wahsner et al.,
2018). Gadolinium-based MRI contrast agents (GBCAs) are by
far the most commonly used (Hao et al., 2012). There are many
adverse reactions to GBCAs, including renal and non-renal adverse
reactions. Nausea, urticaria, and taste disturbance are the most
common non-renal adverse events associated with GBCAs. All
available GBCAs had the same incidence of these minor adverse
effects (Runge, 2001). In 2008, evaluated the rate of adverse
reactions to Gd-BOPTA (one of the GBCAs) in 23,553 people.
This study showed that adverse reactions were similar to those
of other GBCAs (Bleicher and Kanal, 2008). In Abujudeh et al.
(2010) retrospectively assessed the acute adverse reaction rate
of Gd-DTPA in 27,956 doses and Gd-BOPTA in 4,703 doses.
The study showed that the acute adverse reaction rate of Gd-
DTPA (one of the GBCAs) and Gd-BOPTA was 0.14 and 0.28%
respectively (Abujudeh et al., 2010). Renal systemic fibrosis (NSF)
is a serious late adverse event associated with GBCAs exposure
in patients with renal insufficiency or dialysis (Thomsen, 2006).
NSF is characterized by thickening, hardening and tightening of
the skin with subcutaneous edema, which in severe cases leads to
joint contracture and immobility. Skin changes occur primarily on
the distal extremities, but may extend to the trunk. NSF may also

involve the lungs, heart, liver, kidneys, skeletal muscles, diaphragm
and other organs. In addition, NSF can cause death through
scarring of body organs (Lin and Brown, 2007). Therefore, it is very
important to find a method to generate T1CE images from other
MRI sequences.

As a new field in the application of image generation
technology, medical image synthesis technology aims at
synthesizing target modes from one or more given modes. By
applying advanced image synthesis methods, many challenging
problems can be solved to a large extent. In the past few years,
medical image synthesis is generally regarded as a patch-based
regression task (Huynh et al., 2015; Roy et al., 2016; Zhan et al.,
2022b). Recently, deep learning has shown explosive popularity
in the field of medical image analysis (Tang et al., 2020, 2022;
Hu L. et al., 2022; Shi et al., 2022; Sun et al., 2022; Wang et al.,
2022), especially in the field of image synthesis. For example, using
models of deep learning, it is possible to spontaneously achieve
and complete three-dimensional shape perception (Hu et al.,
2023), and to represent brain network multimodal connectivity
for Alzheimer’s disease analysis using Hypergraph GANs (Pan
et al., 2021). Generative artificial intelligence can be divided into
four main methods [variational autoencoder (VAEs), generative
adversarial network (GANs), Flow Models and Denoising
Diffusion Probabilistic Models (DDPMs)] (Gong et al., 2023).
In Dar et al. (2020a,b) introduced the idea of transfer learning
into a cascade neural network to facilitate MRI reconstruction.
Since the successful generation of adversarial networks (GAN)
(Goodfellow et al., 2020), the medical image synthesis field has
invested more efforts. In particular, GAN performed well in tasks
including CT to MRI synthesis (Nie et al., 2017), MRI to CT
synthesis (Wolterink et al., 2017, Hiasa et al., 2018), CT to PET
synthesis (Bi et al., 2017), MRI to MRI synthesis (Dar et al., 2019;
Yu et al., 2019; Hong et al., 2021), low dose PET to full dose PET
synthesis (Xiang et al., 2017; Wang et al., 2018; Luo et al., 2022),
MRI to PET synthesis (Hu S. et al., 2022) and dose estimation (Li
et al., 2022; Zhan et al., 2022a) has made promising progress in the
mission. Therefore, our work is also inspired by GAN’s outstanding
performance. Pix2pix (Isola et al., 2017) is a GAN model, which
can learn the mapping of input images to output images. Since
different modalities of MR represent different clinical significance,
we wondered if the effect would be better if more modalities were
added to Pix2pix. Therefore, we fuse multi-dimensional modal
features in the generator at different stages. For MR multimodal
fusion to generate T1CE images, Chartsias et al. (2018) propose
a multi-input multi-output fully convolutional neural network
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model for MRI synthesis, but learn one independent encoder for
each input modality of our model. Olut et al. (2018) simply input
pictures of two modalities as two channels and convolve them
together.

Because it is difficult to generate from T1W images to T1CE
images, many models are conversions between non-enhanced
magnetic resonance sequences. For that, we propose a multimodal
deep learning network model to generate enhanced images from
non-enhanced magnetic resonance images. In our experiment, we
used the BraTS2021 dataset to compare different combinations of
several non-enhanced magnetic resonance sequences (T1W, T2W,
flair) to generate T1CE images. After getting the trained model, we
verified it with test data.

The contributions of this work are summarized as follows.

(1) We propose a generative adversarial network model
framework based on pix2pix, which incorporates multi-
modal information to enhance the generation of magnetic
resonance images. We gradually integrate and supplement
features of different modalities at the decoder level using a
multi-dimensional feature fusion strategy, thus improving
the performance of the model. This results in a more
comprehensive feature encoding and better results compared
to single-modal inputs. The effectiveness of our experiments
is validated on an open dataset, outperforming the pix2pix
model using single-modal inputs. Through testing, the best
combination of two modal inputs T1 and T2 has been
determined, with PSNR of 23.604, NMSE of 0.529, RMSE
of 0.077, and SSIM of 0.859. Compared to the best model
with single modal inputs (T1, T2, Flair), the evaluation
indicators show better effects, i.e., lower NMSE, NRMSE and
higher PSNR, SSIM.

(2) We extracted multiple sets of features from different
dimensions and utilized the complementarity between high
and low-dimensional features to integrate the different
advantages of same-dimensional features from different
modalities. The proposed Generative Adversarial Network
model provides a new option and a new approach for multi-
modal synthesis of enhanced magnetic resonance images. This
allows for the generation of enhanced MRI images of brain
gliomas after registering non-enhanced MRI images, making
it possible to minimize the use of GBCA in the future and
reduce its side effects, which will greatly benefit patients.

2 Materials and methods

In this section, we introduce in detail the multimodal generative
adversarial network (multimodal GAN, MS-GAN) for MR T1CE
image synthesis. Part II.-I first briefly introduces the principles
of the GAN model and the task of image generation, branching
image generation images. Then, sections II.-II describe the pix2pix
model as a benchmark model, including the generator model
structure and the discriminator network structure of pix2pix.
Finally, the proposed MS-GAN generator model structure is
introduced in sections II.-III, and the objective function of MA-
GAN is introduced in sections II.-IV.

2.1 Overview

Generative adversarial networks (GANs) consist of two
networks: a generator and a discriminator. The role of the generator
is to produce fake images, while the discriminator’s role is to
distinguish between real and fake images. Through their adversarial
relationship, the discriminator continuously improves its ability
to distinguish, while the generator continuously improves its
ability to generate. Ultimately, when the discriminator is unable
to confidently determine the authenticity of the input, we can
conclude that the generator has learned the ability to produce
realistic images. The discriminator takes as input real images from
the dataset and images generated by the generator, and outputs a
probability that the input is real data. When this input stabilizes
around 0.5, we can consider the discriminator difficult to determine
whether the input is true or false.

The essence of the generator is a decoder, whose input is an
n-dimensional vector from the standard normal distribution, and
decodes through the decoder to obtain an image with the same
dimensions as the real data, that is, generated images. Once this
generator is trained through adversarial means, we can freely select
an n-dimensional standard normal distribution vector and decode
it to obtain a new image (one that has never appeared in the
dataset). The GAN model not only has a simple structure and
uncomplicated principles, but also has the capability to generate
images that have never appeared in the dataset. Therefore, for a
long time (in fact, it can be said that until today), it has become the
mainstream research/use object of generative models, and a series
of variants have appeared to solve different downstream problems.

In generative tasks, there is a class of tasks called image-to-
image translation. That is, the input and output are images from
two different sets (designated as A and B), and we generally assume
they have a corresponding relationship. For example, inputting a
black and white photo (A) and outputting a colored photo (B), or
inputting a contour photo (A) and outputting a color-filled photo
(B), etc., the baseline model used in this article is the pix2pix model,
which is designed to handle such tasks. Furthermore, the authors
of pix2pix have proven the effectiveness of conditional Generative
Adversarial Networks (GAN) in this type of problem through a
series of experiments. In other words, pix2pix is essentially a special
type of conditional GAN. From this we are inspired, whether it is
possible to obtain medical images that are difficult to obtain in this
way. Therefore, we conducted a series of experiments based on the
pix2pix model. However, in the experimental results, the quality of
the generated images was poor. We considered adding additional
modalities to supplement the features encoded by the generator,
and using multi-modal inputs to further generate better magnetic
resonance enhancement period images.

2.2 Baseline

The framework of the pix2pix model consists of two main
components: the generator network and the discriminator network.
The generator network takes input images from the source
domain and aims to generate corresponding output images in
the target domain. The role of the discriminator is to judge
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whether the generated images are real within their corresponding
receptive fields.

The generator used in the pix2pix model utilizes the classic
Unet structure, but this type of model structure can only take a
single image input and it is difficult to incorporate information
from other modalities. In order to better judge the local parts of
the image, the Pix2pix discriminator network adopts a Markov
discriminator (patch GAN), which divides the image into multiple
fixed-size patches and judges the truthfulness of each patch
separately. The average value is then taken as the final output of
the discriminator. The Markov discriminator is composed entirely
of convolutional layers, and the final output is an n∗n matrix, with
the average value of the output matrix taken as the True/False
output. Each output in the output matrix represents a receptive
field in the original image, corresponding to a patch in the original
image. Doing this can make the input of the discriminative network
smaller, reduce the computational load, and speed up training.
However, the generator part of the pix2pix model is not suitable for
multi-modal input images, so we propose a generative adversarial
network for multi-modal input.

We have improved the generator part based on the framework
of pix2pix, introducing a multi-modal structure that allows the
generator model to take in not only a single modality input,
but also additional modalities as shown in Figure 1. For our
task, we have tried different combinations of inputs, using T1,
T2, and Flair sequences as inputs separately, as well as inputting
combinations of T1, T2, and Flair into our generator model for
comparison. We have also compared the generation effects between
different imaging modalities. We will describe in detail the specific
structure of the improved generator model. As for the discriminator
model, we still use the Markov discriminator consistent with the
pix2pix model to speed up training and obtain higher quality
generated images.

2.3 Generator framework

As shown in Figure 2, the generator model is mainly composed
of three parts, namely the M1 feature extraction module, the M2
feature extraction module, and the final decoding module. The
M1 and M2 feature extraction modules are the encoding parts
of different modalities, each consisting of four encoding blocks,
with each block containing a convolutional layer, a normalization
layer, and an activation layer. Each block gradually extracts low-
dimensional features to high-dimensional features from left to
right and then merges these extracted four groups of features into
the final part, which is the decoding module. In the decoding
module, in order to integrate more detailed information from
low-dimensional features and more semantic information from
high-dimensional features, we merge the four different high
and low-dimensional features extracted from different modalities
into the four decoders of the decoding module. To prevent
overfitting, we have added two sets of regularization modules, each
containing dropout layers, deconvolution layers, normalization
layers, and activation layers. In order to extract larger image
feature information for subsequent decoding, we have used a
4x4 convolutional kernel. Because the generated results mainly
depend on a specific image instance, not on processing a batch

of images, batch normalization is not applicable. Instead, instance
normalization normalizes within a single channel, which can
accelerate model convergence and maintain independence between
each image instance.

2.4 Objective functions

In order to consider multimodal generation, we made
improvements based on pix2pix. In the discriminator model, an
additional set of channels is added to input extra modes. The loss
function includes the loss function of the generation model and
the loss function of the discriminator model. The generator’s loss
function consists of adversarial loss and pixel loss. The adversarial
loss is as follows:

Ladv = Ex1,y[log D(x1, y)] + Ex2,y[log D(x2, y)]

+Ex1,x2,y[log(1− D(G(x1, x2), y))] (1)

The loss function for the discriminator is the adversarial loss.
x1 represents the first type of magnetic resonance image input
into the model, such as T1, T2, Flair; x2 represents the second
type of magnetic resonance image input into the model (different
from the x1 input modality); y represents the real T1CE magnetic
resonance image;

As with the pix2pix model, we add the L1 loss to the generator
loss. When it comes to loss selection, L1 loss is chosen instead of L2
loss to ensure less ambiguity. The pixel loss is regularized with L1
as follows:

Lpix = Ex1,x2,y[||y− G(x1, x2)||1] (2)

Adding the Equations 1, 2 finally gives us our final generator loss
function.

Generator loss function is as follows:

LG = Ladv + λLpix(G) (3)

The model parameters are updated by minimizing the
generated model loss function and maximizing the discriminant
model loss function, where λ controls the degree of regularization.

3 Results

3.1 Datasets

The BraTS2021 (Menze et al., 2015; Bakas et al., 2017a,b;
Baid et al., 2021) dataset consists of 1,254 subjects with MR
images from four modalities: T1W, T2W, FLAIR, and T1CE
(size: 240 × 240 × 155 voxels), along with their brain tumor
segmentation labels. In this work, we performed a total of three
synthesis tasks on BraTS2021:

(1) Generating T1CE from T1 and T2 images.
(2) Generating T1CE from T1 and FLAIR images.
(3) Generate T1CE from T2 and FLAIR images.
(4) Generate T1CE from T1 image.
(5) Generate T1CE from T2 image.
(6) Generate T1CE from FLAIR image.
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FIGURE 1

The proposed framework of multi-sequence GAN consists of a generator and a discriminator. Two different sequences of MR images are inputted
into the generator. The MR images generated by the generator and the real enhanced sequence MR images are fed into the discriminator. In the
discriminator model, instead of adding input contour images to the loss function as in the pix2pix model to make the generator’s predicted result
match the contour of the original image, we use the generated enhanced MRI images and real enhanced MRI images as inputs to the discriminator
to ensure that the generated images are more likely to resemble real enhanced MRI images.

For each synthesis task, the entire dataset is used in a five-
fold cross-validation manner. That is, in each cross-validation split,
four-fifths of the entire dataset make up a training set, and the
remaining one-fifth make up a validation set. If most of the data
is used for training, the training time is too long. When we use
all subjects for training, it takes 72 h for each training session
using NVIDIA A6000. We used a total of 350 subjects to train
and validate our model, and 81 subjects for testing. Subsequently,
lesion areas were extracted from their brain tumor segmentation
labels. A total of 17,920 images were used for training, with 80%
used for the training set and 20% used for the validation set to
update model parameters. 5,179 images were used for the final
testing of the model.

3.2 Experimental settings

pix2pix and our model used the same set of hyperparameters
in each of their three synthetic tasks, a total of six tasks. The
six tasks were trained for 120 epochs. Adam (Kingma and Ba,
2014) was used as the optimizer. To ensure the approximate shape
and outline of the image, The regularization hyperparameter λ

in Equation 3 was set to 100. Other hyperparameters were set to
batch size 64 and input image size (256,256). Since the learning rate
should decrease as we approach the global minimum of the loss
value so that the model can get as close to this value as possible,
we used a cosine annealing strategy to dynamically change the
learning rate. In the cosine function, as × increases, the cosine
value first decreases slowly, then accelerates downward, and then
decreases slowly again. This downward pattern can be combined
with a learning rate to produce very effective computational results.

3.3 Evaluation measures

PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity
Metric), RMSE (Root Mean Square Error), and NMSE (Normalized
Mean Square Error) are commonly used to assess the quality of the
resulting images. NMSE is used to assess the degree of pixel-level
difference between the repaired image and the original image. The
smaller the NMSE value, the more similar the images are. PSNR is
an objective evaluation metric used to evaluate noise levels or image
distortion, the larger the PSNR, the smaller the distortion and the
better the quality of the resulting image. SSIM is used to assess the
degree of similarity between two images. The value range of SSIM
is 0–1, and the closer the value is to 1, the more similar the image is.

3.4 Results on BRATS2021

In this section, we present the experimental results of the
BraTS2021 dataset. Tables 1–4, respectively report the quantitative
results of the entire images for the synthesis task under different
magnetic resonance modal inputs for two models, which are
evaluated using NMSE, RMSE, PSNR, and SSIM. To better assess
the quality of the models, we employ 5-fold cross-validation to
train and test the models. Five-fold cross-validation is a commonly
used machine learning model evaluation technique, typically used
to estimate the performance and generalization ability of the model.
The basic idea is to divide the original data set into five equally
sized subsets, with four used for training the model and one used
for testing the model. This process is repeated five times, each time
selecting a different subset as the test set and the remaining subsets
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FIGURE 2

Structure of the generator. The generator includes two autoencoders and one decoder. M1 represents the input for the first class of MRI images. M2
represents the input for the second class of MRI images. The encoder for M1 and M2 is similar, with input image dimensions of 3x256x256. After the
first layer of encoding, the dimensions become 64x128x128. After the second layer of encoding, the dimensions become 128x64x64. After the third
layer of encoding, the dimensions become 256x32x32. After the fourth layer of encoding, the dimensions become 512x16x16. The model integrates
different encoding features separately in different blocks of the decoder. After feature fusion in different layers of the decoding blocks, the
dimensions are 1536X16X16, 768X32X32, and 384X64X64, respectively. The low-dimensional features of the M1 and M2 encoders and the
high-dimensional features of the previous layer’s output are fused into 192X128X128 after the final fusion. Finally, after up sampling, convolutional
layers, and a Tanh activation function layer, it becomes a generated image of size 3X256X256.

as the training set. To test the significance of baseline improvement,
Dunnett test was applied to assess the statistical significance of
methodological differences between subjects. Dunnett’s method
is used in Analysis of Variance (ANOVA) to create confidence
intervals for the difference between the mean of each factor
level and the mean of the control group. The results are shown
in Figure 4.

3.4.1 Compare with baseline
In order to study the effectiveness of the proposed multi-modal

fusion input, we compared our proposed multi-modal input with
their corresponding baselines, i.e., the original pix2pix. Tables 1–4,
respectively show the results of different evaluation metrics in the
six synthesis tasks of the five-fold cross-validation. As shown in the
four tables, in the comparison of the two models, the multi-modal
input achieved higher PSNR and SSIM as well as lower NMSE
and RMSE in the synthesis tasks than the single-modal input. The
proposed method outperforms its corresponding baseline in all
evaluation metrics.

As shown in Table 1, among the NMSE evaluation indicators,
the input effect of T1 images is the worst in the single-modal input
pix2pix model, and the input effect of T2 sequence is the best. In
our proposed model, the T1 and T2 sequence inputs have the best
effect, and the T1 and flair sequence inputs have the worst effect.

The inputs of T1 and T2 with the best performance of the proposed
model are 0.032 lower than those of the pix2pix model, and there
is a significant difference between the statistical test of p < 0.01,
as shown in Figure 4. This indicates that the stability of the image
quality generated by the dual-modal input is higher than that of the
single-modal input.

As shown in Table 2, in the PSNR evaluation index, the results
obtained are similar to the results of the NMSE evaluation index.
In the single-modal input pix2pix model, the T1 sequence input
has the worst effect, and the T2 sequence input has the best effect.
The inputs of T1 and T2 with the best performance of the proposed
model are 0.717 higher than those of the pix2pix model, and the
statistical test p < 0.01 has a significant difference, as shown in
Figure 4. This indicates that the degree of image information loss
generated by the dual-modal input is significantly lower than that
of the single-modal input.

As shown in Tables 3, 4, in the RMSE evaluation index, the
results obtained are similar to those of the NMSE evaluation index.
In the SSIM evaluation indicators, the highest input of the T2
sequence of the pix2pix model is 0.851 in the SSIM evaluation
index, but the average value of the proposed model is 0.859 after
five-fold cross-validation, and the input of the three different
combinations is 0.859, and the p < 0.01 is statistically tested, which
has a significant difference. This shows that the image generated
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TABLE 1 NMSE results (our model and pix2pix) comparison.

Fold Our model
(T1 & T2)

Our model
(T1 & flair)

Our model
(T2 & flair)

Pix2pix
(T1)

Pix2pix
(T2)

Pix2pix
(Flair)

1 0.559 0.615 0.593 0.621 0.616 0.641

2 0.527 0.565 0.527 0.562 0.551 0.557

3 0.523 0.569 0.533 0.570 0.544 0.570

4 0.519 0.562 0.541 0.608 0.542 0.559

5 0.520 0.560 0.538 0.568 0.551 0.585

Average 0.529 0.574 0.546 0.586 0.561 0.582

The bold values indicate best value in each row.

TABLE 2 PSNR results (our model and pix2pix) comparison.

Fold Our model
(T1 & T2)

Our model
(T1 & Flair)

Our model
(T2 & Flair)

Pix2pix
(T1)

Pix2pix
(T2)

Pix2pix
(Flair)

1 23.122 22.424 22.695 22.085 22.173 21.817

2 23.582 23.105 23.561 22.867 22.962 22.885

3 23.739 23.047 23.475 22.823 23.169 22.739

4 23.803 23.141 23.441 22.270 23.119 22.891

5 23.772 23.180 23.420 22.828 23.011 22.603

Average 23.604 22.939 23.318 22.574 22.887 22.587

The bold values indicate best value in each row.

TABLE 3 RMSE results (our model and pix2pix) comparison.

Fold Our model
(T1 & T2)

Our model
(T1 & Flair)

Our model
(T2 & Flair)

Pix2pix
(T1)

Pix2pix
(T2)

Pix2pix
(Flair)

1 0.081 0.089 0.085 0.089 0.088 0.091

2 0.077 0.082 0.077 0.082 0.081 0.081

3 0.077 0.083 0.078 0.083 0.080 0.083

4 0.076 0.081 0.079 0.088 0.079 0.082

5 0.076 0.082 0.079 0.083 0.081 0.085

Average 0.077 0.083 0.079 0.085 0.082 0.084

The bold values indicate best value in each row.

TABLE 4 SSIM results (our model and pix2pix) comparison.

Fold Our model
(T1 & T2)

Our model
(T1 & Flair)

Our model
(T2 & Flair)

Pix2pix
(T1)

Pix2pix
(T2)

Pix2pix
(Flair)

1 0.855 0.856 0.854 0.843 0.847 0.838

2 0.856 0.859 0.860 0.847 0.850 0.849

3 0.861 0.859 0.860 0.853 0.855 0.848

4 0.861 0.860 0.861 0.850 0.851 0.850

5 0.863 0.860 0.858 0.848 0.851 0.850

Average 0.859 0.859 0.859 0.848 0.851 0.847

The bold values indicate best value in each row.

by the input of the multimodal model is closer to the image of the
target T1CE sequence than that generated by the input of the single
modality of the pix2pix model.

To investigate the validity of the proposed multimodal fusion
inputs, and in order to better compare with the baseline model,
we compare and evaluate all the generated images obtained
by a single modal input sequence (T1, T2, Flair) and all the

generated images obtained by a multimodal input sequence
(T1&T2, T1&Flair, T2&Flair) as a whole, as shown in Figure 3.
On the Comparison of the two models, the synthesis task
with multimodal input can achieve higher PSNR and SSIM
and lower NMSE than the synthesis task with single modal
input, and the proposed method is better than its corresponding
baseline.
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FIGURE 3

Derived model is our proposed model. We see that using hybrid input models achieves better results than single-input models. **p < 0.001,
indicating strong distinctiveness.

3.4.2 Optimal magnetic resonance modal
combination model

In Figure 4, we found that using the combination of T1 and T2
inputs in the model achieves better results, surpassing T1&&Flair,
T2&&Flair, and other single modal inputs. In the SSIM evaluation
metric, the five-fold cross-validation evaluation result averages
0.859, surpassing the Pix2pix model (p < 0.01). In the PSNR
evaluation metric, the five-fold cross-validation evaluation result
averages 23.604, surpassing models with other input modalities
(p < 0.01). In the RMSE evaluation metric, the five-fold cross-
validation evaluation result averages 0.077, lower than models
with other input modalities (p < 0.01). These results indicate that
the combination of T1 and T2 inputs can achieve better image
generation quality and stability. In Figure 5, we can see that the
combination input of T1 and T2 results in a clearer local detail in
the model’s output, and the images they generate appear to have a
higher similarity to the actual situation, especially in the lesion area.
Multimodal input results generally have better detail performance
in the lesion area than single-modal input results.

3.4.3 Clinical physician assessment for the
generating test images

We selected 53 enhanced magnetic resonance images generated
in the test set for evaluation. These images were generated by six
different models, including single-input sequence pix2pix models
for T1, T2, and Flair, as well as our proposed models for dual-input

sequences T1&&T2, T1&&Flair, and T2&&Flair. The image quality
evaluation was conducted by two chief radiologists with more than
5 years of experience. The image quality was rated on a scale of 1
to 4, with higher numbers indicating better quality. The assessed
images and the evaluation results for all images can be found in
the Supplementary material. The evaluation results are shown in
Figure 6.

From Figure 6, we can see that the average ratings of
the enhanced magnetic resonance images generated from single
modality input sequences T1, T2, Flair are 2.64, 2.94, and
2.72, respectively. The pix2pix model’s average rating for the
single input model is 2.73. The average ratings of the enhanced
magnetic resonance images generated from the dual modality input
sequences T1&Flair, T2&Flair, T1&T2 are 2.66, 2.98, and 3.36,
respectively. The average rating of our proposed dual modality
input model is 3, which is 0.27 higher than the single input model.
In the T1&T2 bimodal input model, the average score is higher than
3, at 3.36. This is 0.42 higher than the highest model in the single
sequence input model (T2).

4 Discussion

In the BraTS2021 dataset, we proposed a method for
synthesizing enhanced MRI images based on non-enhanced MRI
images. Compared with the classical architecture pix2pix model,
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FIGURE 4

Comparison between six sets of models. A, B, C and D represents the four evaluation indicators of NMSE, RMSE, PSNR and SSIM. The figure on the
left represents the average value of the test data, and the graph on the right indicates whether there is a significant difference between the models,
where NS represents no significant difference.
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FIGURE 5

The proposed method was demonstrated in glioma patients, with
images of different modalities fed for the synthesis of
T1CE-weighted images in the BRATS dataset. Displays the
composite results of the different inputs and their corresponding
error plots, as well as the real target image (source). At the same
time, the proposed method achieves reliable synthesis and
significantly improves the synthesis quality of lesion areas.

FIGURE 6

The results of enhanced magnetic resonance imaging tests
generated by six different modes were evaluated by two chief
radiologists with over 5 years of work experience. The scoring
ranged from 1 to 4, with higher scores indicating better image
quality.

our method demonstrated that by inputting MRI images of various
different modalities, richer image features can be extracted to
generate images that are closer to the target enhanced images, with
higher image quality and generation stability. Additionally, better
results were achieved in the generation of lesions in the specific
region. Furthermore, we explored the effects of generating MRI
images of various modalities based on this method.

This model makes it possible to obtain MRI enhanced images
in the future without the use of contrast agents, thus avoiding
some of the adverse reactions caused by contrast agents. In this
work, we propose a multi-modal GAN-based model aimed at
synthesizing multi-modal input MR images. In addition to the

existing single-modal pix2pix model, our proposed model also has
an additional modal input to learn multi-modal image feature
mappings. This enables our model to flexibly and comprehensively
handle anatomical structures and lesion areas for better synthesis.
The effectiveness of the proposed strategy can be demonstrated by
the advantage of the model over its respective baseline (pix2pix).
Through our performed experiments comparing single-modal
input and multi-modal input, we have learned the importance
of multi-modal input for the results. This is because, in the
generator, we are given different modal MRI image inputs, and
use the encoder to extract low-dimensional features to high-
dimensional features in four different sets of dimensions. The
low-dimensional features have higher resolution, contain more
positional and detailed information, but due to fewer convolutions,
their semantic content is lower and they have more noise. High-
dimensional features contain stronger semantic information, but
have low resolution and poor perception of details, so we extracted
multiple sets of features of different dimensions. By utilizing the
complementarity between high and low-dimensional features, and
integrating the advantages of different modalities under the same
dimension, we adopted a multi-dimensional feature fusion strategy.
In the decoder, different modalities’ features are gradually and
hierarchically fused to enhance the performance of the model,
making the encoded features more comprehensive, and thus
yielding better results compared to single-modality inputs. At
the same time, according to the test experiments including the
calculation of image quality evaluation indicators such as PSNR
and SSIM, as well as the evaluation by actual radiologists, we found
that for the calculated image quality evaluation indicators such as
SSIM and PSNR, the effect of the bimodal model is better than
the unimodal model. For the evaluation by actual radiologists, the
bimodal models T1&Flair and T2&Flair did not have better effects
in actual clinical applications, but for the T1&T2 bimodal model,
its effect is better than other sequence input models. Through the
above experiments, we have determined the optimal combination
of two modal inputs, T1 and T2, providing new choices and
new ideas for cross-modal synthesis of MR images. Through the
above experiments, we have identified the best combination of two
modal inputs T1 and T2, providing new options and new ideas for
cross-modal synthesis of MR images.

Our work has some limitations. First, due to the performance
issues of GPU, it is not feasible to include all the data from the
BraTS2021 dataset to make the results more reliable. Additionally,
the use of 2D networks ignores some spatial features of the 3D
images. Second, while the use of multimodal inputs does improve
the generation of enhanced magnetic resonance images compared
to single modal inputs, the improvement is small. Furthermore,
due to limitations of the generative adversarial network itself,
the quality of the generated images is uneven and does not
reliably generate enhanced phase images. Finally, due to the pre-
processing of the BraTS2021 dataset we used, our method may
be limited in actual clinical applications. Therefore, in the future,
our work can be further improved in the following aspects. First,
due to the limited memory size of a single GPU card, the use of
input with two-dimensional medical images ignores some spatial
features of the three-dimensional space. In our future work, we will
explore the use of more GPU cards to achieve better generation
results for three-dimensional images. Secondly, the generative
adversarial networks currently used in our work are not suitable for
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widespread application in stable generation-enhanced MRI images
due to some inherent characteristics. And the assessment method
has certain problems. Although we scored very high in overall
measurement, we may not have done well in enhancing contrast
estimation methods. However, we selected 50 images for actual
clinical assessment by doctors to make up for this deficiency. In
our future work, we will explore the field of diffusion models (such
as applying multimodal generation to stable diffusion models) to
bridge the domain gap, thereby training models to achieve better
results. Finally, in order to better serve actual clinical work, We will
establish our own clinical dataset to build better models, so that
the model can be more widely applied to various tumors, rather
than just gliomas.

In conclusion, this article proposes a new model based on
pix2pix for generating multi-modal input for T1CE MR image
synthesis. The experimental results demonstrate that our sample
multi-modal input significantly improves the performance of the
pix2pix model and outperforms the pix2pix method in multiple
MR image synthesis tasks. Furthermore, the optimal combination
of modalities T1 and T2 is obtained for generating T1CE images
with multi-modal input. Although this model suffers from issues
related to stability, this allows for the generation of enhanced
MRI images of brain gliomas after registering non-enhanced MRI
images, making it possible to minimize the use of GBCA in the
future and reduce its side effects, which will greatly benefit patients.
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