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Introduction: Machine Learning (ML) has emerged as a promising approach

in healthcare, outperforming traditional statistical techniques. However, to

establish ML as a reliable tool in clinical practice, adherence to best practices

in data handling, and modeling design and assessment is crucial. In this work,

we summarize and strictly adhere to such practices to ensure reproducible

and reliable ML. Specifically, we focus on Alzheimer’s Disease (AD) detection,

a challenging problem in healthcare. Additionally, we investigate the impact of

modeling choices, including di�erent data augmentation techniques and model

complexity, on overall performance.

Methods: We utilize Magnetic Resonance Imaging (MRI) data from the ADNI

corpus to address a binary classification problem using 3D Convolutional

Neural Networks (CNNs). Data processing and modeling are specifically

tailored to address data scarcity and minimize computational overhead. Within

this framework, we train 15 predictive models, considering three di�erent

data augmentation strategies and five distinct 3D CNN architectures with

varying convolutional layers counts. The augmentation strategies involve a�ne

transformations, such as zoom, shift, and rotation, applied either concurrently

or separately.

Results: The combined e�ect of data augmentation and model complexity

results in up to 10% variation in prediction accuracy. Notably, when a�ne

transformation are applied separately, the model achieves higher accuracy,

regardless the chosen architecture. Across all strategies, the model accuracy

exhibits a concave behavior as the number of convolutional layers increases,

peaking at an intermediate value. The best model reaches excellent performance

both on the internal and additional external testing set.

Discussions: Our work underscores the critical importance of adhering to

rigorous experimental practices in the field of ML applied to healthcare. The

results clearly demonstrate how data augmentation and model depth—often

overlooked factors– can dramatically impact final performance if not thoroughly

investigated. This highlights both the necessity of exploring neglected modeling

aspects and the need to comprehensively report all modeling choices to ensure

reproducibility and facilitate meaningful comparisons across studies.
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1 Introduction

Advanced Machine Learning (ML) techniques have proven

to be highly effective in healthcare applications, such as cancer

detection and prognosis (Cruz and Wishart, 2006; Sajda, 2006;

Kourou et al., 2015; Shen et al., 2019; Chaunzwa et al., 2021),

heart diseases prediction (Mohan et al., 2019; Palaniappan and

Awang, 2008), and neurodegenerative diseases’ diagnosis (Pereira

et al., 2016; Montolío et al., 2021). However, it is still premature

to assert that ML is ready to be employed as a standard in

clinical practice. For instance, in Roberts et al. (2021), the authors

reviewed thousands of papers on the use of ML to detect COVID-

19 and found that none achieved the robustness and reproducibility

required for medical use. This issue is not specific to ML methods

for COVID-19 detection but involves the entire ML community

(Ioannidis, 2005; Pineau et al., 2021), particularly the field of ML

in healthcare (Stupple et al., 2019; Beam et al., 2020; Heil et al.,

2021). To address this issue, Luo et al. (2016) asked 11 researchers

with expertise in biomedical ML to produce a set of rules ensuring

that ML models within clinical settings are sufficiently reported.

These rules mainly relate to paper writing, providing a checklist

for each article section. Although Luo et al. (2016) offers a useful

tool for checking final manuscripts, it does not identify specific

practices for developingMLmethods in healthcare and is often very

general when it comes to report ML model details (e.g., identifying

if the study is retrospective/prospective and if the prediction task is

regression/classification).

In our manuscript, we identify an essential set of practical

guidelines, and we highlight the importance of fully adhering to

them. To demonstrate this, we present a practical application ofML

in healthcare by following these guidelines and demonstrating the

impact of modeling choices on the final performance. Specifically,

we focus on Deep Learning (DL) for Alzheimer’s Disease (AD)

diagnosis. AD is the most common type of dementia, impacting

over 30 million individuals globally. It is characterized by (i) a

pre-symptomatic stage where pathological molecular changes and

neuronal dysfunctions occur at brain level, (ii) a prodromal stage

identified as mild cognitive impairment (MCI) syndrome; (iii)

an early-stage where cognitive symptoms of AD become more

evident; (iv) a late stage with overt dementia. This progressive

neurodegenerative disorder leads to cognitive and functional

decline, impairing daily activities and eventually resulting in death.

Hence, timely and accurate diagnosis of AD is crucial for effective

treatments. Structural Magnetic Resonance Imaging (MRI) has

proven to be a powerful tool for predicting AD due to its ability to

visualize detailed brain structures and identify changes associated

with the disease, such as hippocampal atrophy (Jack et al., 2000;

Van De Pol et al., 2006), cortical thinning (Du et al., 2007), and

brain volume loss (Pini et al., 2016).

In this study, we leverage low-resolution MRI scans and

address the challenge of discriminating patients with AD from

Abbreviations: ML, Machine Learning; DL, Deep Learning; CNN,

Convolutional Neural Network; CL, Convolutional Layers; AD, Alzheimer’s

Disease; MCI, Mild Cognitive Impairment; CN, Cognitive Normal; ADNI,

Alzheimer’s Disease NEuroimaging Initiative; MRI, Magnetic Resonance

Imaging; D, Data handling; M, Model design and assessment.

Cognitively Normal (CN) subjects using a 3D-Convolutional

Neural Network (CNN) (LeCun et al., 1995). We combine different

data augmentation strategies and CNN depths, creating a total of

15 DL models. We show that these modeling choices can lead

to significant variations in prediction accuracy, up to 10%. The

best model demonstrates excellent accuracy on the testing set and

good properties of generalization to an external dataset. It is worth

noting that the proposed approach can be readily extended to other

modeling choices and healthcare applications.

The paper is structured as follows. The Materials and

Methods section includes the guidelines for ML reliability and

reproducibility, and introduces state-of-the-art studies in the AD

field. Then, it details data handling and the experimental setup,

including modeling challenges and choices made. The Results

section evaluates the effect of the modeling choices, comparing

augmentation strategies and architectures. The Discussion

section relates findings to state-of-the-art studies and illustrates

future perspectives.

2 Materials and methods

2.1 Guidelines

To begin, we summarize the general guidelines for reliable and

reproducible ML pertaining to two key aspects: data handling, and

model design and assessment.

Data handling (D)

1. Data collection/selection should align with the scientific

problem at hand (e.g., utilizing cross-sectional data for

diagnostic confirmation or longitudinal data for prognostic

purposes), avoiding bias and information leakage (Saravanan

et al., 2018).

2. Data quality should be assessed by identifying missing values

and inconsistencies, and improved by applying appropriate

imputation and cleaning methods (Lin and Tsai, 2020).

3. Data harmonization can be used to compensate for

heterogeneous data from different acquisition techniques

(Kourou et al., 2018).

4. Data augmentation can be employed as a solution for small

sample size or unbalanced samples per class, a common case in

the biomedical field.

5. The whole data handling process should be described in details

in order to ensure reproducibility.

Model design and assessment (M)

1. The versioned code used for conducting the experiments should

be publicly shared to ensure transparency and reproducibility.

2. Every decision in the design of the predictive model should

be justified, with recognition of uncontrollable factors (Haibe-

Kains et al., 2020).

3. Details about the samples used in the training/testing split

should be disclosed to guarantee benchmarking.

4. A well-designed experiment should avoid assessing results

on a non-representative testing set. To this aim, resampling

strategies (Batista et al., 2004) such as k-fold cross-validation

or boosting can be utilized to comprehensively assess the

model’s performance. Further, models based on randomweights
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initialization should be repeated for different trials in order to

assess their stability.

5. The performance metrics should be chosen according to the

specific scientific objectives of the study (Sokolova and Lapalme,

2009; Chicco and Jurman, 2020).

6. Testing the model on external datasets is ideal to evaluate its

generalization properties (Basaia et al., 2019).

These guidelines are followed throughout the rest of the paper

and referenced within the text whenever a rule is applied in

the experiments.

2.2 State of the art

AD is a neurodegenerative disease and the most common

form of dementia globally, characterized by progressive

neurodegeneration, leading to cognitive and functional decline,

impaired daily activities, and eventually, death (Wu et al., 2017;

Dubois et al., 2016). Brain imaging, particularly MRI scans, plays a

crucial role in diagnosing AD by providing detailed insights into

the structural brain changes associated with the disease. In recent

years, ML models have shown significant potential in utilizing

imaging data to improve automated AD diagnosis (Yu et al., 2022)

and predict AD-related brain abnormality (Zong et al., 2024). For

instance, Zuo et al. (2024) use multiple brain image modalities

with an adversarial learning strategy for AD progression prediction

and to identify abnormal brain connections. Similarly, Pan et al.

(2024) proposes a generative adversarial network with a decoupling

module to detect abnormal neural circuits.

As reported in Arya et al. (2023), the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset (Mueller et al., 2005) is the

most frequently employed dataset in AD studies based on ML and

DL approaches. ADNI comprises heterogeneous datasets collected

during different temporal phases (ADNI1, ADNI/GO, ADNI2, and

ADNI3), each characterized by varying MRI acquisition protocols.

ADNI1 includes longitudinal acquisitions on 1.5T and 3T scanners

with T1- and T2-weighted sequences; ADNI-GO/ADNI2 contains

imaging data acquired at 3T with similar T1-weighted parameters

to ADNI1; ADNI3 exclusively utilizes MRI obtained from 3T

scanners. Further, within a temporal phase, multiple acquisitions

are done at different time steps (e.g., baseline, screening, follow up).

The heterogeneity of ADNI allowed for many experimental

setups in the literature, with varying results depending on sample

size [ranging from hundreds (Liu et al., 2014; Alinsaif and Lang,

2021; Long et al., 2017; Korolev et al., 2017) to thousands (Salehi

et al., 2020; Basaia et al., 2019)], images resolution, or sequence type.

However, this variability and the lack of a universally recognized

benchmark have hindered fair comparisons of published models.

Another consequence is that AD studies are more susceptible to

information leakage. In Wen et al. (2020), the authors reviewed

32 studies using CNN models for AD diagnosis and found that

about 50% of them reported biased results due to data leakage.

These factors underscore the essential need for carefully selecting

the dataset (D1), reporting details on data processing (D5, M3),

taking into account the dataset size (D4, M3, M4) and choosing

the model (M2) and the evaluation metrics accordingly (M5). In

the rest of the section, we discuss state of the art (SOTA) studies

on MRI-based AD classification using ADNI and describe their

experimental approaches in relation to the criteria D and M. We

emphasize that a systematic review is behind the purpose of this

work, which has the scope of highlighting good and bad practices

in ML for healthcare.

We considered the studies reported in a recent PRISMA-based

review (Arya et al., 2023), selecting 8 articles that used solely MRI

scans fromADNI dataset (Mehmood et al., 2021; Li and Yang, 2021;

Pan et al., 2020; Alickovic et al., 2020; Korolev et al., 2017; Yue et al.,

2019; Xiao et al., 2017; Tong et al., 2014). To increase the sample

of DL-based articles, we further considered three SOTA articles

(Salehi et al., 2020; Basaia et al., 2019; Ghaffari et al., 2022), for a

total of 11 articles. We found that none of them fully adhered to the

guidelines listed in the previous section. In particular:

• D1: 73% of studies did not report the ADNI phase, and

91% did not specify the time step (e.g., baseline, follow-

up). This information is crucial to ensure that baseline and

follow-up data are not mixed, thereby preventing data leakage.

Additionally, 27% of studies did not provide information

about MRI resolution (i.e., 1.5T or 3T).

• D4: Data augmentation is applied in only 4 papers (Mehmood

et al., 2021; Pan et al., 2020; Basaia et al., 2019; Ghaffari

et al., 2022). These papers lack important details, such as

transformation parameters and the size of the final training set.

• M1: Only the authors in Korolev et al. (2017) provided the

code used for data processing and modeling.

• M2: Only 27% of the works considered different model

architectures. Additionally, none of the DL approaches

explored model depth as a hyperparameter.

• M3: Three articles split the dataset into training/testing

following previous work, whereas the remaining ones did not

detail the samples in the splits, preventing benchmarking.

• M4: Resampling strategies were not used in 45% of

experiments. Furthermore, no DL-based methods tested

model robustness to random weight initialization.

• M5: 91% of studies adopted multiple evaluation metrics.

However, standard deviation for resampling strategies was

reported in only three papers.

• M6: Generalization across datasets was tested and reported in

only two articles.

Note that D2 and D3 are not evaluated here as data quality is

ensured by ADNI experts and none of the considered studies rely

on different acquisition techniques.

The literature review reveals that none of the considered SOTA

studies are fully reproducible due to the absence of available

validated code, insufficient details about data processing and

augmentation, and lack of information about dataset splits and

experimental specifics. Furthermore, the reliability of these works

is sometimes limited by unrepresentative testing sets and the lack

of evaluation on external datasets. It is also interesting to note that

the number of employed samples varies from 170 to 1,662, with

a median of 433, a mean of 653, and a standard deviation of 495.

This, along with the variability in MRI resolution, makes model

comparisons unfeasible. Finally, we noted that model depth and

data augmentation strategy (in terms of the number of augmented

samples and types of transformations) were completely neglected

factors. This led us to investigate whether and to what extent these

two modeling choices impact the classification task.
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TABLE 1 ADNI1 demographic description.

1.5T CN AD

Subjects 307 243

Age 75.2± 7.6 75.9± 5.0

Sex (M/F) 159/148 130/113

3T CN AD

Subjects 47 33

Age 75.1± 3.9 74.0± 8.1

Sex (M/F) 18/29 11/22

1.5 and 3T datasets.

2.3 Data

For our experiments, we adopted the ADNI dataset (Mueller

et al., 2005) considering T1-weighted 1.5T MRI scans from the

ADNI1 data collected during screening, which is the baseline

exam. This includes 550 MRI exams from 307 CN subjects and

243 AD patients. Additionally, we used an ADNI1 subset of

80 3T MRI exams as an external testing set, to evaluate the

best model in a domain shift setting (Buchanan et al., 2021).

Table 1 reports demographic details about the two datasets (D1).

We recall that MRI exams are three-dimensional data describing

the structure of the brain. Figure 1 displays a 2D projection

of brain images captured from a CN subject (first row) and

an AD patient (second row) on the sagittal, coronal, and axial

planes. All data were preprocessed by ADNI experts, ensuring

data quality and harmonization (D2, D3; more information in

Supplementary Section 1).

2.3.1 Data augmentation (D4)
Data augmentation is a common procedure that

simultaneously addresses data scarcity and creates a model

invariant to a given set of transformations (Shorten and

Khoshgoftaar, 2019). Different augmentation strategies can

result in varied training sets, affecting model performance

and computational cost. In this study, the original set is

augmented by applying, separately or simultaneously, zoom,

shift, and rotation transformations, as shown in Figure 2 (see

Supplementary Section 1.3 for details on the transformation

parameters). To study the effect of different transformations and

sample sizes on model performance, we compared the following

three data augmentation strategies:

• Strategy (A). To each image, we simultaneously apply all the

transformations (i.e., a zoom by a random factor, a random

shift, and a rotation by a random angle). The size of the

augmented data will match the number of training samples N.

• Strategy (B). To each image, we separately apply each

transformation, generating three different distorted images.

The size of the augmented data will be three times the number

of training samples, 3N.

• Strategy (C). To each image, we simultaneously apply all the

transformations, as in strategy A. We repeat the process three

times so that the number of augmented samples matches the

one of strategy B (3N).

Therefore, strategies (A) and (C) rely on the same procedure,

while strategies (B) and (C) generate the same number of

samples. Although other augmentation techniques (e.g., color

transformation, adding noise, and random erasing) may be

beneficial, a comprehensive study of data augmentation is beyond

the scope of this work. Instead, our goal is to investigate whether

and how slight variations in data augmentation choices, often

underestimated, impact model performance. In order to avoid data

leakage (Wen et al., 2020), data augmentation is performed only on

the training set after dataset split, leaving validation and testing sets

at the original sample size.

2.3.2 Data processing (D5)
As already noted, ADNI images were collected with different

protocols and scanning systems, hence they are very heterogeneous

in size, see Table 2. To enable the use of MLmethods, it is necessary

to select a common volume size. This choice, often left unexplained

in literature, defines fundamental characteristics of the pipeline,

such as the amount of information contained in the image and the

input space dimension, on which model choice and computational

burden depend.

In our experiments, images are downsized to 96×96×73. The

principle guiding this choice derives from computational issues.

We first reduced the image dimension, rescaling the image by 50%

along all dimensions, and we then resized images to match the

smallest one. An alternative strategy may be zero-padding to match

the biggest image, but this would increase memory requirements.

Finally, intensity normalization was applied omitting the zero

intensity voxels from the calculation of the mean. This procedure

allows having homogeneous data with a fixed size. Note that we do

not select any Region Of Interest (ROI) (Long et al., 2017) within

the images. Although this setup challenges the classification task,

it eliminates the typically laborious and time-consuming feature

engineering process.

2.4 Experimental setup

2.4.1 Guide to the model choice (M2)
Choosing the optimal DL model is not straightforward, as the

vast numbers of network and training parameters makes a “brute-

force” model selection approach unfeasible. Here, we illustrate the

model choices made a priori based on the issues posed by the

examined task.

2.4.1.1 Type of data

Working with 3D images presents computational and memory

challenges. As a solution, several studies in the literature adopt

three 2D projections of the MRI. Nevertheless, this approach

requires three separate models, leading to increased overall wall-

clock time. Moreover, extracting features from the 2D projections

may result in the loss of crucial volumetric information and a

simplified representation of the studied phenomenon. In this work,

we adopted a 3D CNN that directly extracts volumetric features.
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FIGURE 1

2D visualization of 3D MRI scans. Axial, coronal and sagittal planes of two brain images from ADNI dataset.

2.4.1.2 Limited amount of data

To overcome the limited dataset size, we implemented the

following strategies aimed at controlling model complexity and

preventing overfitting: data augmentation; adding an ℓ2 penalty;

and limiting the number of filters per layer. The latter method

resulted in a substantial parameter reduction across the network.

For instance, in a 2-layer CNN with 3×3×3 filters, reducing the

number of filters to 32 to 8 in the first layer and from 64 to 16 in

the second layer (25% of the initial values) leads to a considerable

reduction of 93% in the number of learnable parameters (from

56,256 to 3,696).

2.4.1.3 Memory capacity

3D models usually require a huge amount of memory capacity,

that depends both on the input dimension and the model size. To

reduce the required memory: i) we re-scaled the images to halve the

data dimension; ii) we used stochastic gradient descent with a batch

size that balances the memory cost while retaining a representative

subset; iii) we balanced the number of filters and the batch size to

reduce the computational burden of the activation layer.

2.4.2 Model details
We report experiments on the CN/AD binary classification. A

preliminary analysis, performed on 1.5T MRI data with a standard

training/validation/test split (75%/15%/10%), denoted a very high

variance due to the limited sample size of the testing set. For this

reason, to guarantee a correct assessment of model performance

and stability, we set up a stratified-K-fold cross-validation loop. We

set K = 7, from Fold 0 to Fold 6 (training/validation/test, with a

proportion of 70%/15%/15%), that ensures having enough data for

the learning phase (M4). All folds were fully balanced, except for

Fold 6 which had an unbalanced ratio between AD and CN samples

as the total amount of samples per class do not match exactly.

We further tested our model on the external dataset of 3T MRI

scans (M6). Note that this task is particularly challenging because:

i) the evaluation is subject to the domain shift problem, and ii)

the training MRI scans have half the resolution of the external

MRI exams.

We adopted as baseline network an architecture with 4

Convolutional Layers (CL) followed by a fully-connected layer,

as depicted in Figure 3. We will refer to this architecture as 4

CL model. To investigate the optimal CNN depth, we inserted

additional convolutional layers without pooling operations so

that the number of layers is the only factor impacting in the

model. Specifically, we added 2, 4, 6 and 8 convolutional layers in

correspondence to the arrows of Figure 3. We refer to these models

as 6 CL, 8 CL, 10 CL, and 12 CL. For instance, in the 10 CL

architecture 6 convolutional layers are added to the 4 CL baseline:

two layers are inserted in correspondence of the first and second

arrows, and one layer in correspondence of the third and fourth

arrows. Additional details on network and training parameters can

be found in the Supplementary Section 2. In order to test model

stability to initial random weights, each model was run 10 times
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FIGURE 2

Original and transformed MRI image. 2D projections of the original MRI image (first row) and the augmented image obtained by applying zoom

(second row), shift (third row), and rotation (last row) transformations.

(M4). Model selection was performed based on accuracy. The best

one is further analyzed based on Confusion Matrix, Precision,

Recall, F1-score, AUC and AUCPRC (M5).

All the experiments were conducted using Python version

3.8 and PyTorch 1.12.1, running on a Tesla K40c GPU. Samples

identifiers and the Python code necessary to reproduce the

experiments are available on GitHub (M1, M3).

3 Results

In the following, we compare 15models obtained by combining

different augmentation strategies with varying network depths,

then we illustrate in detail the results of the best model. Results

based on not-augmented data are not reported, as they were

substantially worse than the ones obtained by using augmentation.

3.1 Architecture and augmentation choice

We assessed the optimal architecture and augmentation

strategy based on the accuracy on the validation set, which is

shown in Figure 4. To verify the impact of these factors on

the classification task, we performed a statistical analysis of the

results obtained by the different models. Initially, we used the

Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess the normality

of our data, which revealed that the data were not normally

distributed. Consequently, we adopted a non-parametric approach
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to determine significant differences in models’ performance.

Specifically, we applied the Kruskal-Wallis test (Kruskal andWallis,

1952) to compare performance across the 15 models. This analysis

yielded a statistically significant difference (p-value = 7.45e-07),

indicating that the classification task varies significantly among

models with different augmentation strategies and network depth.

3.1.1 Data augmentation
Strategy (A) (in yellow) considerably underperforms Strategy

(B) (in green), regardless of the CNN architecture used. This can

be attributed to the lower number of samples in the augmented

data. Surprisingly, Strategies (A) and (C) (in fuchsia) achieve

very similar accuracy for a higher number of layers. Finally,

TABLE 2 1.5 T1-weighted MRI scans.

MRI size CN AD Total

256× 256× 184 8 8 16

256× 256× 170 40 34 74

256× 256× 160 4 0 4

256× 256× 166 97 82 179

256× 256× 162 0 1 1

192× 192× 160 117 86 203

256× 256× 146 1 0 1

256× 256× 161 2 0 2

256× 256× 180 38 32 70

Number of CN and ADMRI scans grouped by size.

although Strategies (B) and (C) generate the same amount of

data, Strategy (B) outperforms Strategy (C) across all network

depths. To validate these findings, we repeated the Kruskal-

Wallis test comparing models using strategy (A), (B), and (C),

for each architecture. All tests resulted in p-values less than

0.05, confirming significant differences in performance across

different augmentation strategies. Furthermore, as Strategy (B)

resulted in the most effective data augmentation approach, we

conducted additional statistical analysis on it. Specifically, we used

the Conover-Iman test (Conover and Iman, 1979) for pairwise

comparison between models based on strategy (B) and those

employing different data augmentation strategies. Results revealed

a significant difference between strategy (B) and strategy (A) for all

network depth, and between strategy (B) and strategy (C) for the

8 CL, 10 CL, and 12 CL architectures. These outcomes underscore

the superiority of strategy (B) across all tested architectures, and

demonstrate that applying affine transformations separately is more

effective than applying them simultaneously.

3.1.2 Network depth
The accuracy curves for all augmentation methods show a

similar pattern: the best results are obtained for intermediate

amounts of layers, while accuracy decreases for higher numbers

of convolutional layers. The same behavior can be observed

in Figure 5 where we report for each cross-validation fold the

distribution of accuracy in the 10 trials. Using the Kruskal-Wallis

test, we found that these differences across architectures were

significant when using strategies (A) and (B).

The 8 CL model with strategy (B) emerges as the

best-performing combination, exhibiting greater stability within

FIGURE 3

3D-CNN architecture. Architecture of the 4 CL baseline network, composed by four blocks of a convolutional and pooling layers, followed by a fully

connected (FC) layer. The total number of features (8 ∗ i) in the i-th convolutional layer is reported above each layer, whereas the filter dimension is

reported below. In the experiments, we consider other four extended versions of the baseline architecture (6CL, 8CL, 10CL, 12CL) duplicating once

or twice the convolutional layer preceding the arrows.

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1360095
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Turrisi et al. 10.3389/fncom.2024.1360095

FIGURE 4

Models accuracy at varying of architecture depth and augmentation strategies. Comparison among the proposed CNN-based architectures with the

three augmentation strategies, in terms of median accuracy on the validation set. The y-axis reports the model accuracy distribution on the 10 trials

(%) and the x-axis presents varying augmentation strategies (A), (B), and (C) in 5 blocks—one for each CNN architecture.

FIGURE 5

Model’s performance and stability across folds. Multiple plots for the comparison of the validation accuracy for all architectures (A–C) and

augmentation strategies (4CL, 6CL, 8CL, 10CL, 12CL). Each subplot reports the model accuracy on all 7-fold splits. Specifically, the y-axis reports the

accuracy distribution on the 10 trials (%) for each fold (x-axis). The best model [8 CL, (B)] is highlighted with a red border.

and across folds compared to the other combinations. Further

details and specific results of the statistical analysis are available in

the Supplementary material.

3.2 Best model performance and insight

The combination of a CNN with 8 convolutional layers and the

(B) augmentation strategy [8 CL, (B)] turned out to be the best

model, reaching an accuracy of 87.21± 0.88% on the validation set

and 81.95± 1.26% on the testing set.

A complete evaluation of this model is reported in Figure 6:

left panel reports mean and standard deviation for Precision,

Recall, F1-score, AUC and AUCPRC of CN and AD classes

over the 7 folds; right panel shows the Confusion matrix

obtained by counting True Positive, True Negative, False Positive,

and False Negative scores over the 7 folds. Figure 7 gives an

insight on the layers behavior and how they are learning the

optimal model. The Left Panel displays the learned filters of

every convolutional layer for one AD patient on the three

considered median planes, i.e., sagittal, coronal and axial. It

is clear that the filters capture more abstract features at

increasing depth values. Panel (b) presents, for each convolutional
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FIGURE 6

Evaluation of the [8 CL, (B)] model on the testing set. (Left) Complete evaluation of the model on CN and AD classes averaged over the 7 folds.

(Right) Confusion matrix of the classification results counted over the 7 folds.

FIGURE 7

(Left) Illustration of the learned filters by the best model for one of the AD samples. Columns show filters for the three median planes, and rows show

the filters for the input (raw data) and the convolutional layers at increasing depth. (Right) Training and test embeddings for each convolutional layer

of the [8 CL, (B)] model projected by t-SNE. For increasing depth, AD (green) and CN (yellow) samples are better clustered.

layer, the layer outputs (embeddings) of training and test

samples projected on a two-dimensional plane through t-

distributed Stochastic Neighbor Embedding (t-SNE) (Van der

Maaten and Hinton, 2008). Both projections show that the

embeddings are more evidently clustered as the number of

layers increases.
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To further understand the properties and limits of

the (8 CL, (B)) model, we assessed the effect of dropout,

finding that it does not improve its performance (details in

Supplementary Section 3.2). Also, we tested the model on an

external dataset of 3T MRI scans, obtaining an accuracy of 71%

and an AUC of 0.76 (a complete evaluation can be found in

Supplementary Section 3.3).

4 Discussion

In this paper, we summarized a list of 5 items concerning

data handling (D) and 6 items on model design and assessment

(M), outlining the criteria that should be adhered to in order

to ensure reliability, robustness, and reproducibility in ML for

healthcare. Based on these criteria, we constructed an experimental

pipeline for MRI-based binary classification of AD vs. CN subjects.

Specifically, the experiments were conducted on a pre-processed

subset of the ADNI dataset, consisting of 1.5T MRI scans collected

during the screening ADNI1 phase (D1). This subset, previously

pre-processed by ADNI experts, ensures high data quality (D2) and

harmonization (D3). Although the dataset is balanced, its size is

limited. To address potential overfitting and ensure reliable results,

data augmentation (D4), model complexity reduction (M2), and

resampling (M4) strategies were employed. All these aspects are

thoroughly discussed (D5). The list of selected samples was made

publicly available to enable benchmarking in further studies (M3),

along with the Python code (M1).

Additionally, we thoroughly investigated the combined impact

of data augmentation strategies (by varying the number of

augmented data and the application of transformations) and

architecture depth (M2), resulting in a total of 15 models. As

reported in Section 2.2, these factors are often neglected in the

literature, which typically aims to generate the largest possible

number of augmented data and use state-of-the-art architectures

(even when very large). Our findings demonstrate that improper

settings for these experimental aspects can drastically hamper

model performance, reducing accuracy by up to 10 points. Results

showed that, independently of the adopted architecture, Strategy

(B) always outperformed the others. As strategies (B) and (C)

leverage the same amount of training samples, these results suggest

that applying the affine transformations separately may help the

model build invariance to each of them. Interestingly, strategies

(A) and (C) show similar performances for intermediate-to-large

models, even though strategy (A) relies on only one-third of the

samples generated by strategy (C). We recall that Strategy (A)

adopts the same combination of transformations as Strategy (B).

This may indicate that the way transformations are combined and

applied to the original data has a greater impact than the augmented

dataset size itself. Future work will extend this investigation to

other data augmentation strategies, including different types of

transformation (e.g., color space transformations, Kernel filters,

random erasing).

For all augmentation approaches, we found that the curve of

the model accuracy at increasing depths tends to be a concave

function, reaching the maximum for an intermediate depth value.

Although the widespread notion for which deeper neural networks

better generalize in a general framework, this result is in line with

other studies (Zhang et al., 2021; Vento and Fanfarillo, 2019) in

which authors showed that smaller models perform better when

only a limited amount of data is available, as they are less subject

to overfitting. Although we did not test them, this observation may

extend to other SOTA architectures. Indeed, our 8 CL CNN has

220k trainable parameters, while SOTA architectures are typically

much larger. For example, ResNet18, ResNet50, and ResNet101

(He et al., 2016) consist of 11.7M, 25.6M, and 44.5M parameters,

respectively. The smallest Vision Transformer model (ViT-Base)

(Dosovitskiy et al., 2020) includes 86M parameters. EfficientNet-

B1 (Tan and Le, 2019) and MobileNetV2 (Sandler et al., 2018),

considered among the smallest SOTA architectures, have 7.8M and

3.5M parameters, respectively. Using larger SOTA models may

be more effective when pre-trained to leverage transfer learning.

However, it is important to note that the vast majority of pre-

trained models have been trained on natural 2D images, and they

are not immediately usable in the context of medical 3D scans.

Future work will delve into these aspects.

The best model we identified is the combination of a CNN with

8 convolutional layers and the (B) augmentation strategy [8 CL,

(B)]. The model accuracy in validation and testing is 87.21± 0.88%

and 81.95± 1.26%, respectively, which is 4.2% increase in accuracy

with respect to [4 CL, (B)] model. Also, Figure 5 shows how [8

CL, (B)] is more stable than all other models with respect to both

cross-validation folds and training trials. These results appear in

line with current SOTA studies relying on similar datasets. For

instance, Pan et al. (2020) reach 84% of accuracy by using 499 1.5T

MRI scans, and Xiao et al. (2017) obtain 85.7% using a dataset

of 654 1.5T MRI images. Similarly to our work, Korolev et al.

(2017) train a 3D-CNN model on 231 samples, showing 79% of

accuracy. Nonetheless, we argue that a true comparison is not

completely feasible as other works employ different datasets and

data types, the number of samples varies both in training and

testing sets, experimental designs are very heterogeneous and, most

importantly, performance is always assessed on one trial, without

any variability estimation. As an additional evaluation, we tested

the best model in a domain shift context (M6), i.e., on 3TMRI data,

reaching 71% of accuracy. We remark that this is a very challenging

task as the image resolution deeply differs from the one in the

training set.

To the best of our knowledge, this is the first

work in the AD domain to delve into these modeling

aspects and quantify their impact on performance

estimation. Future work will extend this analysis to other

architectures, different data augmentation transformations,

and to a multi-class classification setting that includes

MCI subjects.
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