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Prediction of emotion
distribution of images based on
weighted K-nearest
neighbor-attention mechanism

Kai Cheng*

School of Artificial Intelligence, Xidian University, Xi’an, China

Existing methods for classifying image emotions often overlook the subjective

impact emotions evoke in observers, focusing primarily on emotion categories.

However, this approach falls short in meeting practical needs as it neglects the

nuanced emotional responses captured within an image. This study proposes

a novel approach employing the weighted closest neighbor algorithm to

predict the discrete distribution of emotion in abstract paintings. Initially,

emotional features are extracted from the images and assigned varying K-

values. Subsequently, an encoder-decoder architecture is utilized to derive

sentiment features from abstract paintings, augmented by a pre-trained model

to enhance classification model generalization and convergence speed. By

incorporating a blank attention mechanism into the decoder and integrating

it with the encoder’s output sequence, the semantics of abstract painting

images are learned, facilitating precise and sensible emotional understanding.

Experimental results demonstrate that the classification algorithm, utilizing the

attention mechanism, achieves a higher accuracy of 80.7% compared to current

methods. This innovative approach successfully addresses the intricate challenge

of discerning emotions in abstract paintings, underscoring the significance

of considering subjective emotional responses in image classification. The

integration of advanced techniques such as weighted closest neighbor algorithm

and attentionmechanisms holds promise for enhancing the comprehension and

classification of emotional content in visual art.

KEYWORDS

image emotions, classification, weighted closest neighbor algorithm, emotional

features, abstract paintings

1 Introduction

Image data are essentially used for transferring information. The amount of picture

data is even increasing at an exponential speed owing to the advent of the Internet

(Cetinic and She, 2022; Zou et al., 2023). Because of the fast-paced nature of modern

society, people’s ability to extract information from photos is also accelerating, necessitating

more accuracy and efficiency in identifying image data on the network. Based on

this necessity, an effective image processing technique that makes use of computer

vision is required for humans to manage and use picture data more effectively.
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Sentiment analysis, often called opinion mining, is the process

of using natural language processing, text analysis, computational

linguistics, and biometrics to systematically unpack subjective

information and emotional states. The notion was initially

introduced by Yang et al. (2023). Sentiment analysis has gained

significant economic and societal significance in the last several

years and has been applied extensively in the domains of opinion

monitoring (Chen et al., 2023), topic inference (Ngai et al., 2022),

and comment analysis and decision-making (Bharadiya, 2023). For

monitoring public opinion, the government canmake timely policy

interventions and accurately determine the direction of public

opinion. When it comes to product recommendations, merchants

can better understand user needs and suggestions by gauging

user satisfaction with product evaluations and enhancing product

quality. In the finance domain, trending financial topics can even

be used to predict stock direction. Furthermore, sentiment analysis

is frequently used for various tasks involving natural language

processing. To increase the accuracy of the system, more exact

terms for sentiment expression are chosen for machine translation

(Chan et al., 2023) by evaluating the sentiment tendency of the

input text. The pixel density extraction of the image information

is shown in Figure 1.

Various classification techniques will be broken down into

different levels for the sentiment analysis task: output results will

categorize the methods into sentiment intensity classification and

sentiment polarity classification; granularity of the processed text

will divide them into three research levels: word level, sentence

level, and chapter level; research methodology will separate

them into unsupervised learning, semi-supervised learning, and

supervised learning, and so on. The majority of the conventional

sentiment classification algorithms employ manually created

feature selection techniques for feature extraction, such as the

maximum entropy model (Chandrasekaran et al., 2022), plain

Bayes (Wang et al., 2022), support vector machines (Zhao et al.,

2021a), and so on. However, these techniques have limitations, such

as being labor-intensive, time-consuming, and hard to train. As a

result, they are not well-suited for use in the current large-scale

application scenarios.

With advancements in machine learning, research efforts

(Milani and Fraternali, 2021) led to the development of deep

learningmethods that give neural networks a hierarchical structure.

This development subsequently resulted in an explosion of deep

learning research. Feature learning, at the heart of deep learning,

uses hierarchical networks to convert unprocessed input into more

abstract and higher-level feature information. With its superior

learning capacity to optimize automated feature extraction, deep

learning has produced remarkable research achievements in recent

years in the domains of speech recognition, picture processing,

and natural language processing. The application of deep learning

techniques to text sentiment analysis has gained popularity as a

natural language processing study area. Among these techniques,

Song et al. (2021) used a convolutional neural network to classify

text emotion for the first time, and the results were superior to those

of conventional machine learning techniques.

The study of human eyesight is where attention mechanism

first emerged. According to cognitive science, humans have a

tendency to ignore other observable information in favor of

focusing on a certain portion of the information based on the

demand imposed by the information processing bottleneck. The

primary objective of attention mechanism is to efficiently separate

valuable information from a vast quantity of data. To understand

the word dependencies inside the phrase and grasp the internal

structure of the sentence, the self-attention mechanism—a unique

form of attention mechanism—is incorporated into the sentiment

classification job. To establish an accurate and efficient technique

for sentiment analysis based on deep learning technology and self-

attention mechanism, this study examines the present technical

issues in the field of sentiment analysis from the standpoint of the

real demands of sentiment analysis.

2 Related studies

Natural language processing has attracted extensive research

attention (McCormack and Lomas, 2021) because it introduced the

idea of sentiment analysis. There are three prominent methods for

conducting sentiment analysis at present: the sentiment dictionary

approach, the classical machine learning approach, and the deep

learning approach.

Experts must annotate the sentiment polarity of the text’s

terms in order for researchers to perform sentiment analysis

based on sentiment dictionary. Based on semantic rules and

sentiment dictionary, researchers compute the text’s sentiment

score and determine the sentiment tendency. Among these

researchers, Toisoul et al. (2021) demonstrated positive findings

on a multi-domain dataset by expanding the domain-specific

vocabulary by extracting subject terms from the corpus using

latent Dirichlet allocation (LDA) modeling based on the pre-

existing sentiment lexicon. Peng et al. (2022) used the point

mutual information (PMI) technique to assess the similarity of

adjectives in WordNet. The polar semantics (ISA) approach was

then used to generate numerous fixed sentence constructions

in order to examine the target text sentiment tendency. To

create a Chinese microblogging sentiment dictionary, Liu

et al. (2021a) first identified microblogging sentences using

information entropy and then filtered network sentiment terms

using the sentiment-oriented pointwise mutual information

(SO-PMI) method.

Ding et al. (2021) introduced the idea of the primary word

and used weight priority calculations to determine the text’s

semantic inclination degree. These developments paved the way

for accomplishing more difficult sentiment analysis tasks. The

approach based on sentiment dictionary has the benefit of being

more accurate in classifying text at the word or phrase level.

However, the system migration is not good, and the sentiment

dictionaries are often geared to certain domains. These days, one

of the most popular techniques for sentiment analysis is classical

machine learning-based techniques. Using simple bag-of-words

features from a movie review dataset, Yang et al. (2021) was the

first to use machine learning techniques to the sentiment binary

classification issue and produced superior experimental outcomes.

Utilizing Twitter comments as test data, Roy et al. (2023) classified

emotions into six categories—happiness, sadness, disgust, fear,

surprise, and anger—and employed plain Bayes for text sentiment

analysis. The data were processed with consideration for lexical and

expression features, leading to a high classification accuracy. To
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FIGURE 1

Example of emotional distribution in images.

address the sentiment classification problem, Sahoo et al. (2021)

merged a genetic algorithm with simple Bayes, and the results of

the experiments indicated that the combined model outperformed

the individual models. To extract rich sentiment data and include

them in the basic feature model, Liu et al. (2021b) used machine

learning techniques with numerous rules, which increased the

classification result in microblog sentiment classification trials. In

order to complete the study of sentiment analysis, Sampath et al.

(2021) included semantic rules into the support vector machine

model. The experiment confirmed that the support vector machine

model with the inclusion of semantic rules performed better in

the sentiment classification task. Deeper text semantic information

is hard to learn, even while machine learning-based techniques

enhance the sentiment classification performance and lower the

reliance on sentiment lexicon.

Text sentiment analysis based on deep learning has garnered a

much interest from academics at both national and international

levels due to its superior performance in the fields of picture

processing and natural language processing. Zhang et al. (2023)

used deep neural network training to create the Collobert and

Weston (C&W) model, which was then used to perform well on

natural language processing tasks including sentiment classification

and lexical annotation. To demonstrate the efficacy of single-layer

convolutional neural networks (CNNs) in sentiment classification

tasks, Zhao et al. (2021b) combined different sizes of convolutional

kernels with maximum pooling and performed comparison tests

on seven datasets. The study employed convolutional neural

networks for sentiment analysis tasks. A number of recurrent

neural networks, including recurrent neural network (RNN),

multiplicative RNN (MRNN), recursive neural tensor network

(RNTN), and others, were progressively suggested by Szubielska

et al. (2021). The RNTN model, for example, uses a syntactic

analysis tree to determine word sentiment and then outputs

the sentence’s sentiment classification result in the form of

word sentiment summation. To tackle the sentiment analysis

problem utilizing a long short-term memory (LSTM) network

with an expanded gate structure, which increases the model’s

flexibility, Li et al. (2022) employed Twitter comments as the

experimental data. RNNs were utilized by Zhou et al. (2023) to

model texts by taking into account their temporal information.

Li et al. (2023) achieved outstanding results in a sentiment

classification test by modeling utterances using a tree LSTM model

to approximate the sentence structure. By segmenting a text

according to sentences, obtaining vectors through convolutional

pooling operation, and then inputting them into LSTM according

to temporal relations to construct a CNN-LSTM model and

apply it to the task of sentiment analysis, Alirezazadeh et al.

(2023) primarily addressed the issue of temporal and long-

range dependencies in a chapter-level text. Teodoro et al.

(2023) constructed an experimental minimal convolutional neural
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FIGURE 2

Model of this article.

network (EMCNN) model using microblog comments as the

experimental data, combining lexical and emoji characteristics.

The model produced experimental findings that outperformed the

benchmark model’s performance.

3 Attention given

We propose an emotion classification method based on

the attention mechanism that sets blank attention in the

decoder and fuses the output sequence of the encoder to

learn the image semantics to guide the model to learn the

image emotion more accurately and reasonably via the

learning mechanism of the decoder. This method is intended

to address the characteristics of small numbers of abstract

painting samples and rich image semantics. Figure 2 depicts the

general flowchart of the procedure used in this article, along

with the encoder–decoder architecture, the emotion classification

module, and the backbone network for extracting picture

feature sequences.

3.1 Image sequence generation

Since the encoder anticipates a sequence as input, the abstract

painting dataset in this study has been uniformly normalized,

meaning that its length and width are 224 and its number

of channels is 3. To extract the image’s features, the image is

supplied into the backbone network. The residual network has a

strong feature learning ability and adapts to the characteristics of

the backbone convolutional network architecture. In this study,

ResNet-50 is adopted as the backbone network to solve the

network degradation problem brought by fewer samples of abstract

paintings to simplify the model training parameters of this article

to a certain extent, improve the training efficiency, and carry out

comparative experiments with the residual network variant in the

ablation experiments, and to assess the influence of the backbone

network on the model accuracy rate (Ahmad et al., 2023). The

abstract painting dataset is generated by the backbone network to

generate canonical image features with a length and width of 7

and a channel count of 256 and is spread into a one-dimensional

sequence, resulting in an image sequence of length 49 and a channel

count of 256 to be fed to the encoder.
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3.2 Encoders

By adjusting the number of encoder layers, the model

demonstrates the significance of global image-level self-attention,

guarantees that there is no appreciable loss of accuracy when N =
6, and prevents an increase in training difficulty brought on by the

addition of too many parameters. This article adopts the position

coding method of detection transformer (DETR), which uses the

sine and cosine functions to encode the positions of rows and

columns of the parity channel of the abstract painting feature map,

adapting to the sequence input of the encoder–decoder architecture

(Ahmad and Wu, 2023). The encoder–decoder architecture is not

sensitive to the order of the image sequence and does not have the

ability to learn the sequence position information. The calculation

for the position coding as shown in Equation (1):

f (x)i =







sin
(

x
10000i/128

)

, i = 2k(k ∈ [0, 127])

cos
(

x
10000i/28

)

, i = 2k+ 1(k ∈ [0, 127])
(1)

where x is the row and column spread value of point
(

p, q
)

and i is

the channel of the feature map. For a feature map with a length and

width of 7 and a channel count of 256, respectively, the row and

column position encoding on the point with a channel of 10 and a

coordinate value of (1,2) is sin [((1×7) +2)/(1,000,010/128)] and

sin [((2×7) +1)/(1,000,010/128)], respectively, and the position

encoding of the remaining image sequences of the channels

is computed by this rule. Encoding finally generates a one-

dimensional feature sequence with a length of 49 and a channel

count of 256 with position information.

The Q,K,V in the encoder is a one-dimensional sequence

of a fixed length of 49 and a channel count of 256, which is

used as sentiment weights in translating the image sequence and

ordering its position in each encoding session. As the model learns

the feature dependencies between image sequences, the multi-

head self-attention module supports the model by reinforcing the

original features with sequence global information. This support

enables the model to learn discriminative features for sentiment

classification. The original image sequence serves as the input for

the first coding layer, and the input for each succeeding layer is

the image sequence encoded in the preceding layer. The picture

feature sequences are given to the decoder after being encoded and

learned by many coding layers of the encoder, avoiding the issue of

delayed network convergence and poorer accuracy brought on by

the increased depth of the model.

3.3 Decoders

The blank attention in this study has the same format as the

feature sequence of the model input, that is, a sequence with a fixed

length of 49 and a channel count of 256. Similar to the encoding

phase, the blank attention is weighted as a query statement with

Q,K,V of the first self-attention layer in the decoder, but at this

point, the blank attention does not need to focus on the location

information. At each decoding stage, the multi-head attention

module transforms the blank attention sequences and generates

FIGURE 3

Emotional classification.

the output of the attention sequences with weights by avoiding the

problem of slower model convergence through the residuals and

normalization module.

The attention sequence with weights from the upper layer

and the output sequence from the encoder are fed into the

second self-attention layer. This study uses the same sine and

cosine functions in the decoder as in the encoder to encode

the position of the weighted attention sequences from the upper

layers since the output sequence of the encoder contains positional

information and needs to accommodate its positional connection.

The positional encoding of the picture sequence for each channel

is calculated for the weighted attention sequence of length 49 and

a channel count of 256. This positional encoding is applied to the

rows and columns of the parity channels. Ultimately, a weighted

attention sequence of length 49 and a channel count of 256 with

position information are obtained. It is combined with the output

sequence of the encoder as a query statement and weighted with

Q,K,V from the second layer in the decoder. In each decoding

stage, the output sequence of the encoder is translated, and the

sequence positions are sorted.

3.4 Classification of emotions

Figure 3 depicts the emotion classification module. The

sentiment classification module combines the output sequences of

the encoder and decoder to produce weighted sentiment sequences,

which suppress redundant sentiment information in the model,

direct the model to concentrate on deep and shallow sentiment

information, and improve the model’s ability to classify sentiment.

The fully connected layer is used to map the weighted sentiment

sequences, and the cross-entropy loss is minimized to produce

stable sentiment classification results (Ahmad et al., 2021). The

normalized exponential function is used to calculate the probability

value of each type of sentiment; the abstract painting sentiment

predicted by the model has the highest probability value.

The normalized exponential function is as shown in

Equation (2):

Si =
ei

12
∑

j=1
ej

(2)
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where Si is the normalized value of a particular sentiment and

computation max (Si) is the abstract painting sentiment label

predicted by the model.

One popular loss function for handling classification difficulties

is the cross-entropy function, which is primarily used to quantify

the difference between two probability distributions. The cross-

entropy loss function is as shown in Equation (3):

Loss =
1

batch_size

∑

i

12
∑

c=1

yiclog2
(

pic
)

(3)

Each term in the cross-entropy function is p and q and

p indicates the true probability distribution and q represents

the predicted probability distribution. The cross-entropy function

describes the difference between the two probability distributions.

For the special case, the cross-entropy function of the binary

classification problem, there are a total of two terms, i.e., probability

distributions of classes 0 and 1, and there is p(0) = 1− p(1), so we

can get the expression for the binary classification cross entropy loss

function, where yic is the true value and pic is the probability of the

predicted value.

4 Image preprocessing

4.1 Datasets

The abstract dataset, which includes 280 abstract paintings,

was created by Machajdik. These paintings are better suited for

challenges requiring the prediction of emotion distribution because

they simply feature colors and textures and not any clearly

discernible objects. The 230 participants in the dataset expressed

their emotions by identifying these 280 photographs, with an

average of 14 people doing so. The final sentiment category is

determined by which of these sentiment markers received the most

votes. Due to the ambiguity of emotions, several categories may

have extremely similar or identical numbers of votes, making the

classification process unclear. Therefore, the ratio of votes for each

emotion category is used as a probability distribution to form a

probability distribution of emotions corresponding to the image,

as shown in Figure 3.

4.2 Feature extraction

Since abstract paintings contain only colors and textures and

do not generate emotions through specific objects, the features

extracted are emotional features based on the theory of artistry.

4.2.1 Color histogram
Artists use colors to express or trigger different emotions in

observers, and extracting color histograms from color features is

a common and effective method. The color histogram space H is

defined as Equation (4):

H =
[

h (0) , h (1) , ...h (Lk)
]

,

K
∑

k=1

h (Lk) = 1 (4)

where h (Lk) denotes the frequency of the kth color. The similarity

of the color histograms of the two images are measured using the

Euclidean distance as shown in Equation (5):

D (Hs,Hd) =
[

(Hs − Hd)
T(Hs − Hd)

1/2
]

(5)

4.2.2 Itten comparison
Itten successfully used the strategy of color combination by

defining seven contrast attributes. Machajdik used seven contrast

attributes such as light and dark contrast, saturation contrast,

extension contrast, complementary contrast, hue contrast, warm

and cool contrast, and simultaneous contrast of images as the

emotional characteristics of artistry theory.

As in the case of light and dark contrast, the image is segmented

into R1,R2...RN , small chunks using the watershed segmentation

algorithm, and the average hn (Chroma) bn (Brightness) sn
(Saturation) is calculated for each chunk. Calculation bn belongs to

five fuzzy luminance:

{

VeryDark(VD), Dark(D), middle (M),

Light(L), Very Light(VL)

}

affiliation function as shown in Equations (6–10).

VD =











1bn 6 21
39−bn
18 21 < bn 6 39

0

(6)

D =











bn−21
18 21 < bn 6 39

55−bn
16 39 < bn 6 55

0

(7)

M =











55−bn
16 39 < bn 655

bn−55
13 55 < bn 6 68

0

(8)

L =











bn−55
13 55 < bn 6 68

84−bn
16 68 < bn 6 84

0

(9)

VL =











84−bn
16 68 < bn 6 84

1 bn > 84

0

(10)

Thus, a 1∗5 dimensional vector for each small block of image

R1,R2...RN is obtained, and for the whole image, the light/dark

contrast is defined as Equation (11):
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FIGURE 4

Layer stacking process e�ect and ink simulation results. (A) One grayscale layer overlay e�ect. (B) Two grayscale layer overlay e�ect. (C) Three

grayscale layer overlay e�ect. (D) Seven grayscale layer overlay e�ect.

B(i) =











1
N
∑

n=1
Rn

N
∑

n=1

Rn
(

Bn(i)− B̄(i)
)2











1/2

(11)

where i = 1, . . . , 5,Rn is the number of pixels in the split block.

In this way, the vector expression of the contrasting attributes of

the images is obtained as features, and the similarity of the different

images is calculated by the Euclidean distance.

The Itten model is also used to determine whether or not an

image is harmonic, and it can also be used to identify an image’s

emotional expression. Select three to four of the image’s prominent

colors, connect them to the colors on the Itten hue wheel, and if

they form a positive polygon, the image is harmonic. To determine

the dominant chromaticity of an image, make a histogram of its N

colors. Ignore the colors with a proportion of<5%. The harmony of

a polygon can be assessed by comparing its internal angles to those

of a square polygon built from the same number of vertices.

4.2.3 Texture
The main idea behind the statistical approach to texture

analysis is to symbolize textures by the randomness of the

distribution of gray levels in a graph. We define z as a random

variable representing the gray levels, L as themaximum gray level of

the image,Zi as the number of pixels with gray level i, 01 denotes the

gray level histogram, and with respect to z, the nth order moments

are calculated as shown in Equation (12):

un (z) =
L
∑

i=0

(Zi −m)np (zi) (12)

m =
L
∑

i=0

zip (zi) is the mean value of z.

The second-order moments are more important in texture

description; it is a measure of grayscale contrast, where R = 1
1+u2(z)

indicates the smoothness of the image, and a smaller value of un(z)

corresponds to a smaller R value, indicating that the smaller the

value of R, the smoother the image.

4.3 Weighted K-nearest neighbor
sentiment distribution prediction algorithm

Assuming that there are M sentiment categories

C1, · · · ,CM and N training images, x1 · · · , xN (which

also denote the corresponding features of the images) use

p = {Pn1, · · · , Pnm · · · , PnM}T to denote the sentiment distribution

of Xn, where Pnm denotes the probability that xn expresses a

sentiment of cm, and for each image, there is
∑M

m=1 Pnm = 1.
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FIGURE 5

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 1. (A) Landscape original 2. (B) Direct eighth order color

reduction link e�ect. (C) Histogram normalization link e�ect.

Assuming that y is a test image, the goal of this study is to find the

sentiment distribution p = {P1, · · · , PM}T of y, i.e., as shown in

Equation (13).

f
(

{

xn, pn
}N

n=1
, y
)

→ p (13)

Training sets that are very far away have little effect on y.

Considering that including all training sets can slow down the run

and irrelevant training samples can also mislead the algorithm’s

classification, the effect of isolated noise samples can be eliminated

by taking a weighted average of the K-nearest neighbors.

Weighted K-nearest neighbor option denotes only the drizzle

functions corresponding to the K training images that assign

the larger weights to the closer nearest neighbors. denotes the

sentiment distribution of the K training images nearest to the test

image, which is considered as a basis function, and the sentiment

distribution P of the test image y is computed by performing a

distance-weighted summation of the basis function, i.e.,

P =
∑K

k=1 skpk
∑K

k=1 sk
(14)

where s is the similarity between the test sample and the training

sample, as shown in Equation (15).

s = e

(

−
d
(

xk, y
)

β

)

(15)

where d is the Euclidean distance and β is the average distance of y

from the training images.

Algorithm: Weighted K-nearest neighbor sentiment

distribution prediction algorithm.

Input: Training set
(

xn, pn
)

, test set y.

Output: Sentiment distribution p for the

test set.

1. Calculate the distance d between the test set image y and each

image in the training set.

2. Select the first k images x1...xk that are closest to y in the

increasing order of distance.

3. β = 1
k

√

(

x1 − y
)2 + · · · +

(

xk − y
)2

is brought

into Equation (14) in order to compute the

similarity s.

4. Calculate the sentiment distribution of the test image y P =
∑K

k=1 skpk
∑K

k=1 sk
.
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FIGURE 6

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 2. (A) Landscape original 3. (B) Direct eighth order color

reduction link e�ect. (C) Histogram normalization link e�ect.

5 Experimentation and analysis

5.1 Landscape image

Experiments on a large number of landscape images (resolution

of ∼1 million pixels, downloaded from “Baidu images”) to achieve

the simulation of ink and wash painting and to achieve a more

satisfactory simulation effect. Figure 4 represents the algorithm

from shallow to deep ink “drawing” simulation process: Figure 4A

shows the layer effect, Figures 4B, C represent the first two layers

and the first three layers of the superposition effect, and Figure 4D

shows the seven-layer superposition effect, that is, the final eight-

ink effect [pu
(

uj
)

= (0.2, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,

0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 and

Figure 4A for the 00 layer effect. 15, 0.15, 0.15, 0.11, 0.06, 0.03)].

In the algorithm, the histogram specification serves to preset

the weight of each ink color and enhance the recognition of the

inked area. Figures 5, 6 show a comparison of the ink simulation

experiments for two other sets of landscape images and reveal the

role of histogram specification in the simulation effect. Figures 5B,

6B show the effect of the algorithm based on direct eighth order

grayscale color reduction, and Figures 5C, 6C show the effect of the

algorithm based on histogram specification. The values of pu
(

uj
)

were [0.2, 0.15, 0.15, 0.15, 0.15, 0.15, 0.11, 0.06, 0.03] and [0.3, 0.125,

0.15, 0.125, 0.125, 0.1, 0.05, 0.025]. The direct eight-order color

reduction approach is governed by the color values of the original

diagram, which is easily the source of the imbalance of the weight

of each ink color and the lack of distinctiveness, as can be seen

from the comparison of the two sets of diagrams. The histogram

specification method can better control the amount of ink colors

and especially strengthen the weight of Gray (0) (i.e., white area).

Ink simulation has a better sense of hierarchy and differentiation.

In summary, the algorithm in this article simulates the ink effect

of the landscape map through the method of layer simulation ink

overlay, the simulation map has a strong sense of hierarchy, and the

layers of ink can be integrated with each other and also has a natural

paper-ink penetration effect.

5.2 Abstract paintings

The existing sentiment classification networks ResNet and

Swin Transformer and their variants are compared under the

sentiment classification accuracy metrics in order to assess the

effectiveness of the model in this article. The encoder–decoder

structure with various numbers of layers is set up for this article’s

method; the one-layer encoder–decoder structure is defined as Tiny

and the six-layer encoder-decoder structure is defined as Base.

By training five batches of experimental findings and averaging

them as the final results of the experimental data, five rounds

of cross-validation were used to test the models. To accelerate

the convergence of abstract painting sentiment classification, each
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TABLE 1 Example of part of the abstract painting dataset.

Emotion Painting theme

Character Ghosts Animal Plant

Negative

Be cautious Aversion and resistance Anxiety and tension Faint and wilting

Neutral

Harmony and friendliness Neutral and Pure Be pragmatic and responsive Impartial and impartial

Positive

Diligent and simple Enthusiastic and proactive Elegant and gentle Beautiful and graceful

TABLE 2 Abstract painting emotion classification experiment.

Model Classification accuracy (%)

ResNet-18 64.6

ResNet-34 68.4

ResNet-50 70.3

ResNet-101 71.4

Swin-T 70.1

Swin-S 72.7

Swin-B 73.2

Vit-T 72.7

Vit-B 76.8

Method of this article—Tiny 74.3

Method of this article—Base 80.8

model is fine-tuned based on the ImageNet pre-trained model,

using the Adam W optimizer with a weight decay of 0.1/30 epoch

and an initial learning rate of 0.0001, and trained based on the

NVIDIA RTX 2080Ti.

TABLE 3 Backbone network experiment.

Method Backbone Parameter
quantity (M)

Accuracy
(%)

1 ResNet-18 29 72.5

2 ResNet-34 39 76.7

3 ResNet-50 42 80.8

4 ResNet-101 61 81.9

The actual Naxi Dongba abstract paintings were gathered from

the literature on Na xi abstract paintings, and the abstract paintings

were divided into four categories based on the subject matter of the

painting’s creation. For instance, in the abstract painting data set

shown in Table 1, the figures, ghosts and monsters, animals, and

plants are shown from left to right, and the abstract paintings were

divided into 12 different emotion categories based on the emotions

they conveyed.

ResNet50 was used as the backbone network in order to extract

image features and tested on the test set for sentiment classification

of abstract paintings.

The experimental findings in Table 2 demonstrate that the

algorithm presented in this article is superior to ResNet,
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FIGURE 7

Analysis of the number of encoding and decoding layers.

TABLE 4 Ablation experiment.

Method Decoder
output

Encoder
output

Accuracy
(%)

1 X
√

74.3

2
√

X 77.9

3
√ √

80.8

Swin, and their variation network topologies for the job of

sentiment recognition for abstract paintings. Established sentiment

classification techniques like ResNet-101 and Swin-B achieved

classification accuracies of 71.4 and 73.2%, respectively, whereas

this article’s method-Tiny and method-Base produced the best

classification outcomes with classification accuracies of 74.3 and

80.8%, respectively.

The existing sentiment classification techniques do not account

for the deeper sentiment elements that are buried in abstract

paintings; instead, they focus on predicting the sentiment labels

of abstract paintings while neglecting their linguistically complex

and emotionally varied properties. The method in this article, in

contrast, uses blank attention in the decoder and fuses the encoder’s

output sequence while learning the semantics of the abstract

painting image as the emotion attention through the decoder’s

decoding learning mechanism. As a result, the method employed

in this study is able to achieve a higher classification accuracy rate.

This study first conducts ablation experiments on the backbone

network, compares a variety of Res Net variants to replace the

backbone network, and keeps the structure of this article’s model

unchanged for the experiments in order to assess the impact of the

number of parameters of the backbone network on the accuracy of

sentiment classification. The results of the experiments are shown

in Table 3.

The model parameter amount was 42M and the classification

accuracy was 80.8% when ResNet-50 was used as the backbone

network. The number of model parameters was cut to 29M

with the use of ResNet-18, however the model’s classification

accuracy dropped by 8.3%. ResNet-34, on the other hand, reduced

the number of model parameters by 3M while increasing the

classification accuracy of the model by 4.1% when utilized as the

backbone network. The number of model parameters rises by

19M when ResNet-101 is used as the backbone network, yet the

classification accuracy increases by 1.1%. In this article, choosing

ResNet-50 as the backbone network ensures that there is no

significant decrease in the accuracy rate and avoids the increase in

training difficulty due to the introduction of too many parameters.

Figure 7 displays the line graph of the experimental analysis

of the number of coding–decoding layers; as the number of

coding–decoding layers increases, the model’s accuracy gradually

increases, suggesting that addingmore coding–decoding layers can,

to a certain extent, increase the accuracy of the classification of

the emotions in abstract paintings. The model uses six coding–

decoding layers to achieve 80.8% classification accuracy, avoiding

the overfitting issue that results from the stacking of coding–

decoding layers. However, as the number of coding–decoding

layers increases, the improvement in accuracy eventually slows

down and becomes flat.

To prove the effectiveness of this article’s attention mechanism

for classifying the emotions of abstract paintings, two types of

ablation models are set up to eliminate the decoder and encoder

outputs, based on keeping the backbone network of the model

as ResNet-50: ① The attention mechanism setup is not used in

the ablation model, which eliminates the output of the decoder.

Instead, the model uses the coded sequence output from the

encoder as the basis for emotion classification. The classifier

then normalizes the coded sequence to determine the likelihood

of outputting emotion labels through the full connectivity layer
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spreading. The fully linked layer disperses the coded sequence,

and the normalization of the classifier determines the likelihood of

producing emotion labels; ② The attention mechanism established

in this research is kept in the ablation model that removes the

encoder output, and the model continues to mine the picture

semantics of the abstract paintings without fusing the encoder

output with the attention mechanism. In Table 4, the experimental

findings are displayed.

When the encoder is used to help classify the abstraction

of drawing sentiments, the accuracy of sentiment classification

decreased after eliminating the decoder output by 6.5%, showing

higher classification accuracy than that of the ResNet-50

classification model; however, after eliminating the encoder output,

the accuracy of sentiment classification of the ablation model

decreased by 2.9%, which is higher than that of the ResNet-101

classification model and close to that of the ResNet-50 classification

model. This finding shows that the attention mechanism in this

study can help the model recognize abstract paintings’ emotions

more accurately by acting as a facilitator.

In this study, we used a full convolutional network to calculate

the emotional weights of the model, visualize the weight heat map

of themodel, and simultaneously highlight and locate the regions in

the heat map that significantly influence the expression of emotion.

Figure 8A provides an illustration of an abstract painting’s

original image, which is tagged with the predicted emotions

derived from the image by the model test and contains 12

emotions as determined by the experimental data, respectively. The

ablation model produced by the elimination decoder is depicted in

Figure 8B, with loose regions of attention and unfocused regions of

interest in the model’s heat map; the regions of interest for abstract

paintings of various subjects also differ significantly from one

another. Figure 8C demonstrates that, despite being more compact,

the model heat map’s zone of interest suffers from ambiguous

regions of interest and incorrect localization. It is also unresponsive

to a smaller percentage of the neutral emotion image. The focus in

the figure paintings is on the behavior and movements of the Dong

ba figures, and the areas highlighted by the model labeled colors in

the different image emotions correspond to the areas of the abstract

paintings where the figures are holding arms, dancing, and making

gestures, respectively. Figure 8D shows the model heat map of this

article, which has a more concentrated region of interest and more

stable localization. For emotionally complex animal paintings, the

model expands the emotional expression to the animal’s body area;

for the plant paintings, the color highlighting points out the plant

petal area, which corresponds to the plant’s budding or blossoming

gesture. In the ghost paintings, the model heat map focuses on the

ghost behavior and action area.

The visualization experiments demonstrate the comparison

experiments of the ablation model and the region of interest of the

model described in this article. They also show how the relationship

between the abstract painting emotion attention and the image

emotion learned by this article model is more intimate and how

this has a more immediate effect on the results of the emotion

classification. It demonstrates how well the model in this study

extracts the emotion from images of abstract paintings, making it

more appropriate for classifying the emotions of abstract paintings.

FIGURE 8

Presentation of visualization results: (A) initial image; (B) elimination

decoder; (C) elimination encoder; and (D) model of

this article.
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FIGURE 9

E�ect of di�erent K-values on the prediction of sentiment distribution.

5.3 Predictive distribution

The effect of different values of K (K = 5, 10, 20, 40, 50, 100,

252 using 10-fold cross-validation, where K = 252 is the global

weighting of the training set) on the prediction of the sentiment

distribution in a weighted KKN is shown in Figure 9.

In this example, the optimal K-value is affected by the

sentiment category, and considering the average performance, it

is considered that the best prediction is achieved at K = 40, 50,

which outperforms the global weighting, and when K = 252, all

the training images are used for distribution prediction.

6 Conclusion

The majority of early algorithms employed for sentiment

classification were based on shallow machine learning and

extract features using manually constructed feature selection

techniques that have weak generalization ability, require extensive

training times, and entail high labor costs. Because of its

superior learning capacity to optimize feature extraction and

prevent the flaws of manual feature selection, deep learning has

produced positive research outcomes in the field of text sentiment

categorization. The attention mechanism’s primary objective is

to swiftly separate valuable information from a vast amount of

data. When applied to the sentiment classification task, it is

capable of identifying word dependencies within sentences and

identifying the internal organization of the sentence. Using a

weighted closest neighbor technique, we provide a novel approach

in this study to predict the discrete sentiment distribution of

each picture in an abstract painting. Testing shows that the

attention mechanism-based classification algorithm achieves a

better classification accuracy of 80.7% when compared to state-

of-the-art techniques, thereby resolving the issues of rich material

and difficulties in identifying the emotions shown in abstract

paintings. Nevertheless, there are several drawbacks to the attention

mechanism in this article, such as its incapacity to create the

positional link between objects and scenes in abstract paintings.

Furthermore, it is restricted by the dataset on abstract paintings

and is unable to sufficiently address the issues of imprecise

sentiment categorization and imprecise attention learnt from

datasets that are made publicly available. Future research methods

might thus expand the sentiment dataset to a broader picture

data domain and further expand the abstract painting sentiment

classification system to a multimodal level in order to overcome

these problems.
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