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The connectivity degree controls
the di�culty in reservoir design
of random boolean networks
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Reservoir Computing (RC) is a paradigm in artificial intelligencewhere a recurrent
neural network (RNN) is used to process temporal data, leveraging the inherent
dynamical properties of the reservoir to perform complex computations. In
the realm of RC, the excitatory-inhibitory balance b has been shown to be
pivotal for driving the dynamics and performance of Echo State Networks (ESN)
and, more recently, Random Boolean Network (RBN). However, the relationship
between b and other parameters of the network is still poorly understood. This
article explores how the interplay of the balance b, the connectivity degree K

(i.e., the number of synapses per neuron) and the size of the network (i.e., the
number of neurons N) influences the dynamics and performance (memory and
prediction) of an RBN reservoir. Our findings reveal that K and b are strongly tied
in optimal reservoirs. Reservoirs with high K have two optimal balances, one for
globally inhibitory networks (b < 0), and the other one for excitatory networks
(b > 0). Both show asymmetric performances about a zero balance. In contrast,
for moderate K, the optimal value being K = 4, best reservoirs are obtained
when excitation and inhibition almost, but not exactly, balance each other. For
almost all K, the influence of the size is such that increasing N leads to better
performance, even with very large values of N. Our investigation provides clear
directions to generate optimal reservoirs or reservoirs with constraints on size
or connectivity.
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1 Introduction

Reservoir computing (RC) is a promising approach that could drastically reduce

the cost of learning as the input gets projected into a higher dimensional space, the

reservoir, read out by a single output layer. As such, when the reservoir is adequately

designed, a simple linear fitting can be used to train the weights of the readout

layer (Maass et al., 2002), alleviating the computational burden of other traditional

machine learning methods. The Echo State Network (ESN) developed by Jaeger

(2005) comprises reservoirs with continuous activation functions, while Liquid State

Machine (LSM) (Maass et al., 2002) typically includes discontinuous activation functions,

among which we find the Random Boolean Network (RBN) (Glass and Hill, 1998).
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Research on both models has demonstrated that two critical

factors influence the dynamics and performance in tasks. These

include the topology of the connectivity graph (Cattaneo et al.,

1997; Luque and Solé, 2000; Hajnal and Lőrincz, 2006; Snyder et al.,

2012; Aljadeff et al., 2015; Cherupally, 2018; Echlin et al., 2018;

Galera and Kinouchi, 2020; Steiner et al., 2023) and the synaptic

weights that connect the neurons (Bertschinger and Natschläger,

2004; Natschläger et al., 2005; Embrechts et al., 2009; Büsing et al.,

2010; Goudarzi et al., 2014; Jalalvand et al., 2018; Krauss et al.,

2019a). Such a graph depends on many parameters, in particular

its number of nodesN and the degree of vertices K, i.e., the number

of synapses per neuron.

In practice, the graph of reservoirs is often random

(Bertschinger and Natschläger, 2004; Pontes-Filho et al., 2020),

even though other types of connectivity have been studied, such

as scale-free and small world (Haluszczynski and Räth, 2019).

In the context of Random Boolean Networks (RBNs), such a

connectivity graph is generally constructed by randomly selecting

synapses between neurons with the given degree K (Bertschinger

and Natschläger, 2004; Natschläger et al., 2005; Snyder et al., 2013;

Burkow and Tufte, 2016; Echlin et al., 2018). The connectivity

degree can be homogeneous, implying a fixed value of K for all

neurons in the network (Bertschinger and Natschläger, 2004), or

heterogeneous, where K has some distribution among neurons

(Snyder et al., 2013). The analysis of the link between connectivity,

dynamics and performance is simpler in the former case, and

numerous studies have investigated the correlation between a

fixed K and the dynamic and performance of the RBNs (Luque

and Solé, 2000; Bertschinger and Natschläger, 2004; Büsing et al.,

2010; Burkow and Tufte, 2016). For example, when K > 2, it is

widely recognized that these systems can yield a phase transition,

referred to as the edge of chaos, which is associated with enhanced

memory and computation (Bertschinger and Natschläger, 2004;

Natschläger et al., 2005). Furthermore, compared to Echo State

Networks (ESN), the region conducive to improved performance

is more restricted with RBNs (Büsing et al., 2010), while ESNs

have been demonstrated to be less sensitive to this parameter

(Hajnal and Lőrincz, 2006; Büsing et al., 2010; Krauss et al., 2019a;

Metzner and Krauss, 2022). This makes RBNs more challenging to

parameterize, and their performance also diminishes rapidly with

increasing K, indicating that they perform optimally with very

sparse weight matrices (Luque and Solé, 2000; Bertschinger and

Natschläger, 2004; Büsing et al., 2010; Snyder et al., 2012; Burkow

and Tufte, 2016; Echlin et al., 2018). Therefore, precise fine-tuning

of K is essential for achieving good performance.

Regarding the number of neurons, on the other hand, it is well

known that increasing N improves performance (Bertschinger and

Natschläger, 2004; Snyder et al., 2012; Cherupally, 2018; Cramer

et al., 2020; Steiner et al., 2023). However, most literature on

RBN compared reservoirs with rather small sizes around 1, 000

neurons (Bertschinger and Natschläger, 2004; Natschläger et al.,

2005; Büsing et al., 2010; Snyder et al., 2013; Burkow and Tufte,

2016), while studies on the ESN compared reservoirs from 500, up

to 20, 000 neurons (Triefenbach et al., 2010).

In this article, we want to study the effect of these topology

parameters (N and K) with another control parameter, less studied

in this context, which is the excitatory-inhibitory balance b,

controlling the proportion of positive and negative synaptic weights

(Krauss et al., 2019a; Metzner and Krauss, 2022; Calvet et al., 2023).

More specifically, the balance is equal to b = (S+ − S−)/S, with
S = KN the total number of synapses and S± the number of positive

and negative synapses. For a positive balance, the network has a

majority of excitatory synapses and reverse, and when it is zero,

the network has a perfect balance between the two, S+ = S−. The
excitatory-inhibitory balance has a long history in neurosciences

(Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000). Primarily,

this balance is fundamental to the principle of homeostasis, which

prevents the brain from overflowing with spikes and keeps the

average activity in a certain range (Sprekeler, 2017). It has been

shown that strong excitation can provoke irregular activity patterns

(Van Vreeswijk and Sompolinsky, 1996, 2005; Krauss et al., 2019b;

Sanzeni et al., 2022; Calvet et al., 2023), and that an imbalance of

excitation and inhibition could be linked to pathologies such as

epilepsy (Nelson and Valakh, 2015) and autism (Arviv et al., 2016).

In our present context, studies on models (Ehsani and Jost, 2022),

in vitro (Sandvig and Fiskum, 2020) and in vivo (Yang et al., 2012),

showed that the meticulous balancing of excitatory and inhibitory

neurons was also linked to the edge of chaos (Poil et al., 2012).

Despite its importance in neurosciences, the excitatory-

inhibitory balance has only been recently introduced for

investigating the design of RBN (Calvet et al., 2023). Previous work

on the ESN (Krauss et al., 2019a,b; Metzner and Krauss, 2022)

has studied the influence of density d = K/N and balance on

the dynamics of reservoirs, showing that b was a key parameter

controlling phase transitions. In particular, Metzner and Krauss

(2022) suggested a more complex picture than previously thought,

exposing two critical points, each for a positive and negative

balance, while for higher densities, an asymmetry could arise in the

reservoir responses to inputs, and as a result, only the edge of chaos

occurring for positive b was optimal for information propagation

inside the reservoir. In line with Krauss and Metzner, recent work

on RBN reservoirs demonstrated that the excitatory-inhibitory

balance b was also key in driving dynamics and performance

(Calvet et al., 2023). In particular, it was shown that the weight

statistics, typically used in RBN literature (Bertschinger and

Natschläger, 2004; Natschläger et al., 2005; Büsing et al., 2010)

are related to the balance. More striking, the RBN reservoirs

also displayed an asymmetry around b = 0. The two signs of

the balance produced distinct relations to performance in tasks

and a reduced reservoir-to-reservoir variability for a majority of

inhibition. However, this occurred for a network with extremely

low density as d = K/N = 16/10, 000 = 0.0016, in contrast with

studies on ESN.

As far as the authors are aware, the influence of the excitatory-

inhibitory balance for different connectivity has yet to be studied,

except for the single value of K = 16 previously mentioned

(Calvet et al., 2023). This article aims to explore the combined

effect of connectivity (K, N) and the balance on the dynamics and

performance of the RBN. The article is organized as follows: in

the first section (Section 3.1) the effect of K and b is studied, both

on the dynamics of free-evolving reservoirs (Section 3.1.1), and

their performance in a memory and prediction task (Section 3.1.2),

showing that the asymmetry in fact vanishes for very small K.

In the second section (Section3.2) we perform a similar analysis
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(dynamics in Section 3.1.1, and performance in Section 3.2.2), but

this time, we vary both K and N conjointly, and explore the

relationship with b. This reveals a complex interplay between

parameters and suggests that K is, in fact, governing it. Finally,

in Section 4, we discuss our results and their implication for RBN

reservoir design, revealing that in contrast with ESN, the careful

selection of K leads to a significant simplification of the fine-tuning

of the other topology parameters in the tested tasks.

2 Methodology

2.1 The model

Our model is an ensemble of three parts (Figure 1), the input

node u(t), which is projecting to half of the neurons of the

recurrently connected reservoir Ex, among which the other half is

projecting to the output node y(t), this way, the output node never

directly sees the input (Eq. 1), and information must propagate

inside the reservoir for the readout (Eq. 2) to accomplish the task

at hand:

ui(t) = win
i u(t) (1)

y(t) = f (WoutEx+ c) (2)

With ui(t) the input of the neuron i, the input weights win
i form

a vector, projecting to half of the reservoir, while the other half of

the weights are zeros, and reserve for the output weight matrice

Wout . This way, a neuron in the reservoir is never connected to

both the input and output. The activation function f of the output

node is the sigmoid, with a bias c. Each component xi(t) of Ex(t)
corresponds to the state of the neuron i inside the reservoir. It is

given by Eq. 3:

xi(t) = θ



ui(t)+
N

∑

j=1

wijxj(t − 1)



 (3)

Where each neuron is connected to K other neurons, and wij

is the synaptic weight connecting neuron j to neuron i, drawn in

a normal distribution N (µ, σ ), with parameters µ (mean) and σ

(standard deviation). The activation function θ is a Heaviside, thus

xi is binary. t ∈ N and corresponds to a time step. Remark that if the

input is zero, the state of a given neuron only depends on the states

of its neighbors at the previous time step. Such neurons are thus

said to be “memoryless”, and for such a system, to sustain memory,

information needs to cascade via the propagation of spikes inside

the reservoir. The attractive feature of the reservoir framework is

that only the output weight and bias are trainable parameters, as

all other parameters are usually kept fixed, including the reservoir

weights.

We use amean square error (MSE) loss function for the training

process. For training the readout weights, we opted for the ADAM

optimizer (Kingma and Ba, 2015), providing superior results in

our testings, superseding the commonly utilized Ridge regression

(Burkow and Tufte, 2016) in most literature. The execution is

facilitated through the PyTorch library, with parameters set at α =
0.001 and 4000 epochs (Supplementary material 6 for additional

information).

FIGURE 1

The model consists of an input node (left), connected by input
weights (green arrows), to the reservoir (center), itself connecting
via output weights (orange arrows) to the output node (right). As
illustrated by the dotted black arrows, the reservoir is recurrently
connected, forming a random graph. The illustrated graph has K = 2
and N = 22. Note that in practice, half of the neurons (blue circles)
connect to the input, and the other half to the readout.

2.2 The control parameters

The three control parameters used in this study are σ ⋆, K, and

N. Among these, σ ⋆ represents the coefficient of variation of the

weight distribution within the reservoir, defined as σ ⋆ = σ/µ.

This parameter is linked to b, the excitatory/inhibitory balance,

as b = Erf[1/(
√
2σ ⋆)] (Calvet et al., 2023). The balance is also

equal to b = (S+ − S−)/S, with S the total number of synapses,

and S± the number of positive and negative synapses, respectively.

We display in Figure 2 the relationship between the two, noting

that when σ ⋆ is positive, we have a majority of excitatory synapses

b > 0, and when σ ⋆ is negative, we have a majority of inhibitory

synapses b < 0. In all experiments, we play with values of σ ⋆ that

allow our reservoirs to span the full range of b, corresponding to

σ ⋆ ∈ [10−2, 103].

Since recent work showed that the dynamics and performance

of reservoirs were asymmetric about b = 0 (Metzner and

Krauss, 2022; Calvet et al., 2023), we study the influence of

two other control parameters with respect to the sign of b.

These parameters are captured by the density d = K/N,

following the work of Hajnal and Lőrincz (2006), Krauss et al.

(2019a), and Metzner and Krauss (2022) on ESN. However, we

show in Supplementary material 6.1 that the density d is not

a control parameter for the RBN, since, at a fixed density,

reservoirs can possess very different dynamics as K and N are

concurrently varied. As such, we consider them as independent

control parameters in this article. Following work in RBN (Büsing

et al., 2010; Calvet et al., 2023), the connectivity degree is

chosen between 1 and 16. In addition, to compare the more

recent results (N = 10, 000) (Calvet et al., 2023) with older

literature (N ≤ 1, 000) (Bertschinger and Natschläger, 2004;

Natschläger et al., 2005; Büsing et al., 2010; Snyder et al., 2013;

Burkow and Tufte, 2016), we study three values of N =
{100, 1, 000, 10, 000}.
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FIGURE 2

The excitation-inhibition balance b as a function of the synaptic
weight parameter σ ⋆. For σ ⋆ < 0 ( ) and σ ⋆ > 0 ( ). σ ⋆ is the
coe�cient of variation (σ/µ) of the weight distribution, which is why
b is of the sign of σ ⋆. For low values of |σ ⋆|, only µ controls the
synaptic balance, meaning that for a positive mean, the weights are
all excitatory, and reverse. On the other hand, when |σ ⋆| → ∞, the
mean becomes irrelevant, and b is at a perfect balance between
excitation and inhibition.

2.3 The experiments

We perform two types of tasks: the first to probe the intrinsic

dynamics of reservoirs, while they are freely evolving, and the

second to test the ability to process inputs while performing

memory and prediction tasks.

2.3.1 Free-running
Each reservoir is freely running without input for a duration

of D = 2, 000 time steps, with a random initial state with 20%

of neurons to one. During a run, the activity signal A(t) (Eq. 4) is

recorded, which is the average of states xi at a given time step t:

A(t) = 1

N

N
∑

i=1

xi(t) (4)

Afterwards, we compute the BiEntropy (Hb) (Croll, 2014) of the

binarized activity signals. The binary entropy is interesting because,

in contrast to the Shanon entropy, it can quantify the degree of

order and disorder of a bit string, Hb = 0 for completely periodic,

andHb = 1 for totally irregular. To compute it, we need to binarize

the steady activity As, obtained after 1, 000 time step. To do so, we

subtract the mean As − Ās and clip all positive values to one and

negative values to zero. After converting this binarized sequence

into a string, we can now compute the binary entropy for a given

run. For each triplet (N, K, σ ⋆), we randomly generate R = 100

reservoirs, and we then compute the average (Eq. 5) and variance

(Eq. 6) over reservoirs having the same control parameters:

〈Hb〉 =
1

R

R
∑

r=1

Hr
b (5)

〈δHb
2〉 = 1

R

R
∑

r=1

(Hr
b − 〈Hb〉)2 (6)

Next, we classify the steady-state activity A(t), for t >

1, 000 time steps, into four distinct attractor categories. For

each triplet (N, K, σ ⋆), we then compute the histograms over

the 100 reservoirs and compute the percentage of reservoir

belonging to each attractor category as a function of each

control parameter value. The attractors are defined according to

Calvet et al. (2023) :

• Extinguished: the activity has died out, and the steady activity

is zero at all time steps.

• Fixed attractor: the steady activity is non-zero, but its

derivative is zero at all time steps.

• Cyclic: the steady activity repeats, with a period larger than

one time-step.

• Irregular: if none of the above categories apply, the

signal is irregular. Note that our model is deterministic

and discrete, as such, all attractors are in theory, cyclic;

however, since the duration D = 2, 000 is extremely small

compared to the maximal period of 2N , in practice, we

find a statistically significant proportion of attractors in

that category.

2.3.2 Performance in tasks
To test the computational capabilities of our reservoirs,

we perform two distinct tasks. The first one consists of

memorizing white-noise input received |δ| time steps in

the past. We test our reservoirs with various difficulties for

δ = {−18,−14,−10,−6,−2}. The higher in absolute value,

the more difficult the task, since it demands the reservoir

of memoryless neurons to integrate and reverberate input

information through spikes cascade for longer time scales

(Metzner and Krauss, 2022; Calvet et al., 2023). The second

task consists of predicting future Mackey-Glass time series,

δ = 10 time steps. Mackey-Glass is a common benchmark

in reservoir computing (Hajnal and Lőrincz, 2006; Bianchi

et al., 2016; Zhu et al., 2021), which is given by the following

Eq. 7:

xt+1 = axt +
bxt−τ

c+ xdt−τ

(7)

We choose a = 0.9, b = 0.2, c = 0.9, d = 10, and x0 = 0.1, and

we use τ , the time constant parameter of Mackey-Glass, to control

the signal dynamics, ranging from τ = 5 (periodic), τ = 15, to

τ = 28 (chaotic).

To evaluate the performance of our reservoirs, we compute

the correlation coefficient Corr(y,T) between the target vector

T, and the output vector y. A reservoir that performs poorly

will yield uncorrelated vectors y and T, resulting in a correlation

coefficient of zero. On the other hand, an ideal score is achieved

when the vectors are identical, leading to a correlation coefficient

of one. It is important to note that while the correlation

can technically be negative, this scenario is infrequent. This

calculation is performed over 20 reservoirs for each triplet

(N, K, σ ⋆). The details of the task execution and training

process align with the methods in this study (Calvet et al.,

2023).
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3 Results

3.1 The connectivity degree controls the
optimal balance

In this section, we fix the size of the reservoir to its largest value

N = 10, 000. We study the effect of K and b on the dynamics

of free-running reservoirs (Section 3.1.1). Then, we study the

performance in two demanding tasks (Section 3.1.2). We show that

the asymmetry about b = 0 is strongly K dependent and vanishes

for low K, while the optimal balance bopt is entirely controlled by K.

Additionally, we exhibit the shift of control parameters from

the more natural weight distribution statistics (σ ⋆) (Calvet et al.,

2023) to the excitatory-inhibitory balance (b). To do so, we begin

by exhibiting the dynamics over σ ⋆, to then display the attractor

statistics over the excitatory balance b, revealing insights into the

reservoir design.

3.1.1 Impact of the connectivity degree and
balance on dynamics

In Figure 3, we display the average over reservoirs of the

BiEntropy of the steady activities for reservoirs as a function of

|σ ⋆| (lower x-axis), both with a negative (left) or positive (right)

balance b (the upper x-axis displays the corresponding b values).

In Figures 3A, B blue regions represent an ordered phase with

low BiEntropy, and red regions represent a disordered phase with

a BiEntropy close to one. The regions are separated by a phase

transition where the BiEntropy is intermediate, also captured by the

variance of the BiEntropy (Figures 3C, D). The scenario is similar

for both signs of b but differs in the details. The transition (abrupt

for b < 0, wider for b > 0) occurs at a value of σ ⋆ that depends onK

(strongly for b < 0, weakly for b > 0). The transition widens when

K decreases (strongly for b > 0). At high K, i.e., when each neuron

is connected with many, there seems to be an asymptotic value for

σ ⋆ (or b, indicated on the upper part of the plots), which is different

for b > 0 and b < 0 (Calvet et al., 2023). For K = 2, the disordered

phase never reaches a BiEntropy of 1, and for K = 1 the reservoir

is always in its ordered phase (Bertschinger and Natschläger, 2004).

In Figure 4, we plot the statistics of attractors for reservoirs with

K = 16 (upper panel), K = 8 (middle), and K = 4 (lower),

as a function of the balance b. This time |σ ⋆| is reported in the

upper x-axis. The left column shows the results for b < 0 and the

right column for b > 0. The phase transition is characterized by

going from attractors with essentially no (b < 0) or fixed (b >

0) activity in the ordered phase, to attractors being all irregulars

in the disordered phase, with cyclic attractors showing up at the

transition. In all plots, we report the non-zero BiEntropy variance

(highlighted by light-grey hatching) to indicate the critical region

(Calvet et al., 2023). This transition region is clearly defined for

K = 16, widens for K = 8 and becomes very different for K = 4.

When b < 0, there is a transition region around b ∼ −0.7 (gray

hashed region) and a re-entrance of the critical region (orange

hatching in Figure 4E). Indeed, for b between −0.7 and −0.08 (σ ⋆

between −10 and −2) all attractors are irregular, and cyclic ones

reappear for a balance closer to zero. For K = 4 and b > 0

the phase transition is never complete, there is no fully disordered

phase. Lastly, near b = 0, the attractor statistics are very close from

one sign to the other. For example, with K = 16 and K = 8 we

observe a horizontal line for chaotic attractors, while for K = 4,

the statistics of cyclic and irregular attractors closely match on both

sides, a fact that is even more visible in the results of Section 3.2.1

when varying N.

Regarding the control parameter shift from σ ⋆ to b, the phase

transition appears inflated in b, as indicated by the dot positions,

particularly for b < 0. These positions are generated on an

evenly spaced logarithmic scale in σ ⋆. The irregular regime is

notably compressed, demonstrated by the re-entrant critical region

(refer to Figure 4E), spanning from 2.101 to 103. This observation

suggests that the dynamics remain relatively consistent despite

significant variations in the weight distribution parameter. In line

with Metzner and Krauss (2022) and Calvet et al. (2023), we make

the case that underlying b is what is driving the dynamics of these

reservoirs. As such, in the rest of the article, we use b as a reference

for all further investigations.

In conclusion, K has a strong influence on the dynamics of the

network. For large values of K, a variety of attractors can be found

only in a narrow region of b (σ ⋆), which is different for both signs

of the balance. In contrast, for lower values of K, the co-existence

of several attractors is found over a very wide range of σ ⋆ which

corresponds to the region where b is small, positive or negative.

3.1.2 Impact of the connectivity degree and
balance on performance

In Figure 5, we show the performance of the reservoirs for

memory tasks as a function of the control parameter b (|σ ⋆| upper
x-axis). Five difficulties are operated, with δ varying from −2 to

−18. The left column comprises reservoirs with a negative balance

and the right column with a positive one. We show the results for

K = 16 (upper row), K = 8 (middle), and K = 4 (bottom).

For each value of the delay, reservoirs perform better at low

K, and show good performance over a broader range of b. Similar

observations have been reported for other tasks (Büsing et al.,

2010). The balance for which performance is best bopt (dotted gray

line) strongly depends on K: this is the most visible for b < 0 and

δ = −18 (the most difficult task), where bopt goes from almost −1

for K = 16, to almost 0 for K = 4 (see Supplementary Table 1).

For other values of δ the effect is less pronounced but clearly always

present. For b > 0 the same phenomenon appears and bopt shifts

from ∼ 0.2 for K = 16, to ∼ 0 for K = 4. Thus, the asymmetry

between b > 0 and b < 0 fades as K decreases. For K = 4,

the optimal balance, whether positive or negative, is almost zero,

i.e., it corresponds to an almost perfect balance between excitation

and inhibition. However, notes that performance drops abruptly for

b = 0: the unbalance, even very small, is essential.

In the prediction task (Figure 6), a similar trend is observed:

as K decreases, the high-performing region shifts toward b values

close to zero. Furthermore, the range of b values within the high-

performing region is also broader. Still, for K = 4, our task may

not be sufficiently challenging for the reservoirs, since at bopt , the

three values of τ give very close results. When b < 0, the critical

region (gray hashed area) does not align well with the performance

peaks, and this discrepancy is even more pronounced for lower
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FIGURE 3

Dynamics of free evolving reservoirs as controlled by the connectivity degree K (y-axis) and |σ ⋆| (x-axis). The upper x-axis displays the corresponding
b values, for b < 0 (A, C), and b > 0 (B, D). The BiEntropy is computed on the steady activities of 100 reservoirs per couple (K, σ ⋆). (A, B) The upper
row displays the average BiEntropy of the steady state activities (upper left colormap). (C, D) The lower row shows the variance of BiEntropy over
reservoirs (bottom left colormap).

K = 4. The peak of performance is still within the orange-hashed

region, indicative of re-entrant criticality. In the case where b > 0,

in line with previous work (Calvet et al., 2023), the variance is

exceptionally high, especially for simpler signals τ = 5 and τ = 15.

Surprisingly, for K = 16 and K = 4, reservoirs perform better at

the complex task than at the simpler task τ = 5.

Trying to relate criticality with peak performance, we observe

that if there is a link between the two, it is rather loose. For b < 0

the region of best performance is much broader than the critical

region, indicated as hatched gray areas. In many cases, bopt does

not lie within the critical region. For b > 0, criticality and optimal

performance seem more correlated, as optimal performance is

usually obtained within the critical region. However, focusing on

K = 4, b < 0 and the hardest memory task (Figure 5C), there is

a striking difference between criticality and optimal performance:

performance is almost zero in the critical region while it peaks

in the region of re-entrance observed in the dynamics of the free

running reservoirs, indicated in Figure 5C as an orange hatched

area. Both regions show a variety of attractors, but only one

corresponds to good performance.

To conclude, in Figure 7, we show a summary of the best

performance in the memory (upper panel), and prediction (lower

panel). In the plot, each dot represents the average over 20

reservoirs obtained with the same connectivity parameters (N,

K, bopt), where bopt is the value that maximizes the average

performance at the most difficult setting of each task (δ = −18 and

τ = 28), see Supplementary Tables 1, 2. As previously, we separated

the case b < 0 (left panel) and b > 0 (right panel). We compare the

performance for K = 1 up to 16.

For all tasks, we note that the highest performances are

consistently achieved with K = 3 and K = 4, irrespective of

whether b is positive or negative. However, the optimal value of K

exhibits some task dependency. In the memory task, for the more

challenging task (δ = −18), K = 4 yields the best performance,

despite K = 3 occasionally outperforming less demanding tasks.

This suggests that the optimal K may depend on the complexity

of the task at hand. The sign of b has no discernible impact

on the optimal K, however, it is observed that the performance

for higher K values is superior when b > 0, in line with

Calvet et al. (2023).

In the prediction task, again, the most challenging setup (τ =
28) shows K = 4 as the optimal value, irrespective of the sign

of b. In general, the reservoir-to-reservoir variance is very small

for b < 0. As previously observed, for higher K, we observe a

significant reservoir variability, and this time, the performance is

higher when b < 0.

Taken together, these findings suggest that once an optimal

value for K is selected, the system’s performance becomes mainly

insensitive to the sign of the balance b, even though the optimal K

can be dependent on the task at hand.

3.1.3 Discussion
In line with Calvet et al. (2023), for a positive balance,

the critical region is reasonably aligned with the performing

region, for all tested K. Yet our findings somewhat challenge the

idea that the edge of chaos is always optimal for computation,

as it does not necessarily overlap with the region of best

performance. This is especially visible in the memory tasks and

reservoirs with a negative balance. Indeed, for K = 4, the re-

entrant region provides the best reservoirs, while being very far

from criticality.
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FIGURE 4

Attractor statistics of free-evolving RBN reservoirs, controlled by K (rows), and the balance b (x-axis). The upper x-axis represents the corresponding
|σ ⋆| values, for b < 0 (A, C, E), and b > 0 (B, D, F). All reservoirs are of size N = 10, 000. Each steady activity signal is classified into one of the four
categories of attractors: no-activity ( ), fix ( ), cyclic ( ), irregular ( ). The statistics of attractors are computed over 100 reservoirs run once (y-axis).
Results are shown for K = 16 (A, B), K = 8 (C, D), and K = 4 (E, F). The light-gray hatched areas represent the critical regions (Calvet et al., 2023),
defined as the region of non-zero BiEntropy variance; the threshold is chosen to 0.0001. In (E), the orange hatched area represents a region of
re-entrance of criticality with non-zero BiEntropy variance, distinct from the critical region. All hatched areas are computed from the data shown in
Figures 3C, D.

By looking at dynamics, one might wonder if this re-

entrant region of attractor diversity (b < 0) does not belong

to the critical region of the positive side, which, by shifting

toward the left, overlaps on the negative sign. On the other

hand, we observe a drastic dip in performance with both

signs around b = 0. This suggests that a breaking of

symmetry is at play (Goldenfeld, 2018), acting as a crucial

driver for performance while being surprisingly imperceptible in

the dynamic.

Regarding reservoir design, we show that the optimal

excitatory/inhibitory balance is intricately tied to the number of

connections. For a high number of connections, a pronounced

asymmetry is observed depending on whether there is a majority

of inhibition or excitation.

However, when K = 4, the optimal b value is almost

identical and closely balanced between excitation and inhibition,

regardless of whether b is positive or negative. Consequently, the

dynamics of reservoirs are nearly identical for both positive and

negative b, resulting in similar performance outcomes. The task of

choosing the optimal bopt becomes much simpler, as the asymmetry

fades away.

3.2 The interplay between reservoir size
and connectivity degree

This section studies the joint effect of the reservoir size N

(=100, 1,000, 10,000) and K, in relation to b. We show that N

has a comparable impact on the dynamics as K, but also impacts

asymmetrically around b the performance in tasks.

3.2.1 Impact of reservoir size and connectivity
degree on dynamics

In Figure 8, we set K = 4 and present the attractor statistics

over b for three different values of N: N = 10, 000 (upper panel),

N = 1, 000 (middle panel), andN = 100 (lower panel). We analyze

these values in two cases, b < 0 (left panel) and b > 0 (right panel).

From our observations, it is evident that reducing N leads to

a decrease in the complexity of the attractors, as indicated by the

reduction of irregular attractors. In the case of b < 0 and as N

decreases, the re-entrant region (orange hashed area) observed with

N = 10, 000 (Figure 8A) merges with the critical one (gray hashed

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1348138
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Calvet et al. 10.3389/fncom.2024.1348138

FIGURE 5

Performance of RBN reservoirs in the memory task of white-noise signals, for various δ, the higher in absolute, the more di�cult the task. The
correlation between the target and the output (y-axis), is plotted as a function of the control parameter b (x-axis), for a positive balance (A–C), and a
negative balance (D–F). The upper x-axis represents the corresponding |σ ⋆| values. The solid lines represent the average over 20 reservoirs, higher
values signify better performance, while the shaded area represents one standard deviation. (A, D) The upper row displays K = 16, the middle row
(B, E) K = 8, and bottom row (C, F) K = 4. The light-gray hatched areas represent the critical regions of BiEntropy variance above a threshold of
0.0001, and the dotted gray lines represent the optimal balance bopt in the most di�cult task.

area) for N = 1, 000 (Figure 8C), resulting in a spike of irregular

attractors and eventually leaving room for predominantly cyclic

ones as N = 100 (Figure 8C).

Contrarily, for b > 0 and N = 1, 000, this spike or

irregular attractor is missing, and the critical phase is largely

dominated by cyclic attractors, with only a few fixed and irregular

ones. Interestingly, when N = 100, both signs yield very

similar results, with no irregular attractors at all. This observation

underscores the impact of N on the nature and complexity of

the attractors.

Lastly, when discussing Figure 4, we briefly mentioned the

continuity in attractor statistics as going from a negative to a

positive balance. This fact is even more salient in Figure 8. Statistics

of attractors closely match on both sides, reinforcing the picture

that the critical region can span both signs, at least from the

dynamic lens.

3.2.2 Impact of reservoir size and connectivity
degree on performance

Results for the memory task and prediction are, respectively,

displayed in Figures 9, 10. We tested the performance for K =

4 (upper panel), K = 8 (middle), and K = 16 (bottom).

Reservoirs with b < 0 are displayed in the left panel and

b > 0 in the right panel. We compare the performance

for three distinct values of N: N = 10, 000 (green curves),

N = 1, 000 (orange curves), and N = 100 (blue curves). As

in the previous Section 3.1.2, performance is shown for bopt ,

established for the most difficult setting in each task (δ = −18

and τ = 28).

In the memory task, as expected, reducing the number of

neurons diminishes the reservoirs’s memory capacity, and the

more difficult the task, the lower the performance. In addition,

decreasing the reservoir size generally increases the reservoir-to-

reservoir variance, as indicated by the larger error bars, even

though this is not always the case, especially when performance is

already low.

The number of neurons exerts a greater influence when K is

lower. Indeed, forK = 4, we observe a significant disparity between

all three N values across all difficulty levels (δ). Surprisingly, for

higher K, and especially when b < 0, performances for N =
1, 000 and N = 10, 000 are relatively comparable, and increasing

the reservoir size is not improving performance, especially for

tasks requiring longer memory. As previously noted, when K =
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FIGURE 6

Performance of RBN reservoirs in the prediction task of Mackey-Glass time series, for various τ , the higher, the more complex the signal. The
correlation between the target and the output (y-axis), is plotted as a function of the control parameter b (x-axis), for a positive balance (A–C), and a
negative balance (D–F). The upper x-axis represents the corresponding |σ ⋆| values. The solid lines represent the average over 20 reservoirs, higher
values signify better performance, while the shaded area represents one standard deviation. (A, D) K = 16, with similar result to Calvet et al. (2023), (B,
E) K = 8, and (C, F) K = 4. As in the previous figure, the light-gray hashed areas represent the phase transition region, and the dotted gray lines
represent the optimal balance bopt in the most di�cult task.

4, performance is similar regardless of whether b is positive or

negative, a finding that is now corroborated across all tested N

values.

It appears that K has minimal influence when N = 100,

as reservoirs perform similarly regardless of K. The same holds

true for both positive and negative b, which their identical

dynamics profiles might explain. This suggests that, for low neuron

counts, the system’s dynamics and performance are more strongly

influenced by the balance parameter b than by the number of

connections K.

In the prediction task, we observe some surprising trends.

Notably, having a higher N is not always advantageous, as the

optimal N appears to depend on both the task and the control

parameter.

Firstly, for b < 0, the performance profile is similar to that

in the memory task: higher N yields better performance, and

performance decreases with increasing task difficulty (τ ). However,

the performances of N = 10, 000 and N = 1, 000 are closer to each

other and significantly higher than that of N = 100, which again

remains unaffected by K.

Secondly, for b > 0, the value of K strongly influences the

relationship between performance and reservoir size. With K = 4,

the performance profile is similar to that for b < 0: performance

decreases monotonically with τ and N. However, for K = 8 and

especially for K = 16, we observe some unexpected results. Smaller

reservoirs (N = 1, 000) can outperform larger ones (N = 10, 000)

in some tasks. This phenomenon is even more pronounced for

higher K, as the orange line (representing N = 1, 000) consistently

outperforms the green line (representing N = 10, 000) across all

tested tasks.

4 Discussion

Our study reveals that the edge of chaos, or the critical region,

does not consistently align with the peak performance region

(Gallicchio, 2020), and this alignment is contingent upon the

sign of excitatory-inhibitory balance b. For b > 0, as previously

observed (Calvet et al., 2023), the critical region coincides with the

highest performance. However, for b < 0, the region of optimal

performance does not coincide with the critical region when the

connectivity degreeK is optimally selected. Instead, supplanting the

disordered phase, a re-entrance of the critical region is observed,

indicated by an increased attractor diversity, which surprisingly

aligns with the best-performing region. This insight suggests that
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FIGURE 7

Summary of performance for various connectivity degrees K, in the memory (A, B)and the prediction (C, D) tasks. For both b < 0 (left panel), and
b > 0 (right panel). For each value of K, we selected the bopt value giving the highest average performance, in the most di�cult task (δ = −18 for
memory, and τ = 28 for prediction). We plot the performance (higher is better) of reservoirs Corr(y,T) (y-axis), plotted as a function of K (x-axis). The
solid line represents the average over 20 reservoirs (generated with the same bopt and K value), and the shaded area represents one standard
deviation. Performance is shown for various δ in the memory task (A, B), and τ in the prediction (A, B).

the attractor dynamics can be utilized to identify the region of

interest for the design or reservoirs, and this also holds for b > 0

and its identified critical region (Calvet et al., 2023).

In terms of the interplay between b and the connectivity

degree K, our research shows that a carefully selected K (K =
4) renders the sign of b irrelevant, as the optimal b becomes

±ǫ with ǫ very small. This suggests that the optimal balance

is near, but not at, perfect symmetry, even though b → 0

results in zero performance. In statistical physics, it is well

known that symmetry breaking induces critical phase transitions

(Goldenfeld, 2018), and our findings suggest that symmetry

breaking in the balance of excitatory-inhibitory synapses is crucial

for achieving optimal performance. Refining initial literature

(Bertschinger and Natschläger, 2004; Snyder et al., 2013; Burkow

and Tufte, 2016; Echlin et al., 2018), the highest-performing region

is characterized by a preponderance of irregular attractors within

the disordered region.

To understand this, one can consider what happens when σ ∗

tends to infinity. This can be achieved in two ways: first, when the

standard deviation of the weight σ is fixed while the mean weights

µ → 0, and second, when µ is fixed while σ → ∞. The first case

has been covered in other works (Bertschinger and Natschläger,

2004; Büsing et al., 2010) and shows the importance of tuning the

scaling of the input weights with the recurrent weight statistics

(Burkow and Tufte, 2016). In the present work, however, the second

option is considered, as the mean weights is fixed, and σ increases

to higher values. As such, b approaches zero, which results in a

symmetry between excitation and inhibition but with increasingly

higher synaptic weights (in absolute value). Consequently, each

neuron receives equal excitatory and inhibitory recurrent inputs,

and since the input weights are kept constant, the external input

becomes insignificant. Finally, since neurons have a zero threshold,

they have a 50% probability of spiking, leading to a random spike

train. Therefore, it is not surprising to observe a performance dip as

σ → ∞ (b → 0) since the reservoir activity becomes independent

of the input. However, what requires further investigation is the

unexpected drastic performance increase when this symmetry is

slightly broken as b = ±ǫ ∼ 0.03 (roughly corresponding to a

6% difference between excitatory and inhibitory synapses).

Regarding the impact ofN on the performance, we show that K

again plays a crucial role. First, the fine-tuning of K removes the

asymmetry between b positive and negative. Second, in contrast

to previous studies with network sizes below 1, 000 (Bertschinger

and Natschläger, 2004; Büsing et al., 2010; Burkow and Tufte, 2016;

Echlin et al., 2018), our results somewhat challenge the common

wisdom that increasing N has an unconditional positive impact
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FIGURE 8

Attractor statistics of free-evolving RBN reservoirs for fixed K = 4, with N = 10, 000 (A, B), N = 1, 000 (C, D), and N = 100 (E, F). Statistics of attractors
over 100 reservoirs run once (y-axis) vs. b (x-axis). The upper x-axis displays the corresponding |σ ⋆|, both for b < 0 (left panel) and b > 0 (right panel).
Each activity signal is classified into one of the six categories of attractors: extinguished, fixed, cyclic, and irregular, defined in methodology
Section 2.3. The light-gray hatched areas represent the critical regions defined; the threshold is chosen to 0.0001. In (A), the orange hatched area
represents the region of re-entrance of criticality with non-zero BiEntropy variance.

on performance. Indeed, we observe in the prediction task that

K = 8 and K = 16 can provoke a non-monotonic relationship

between the top performance and N. Surprisingly, it is possible

to obtain networks of size 1, 000 that will outperform networks of

size 10, 000, while networks of size 100 can be found to perform

equivalently. However, this is only true when b > 0, and this effect

is also dependent on the task difficulty. For instance, in line with

Calvet et al. (2023), as one chooses N = 10, 000, both K = 16

and K = 8 give a performance that increases with the difficulty

of the task, while for smaller network size, the relation is in the

opposite direction. The reason behind this remarkably intricate

relationship has yet to be uncovered. On the other hand, when

b > 0, the results are comparable to the memory task, and the

picture gets clearer as K is decreased to 4; the increase of the

network size gives the best return on performance. This seems

to align with the work of Bertschinger and Natschläger (2004)

showing that when K = 4, RBN RC of sizes up to 1, 000 displays

a linear relationship between performance and N. Lastly, reservoir-

to-reservoir variability seems to decrease with network size, which

seems to corroborate the findings of Echlin et al. (2018) for

bigger N.

These findings highlight the critical role of K in determining

other control parameters. Firstly, the optimal number of

connections (K = 4) eliminates the performance asymmetry,

significantly simplifying the parameter b selection. Secondly,

consistent with previous studies, N generally enhances

performance, but this is only true for optimal K = 4 values,

particularly in the prediction task, where smaller reservoirs

occasionally outperform larger ones. Additionally, the performance

gain obtained by K is significant only when the reservoir size is

sufficiently large. For instance, with reservoirs of size N = 100, K

had close to no effect on the best performance. However, optimally

choosing K becomes key to obtaining a gain in performance when

increasing the network size.

Our work reveals a complex interplay between the topology

and weights parameters, but assuming a reservoir of sufficient size

(N ≥ 1, 000), K acts as a pivotal control parameter by greatly

simplifying the way parameters interact with each other. When K is

optimal, thenN must be maximized, and b can be chosen very close

to zero but finite and of any sign.

5 Future work

Understanding the relationship between dynamics and

performance is crucial for simplifying reservoir design
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FIGURE 9

Summary of performance in the memory tasks, for various connectivity degrees K, and size of the reservoirs N: for N = 10, 000 (green curves),
N = 1, 000 (orange curves), and N = 100 (blue curves). K = 16 (A, B), K = 8 (C, D), K = 4 (E, F). b < 0 (left column), and b > 0 (right column). Solid
lines represent the average over all reservoirs generated with the same reservoir (N, K, bopt), and the error bar represents one standard deviation. As
explained in Section 3.1.2, bopt is obtained by selecting the balance that gives the best average performance at the most di�cult setting in each
respective task.

(Bertschinger and Natschläger, 2004; Krauss et al., 2019a,b;

Metzner and Krauss, 2022; Calvet et al., 2023). As corroborated by

our findings and those of Calvet et al. (2023), the dynamics of the

attractor may significantly correlate with performance, particularly

in delineating the high-performing regions within the parameter

space b. This insight is noteworthy as it suggests the possibility

of limiting the scope of the parameter space through the analysis

of the dynamics of free runs, thereby circumventing the need

for numerous costly training simulations. While this observation

aligns with previous studies that have demonstrated the role of

attractors in memory retrieval (Wu et al., 2008; Zou et al., 2009)

and information processing (Cabessa and Villa, 2018), it does raise

intriguing questions. Specifically, the correlation of the re-entrant

region of criticality, marked by a predominance of irregular

attractors and a few cyclic ones with optimal performance, invites

a more comprehensive examination. With its noisy dynamics,

as evidenced by a high BiEntropy, this region challenges the

conventional understanding that chaos is associated with super-

critical regimes (Rubinov et al., 2011), and low input to state

correlation (Metzner and Krauss, 2022). The question of how

information is processed within the reservoir remains open. One

potential avenue for exploration could be the classification of

activity into more granular categories. Fortunately, the attractors

of RBN can be fully categorized (Zou et al., 2009), including the

enumeration of attractors and their sizes. This approach may

illuminate the unique characteristics of attractors that contribute

to performance. With a more nuanced comprehension of the

relationship between attractor dynamics and performance, future

research could leverage multiple attractor categories within a pool

of multiple reservoirs, as demonstrated in Ma et al. (2023), using

a block-diagonal weight matrix. This strategy could potentially

enhance the computational capabilities while reducing the

computational costs of RBN reservoirs.

Our study advances the quest for a clear methodology for

the design of RBN reservoirs by revealing a certain hierarchy of

importance in the choice of control parameters. Practically, this

means that the first parameter that should be determined is K,

which controls how other parameters will react to tasks. The

fine-tuning of K is important to simplify the choice of the other

parameters (N and b) and also because it drastically improves the

performance. What we show in the memory and prediction task

is that the optimal K is somewhat invariant but still sensitive to

the difficulty of the task; in all our tests, the most difficult level

showed a clear winner with K = 4, which is probably what most

real-life situations will require. On the other hand, it would be of

interest to validate that this value holds in other types of tasks, such
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FIGURE 10

Summary of performance in the prediction tasks, for various connectivity degrees K, and size of the reservoirs N: for N = 10, 000 (green curves),
N = 1, 000 (orange curves), and N = 100 (blue curves). K = 16 (A, B), K = 8 (C, D), K = 4 (E, F). b < 0 (left column), and b > 0 (right column). For more
information on the plots, see the caption of Figure 9.

as the classification of various input types (Embrechts et al., 2009).

Next, the choice of the parameter N remains trivial as long as K is

appropriately chosen. Taking into consideration our findings, one

can only recommend using a network of size at least 10, 000, since

below this, the gain in performance induced by the careful selection

of K is very limited. Regarding the interest of choosing an even

bigger network, future work could try to push the reservoirs into

more difficult tasks, for example, by increasing δ, the shift in time

between input and target, setting the difficulty of the task, and test

the gain in performance with larger N.

Lastly, our findings reveal a more intricate relationship than

anticipated for the link between K and b. Specifically, performance

was found to be highly sensitive to symmetry breaking in the

excitation-inhibition balance, while the metrics used to probe the

dynamics were completely unaware of the symmetry. In practice,

however, this unexpected link means a simpler design. This is

because, in contrast to the study Calvet et al. (2023) performed on

K = 16, when K = 4, the choice of b also becomes simple; it

must be very close to zero, and the sign is not relevant anymore.

Still, future research could investigate the relationship between

the optimal balance and other dynamic-probing metrics, including

spatial and temporal correlation (Metzner and Krauss, 2022), more

specific attractor analysis (Wu et al., 2008; Zou et al., 2009), and

possibly topology (Kinoshita et al., 2009; Masulli and Villa, 2016).

For instance, it could be hypothesized that the longest neural

pathways in the random graph become available for information

transmission only at b = ±ǫ, which could explain why optimal

performance necessitates a breaking of symmetry in the balance.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://zenodo.org/

records/10247107.

Author contributions

EC: Methodology, Software, Writing – original draft. BR:

Funding acquisition, Supervision, Writing – review & editing. JR:

Funding acquisition, Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2024.1348138
https://zenodo.org/records/10247107
https://zenodo.org/records/10247107
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Calvet et al. 10.3389/fncom.2024.1348138

was supported by the CRSNG/NSERC (Discovery Grant RGPIN-

2017-06218), the Canada Research Chair Program, NSERC,

and CFREF.

Acknowledgments

The authors are grateful to Lucas Herranz for

carefully reviewing the manuscript. They also want

to thank their colleagues at NECOTIS for their

helpful feedback and productive discussions during the

research process.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncom.

2024.1348138/full#supplementary-material

References

Aljadeff, J., Stern, M., and Sharpee, T. (2015). Transition to chaos in
random networks with cell-type-specific connectivity. Phys. Rev. Lett. 114, 1–5.
doi: 10.1103/PhysRevLett.114.088101

Arviv, O., Medvedovsky, M., Sheintuch, L., Goldstein, A., and Shriki, O. (2016).
Deviations from critical dynamics in interictal epileptiform activity. J. Neurosci. 36,
12276–12292. doi: 10.1523/JNEUROSCI.0809-16.2016

Bertschinger, N., and Natschläger, T. (2004). Real-time computation at the
edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436.
doi: 10.1162/089976604323057443

Bianchi, F. M., Livi, L., and Alippi, C. (2016). Investigating echo state networks
dynamics by means of recurrence analysis. IEEE Transact. Neural Netw. Learn. Syst.
29, 427–439. doi: 10.1109/TNNLS.2016.2630802

Brunel, N. (2000). Dynamics of networks of randomly connected
excitatory and inhibitory spiking neurons. J. Physiol. 94, 445–463.
doi: 10.1016/S0928-4257(00)01084-6

Burkow, A. V., and Tufte, G. (2016). Exploring Physical Reservoir Computing
using Random Boolean Networks (PhD thesis). Norwegian University of Science and
Technology - NTNU. Available online at: http://hdl.handle.net/11250/2417596

Büsing, L., Schrauwen, B., and Legenstein, R. (2010). Connectivity, dynamics, and
memory in reservoir computing with binary and analog neurons. Neural Comput. 22,
1272–1311. doi: 10.1162/neco.2009.01-09-947

Cabessa, J., and Villa, A. E. P. (2018). Attractor dynamics of a Boolean
model of a brain circuit controlled by multiple parameters. Chaos 28:106318.
doi: 10.1063/1.5042312

Calvet, E., Rouat, J., and Reulet, B. (2023). Excitatory/inhibitory balance emerges
as a key factor for RBN performance, overriding attractor dynamics. Front. Comput.
Neurosci. 17:1223258. doi: 10.3389/fncom.2023.1223258

Cattaneo, G., Finelli, M., andMargara, L. (1997). “Topological chaos for elementary
cellular automata,” in Italian Conference on Algorithms and Complexity CIAC 1997, Vol.
1203 (Springer), 241–252. Availabla online at: http://link.springer.com/10.1007/3-540-
62592-5_76

Cherupally, S. K. (2018). Hierarchical Random Boolean Network Reservoirs.
Technical Report. Portland, OR: Portland State University. Available online at: https://
archives.pdx.edu/ds/psu/25510

Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., et al.
(2020). Control of criticality and computation in spiking neuromorphic networks with
plasticity. Nat. Commun. 11:2853. doi: 10.1038/s41467-020-16548-3

Croll, G. J. (2014). “BiEntropy—the measurement and algebras of order and
disorder in finite binary strings,” in Scientific Essays in Honor of H Pierre Noyes on the
Occasion of His 90th Birthday, eds J. C. Amson, and L. H. Kauffman, 48–64. Available
online at: http://www.worldscientific.com/doi/abs/10.1142/9789814579377_0004

Echlin, M., Aguilar, B., Notarangelo, M., Gibbs, D., and Shmulevich, I. (2018).
Flexibility of Boolean network reservoir computers in approximating arbitrary
recursive and non-recursive binary filters. Entropy 20:954. doi: 10.3390/e201
20954

Ehsani, M., and Jost, J. (2022). Self-organized criticality in a mesoscopic
model of excitatory-inhibitory neuronal populations by short-term and long-term
synaptic plasticity. Front. Comput. Neurosci. 16:910735. doi: 10.3389/fncom.2022.9
10735

Embrechts, M. J., Alexandre, L. A., and Linton, J. D. (2009). “Reservoir computing
for static pattern recognition,” in ESANN 2009, 17th European Symposium on Artificial
Neural Networks (Bruges: ESANN).

Galera, E. F., and Kinouchi, O. (2020). Physics of psychophysics: large dynamic
range in critical square lattices of spiking neurons. Phys. Rev. Res. 2:033057.
doi: 10.1103/PhysRevResearch.2.033057

Gallicchio, C. (2020). “Sparsity in reservoir computing neural networks,” in 2020
International Conference on INnovations in Intelligent SysTems and Applications
(INISTA) (IEEE), 1–7. Available online at: https://ieeexplore.ieee.org/document/
9194611/

Glass, L., and Hill, C. (1998). Ordered and disordered dynamics in random
networks. Europhys. Lett. 41, 599–604. doi: 10.1209/epl/i1998-00199-0

Goldenfeld, N. (2018). Lectures on Phase Transitions and the Renormalization
Group. CRC Press. Available online at: https://www.taylorfrancis.com/books/
9780429962042

Goudarzi, A., Banda, P., Lakin, M. R., Teuscher, C., and Stefanovic, D. (2014). A
comparative study of reservoir computing for temporal signal processing. arXiv. 1–11.
doi: 10.48550/arXiv.1401.2224
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