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Synchronous dynamics play a pivotal role in various cognitive processes.

Previous studies extensively investigate noise-induced synchrony in coupled

neural oscillators, with a focus on scenarios featuring uniform noise and equal

coupling strengths between neurons. However, real-world or experimental

settings frequently exhibit heterogeneity, including deviations from uniformity in

coupling and noise patterns. This study investigates noise-induced synchrony in

a pair of coupled excitable neurons operating in a heterogeneous environment,

where both noise intensity and coupling strength can vary independently.

Each neuron is an excitable oscillator, represented by the normal form of

Hopf bifurcation (HB). In the absence of stimulus, these neurons remain

quiescent but can be triggered by perturbations, such as noise. Typically,

noise and coupling exert opposing influences on neural dynamics, with noise

diminishing coherence and coupling promoting synchrony. Our results illustrate

the ability of asymmetric noise to induce synchronization in such coupled

neural oscillators, with synchronization becoming increasingly pronounced as

the system approaches the excitation threshold (i.e., HB). Additionally, we find

that uneven coupling strengths and noise asymmetries are factors that can

promote in-phase synchrony. Notably, we identify an optimal synchronization

state when the absolute di�erence in coupling strengths ismaximized, regardless

of the specific coupling strengths chosen. Furthermore, we establish a robust

relationship between coupling asymmetry and the noise intensity required to

maximize synchronization. Specifically, when one oscillator (receiver neuron)

receives a strong input from the other oscillator (source neuron) and the source

neuron receives significantly weaker or no input from the receiver neuron,

synchrony is maximized when the noise applied to the receiver neuron is

much weaker than that applied to the source neuron. These findings reveal

the significant connection between uneven coupling and asymmetric noise

in coupled neuronal oscillators, shedding light on the enhanced propensity

for in-phase synchronization in two-neuron motifs with one-way connections

compared to those with two-way connections. This research contributes to a

deeper understanding of the functional roles of network motifs that may serve

within neuronal dynamics.
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1 Introduction

The synchronization of neural oscillations is acknowledged for its role in

facilitating communication between neurons (Varela et al., 2001; Fell and Axmacher,

2011), and is essential for higher order cognitive processes including memory

formation, motor coordination, and sensory information processing (Varela et al., 2001;
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Womelsdorf and Fries, 2007; Kawasaki et al., 2018). Noise,

prevalent in real neural networks, plays a crucial role in giving

rise to emergent dynamics that may serve important physiological

functions (Varela et al., 2001; Fell and Axmacher, 2011). One

intriguing constructive effect of noise is noise-induced synchrony,

wherein noise alone can induce coordinated and synchronized

dynamics. This phenomenon has been widely explored, especially

in neural networks, as shown by studies such as (Perc and

Marhl, 2006; Perc, 2007; Touboul et al., 2020). Network motifs

are frequently recurring structural patterns in neuronal networks,

commonly regarded as the fundamental building blocks of complex

networks (Milo et al., 2002; Reigl et al., 2004). Among network

motifs, those featuring two neurons are notably more prevalent

than other multi-neuron motifs (Reigl et al., 2004; Song et al.,

2005), making them central to shaping the collective behavior of

the network. Consequently, this study focuses on the noise-induced

synchrony of themost over-representedmotifs: two-neuronmotifs.

In the context of two-neuron motifs or two coupled oscillators,

prior research has extensively studied the noise-induced synchrony

under homogeneous configurations such as common noise (where

each neuron encounters identical noise), symmetric noise where

each neuron has independent noise but with equal noise intensity),

and couplings of exactly equal strengths between neurons.

These investigations are well-documented in reviews and books

(Rosenblum et al., 2001; Pikovsky, 2002; Boccaletti et al., 2006). In

real-world or experimental scenarios, however, coupling and noise

patterns often deviate from uniformity (Song et al., 2005; Morgan

and Soltesz, 2008). Our understanding of the broader implications

associated with the effects of asymmetric noise (where each neuron

receives independent noise sources with different noise intensities)

and uneven coupling (e.g., unequal coupling strength) is limited, as

only a few studies have explored the influence of heterogeneity in

noise and/or coupling on the dynamics of two coupled neuronal

oscillators. For example, the interplay between uneven coupling

strengths and symmetric noise in two coupled oscillators has been

shown to promote synchronization (Blasius, 2005) and enhance

the transmission of sub-threshold external signals (Masoliver and

Masoller, 2018). In a pair of coupled oscillators with uneven

coupling and asymmetric additive noise (Amro et al., 2015) finds

that the phase coherence of one oscillator is a non-monotonic

function of the additive noise applied to the other oscillator: as the

phase coherence of one oscillator decreases, the other increases.

To address these less explored aspects, this paper investigates

the synchronous dynamics of a pair of excitable neurons in the

presence of two sources of heterogeneity: asymmetric noise and

uneven coupling. Here the excitable neurons are modeled by the

normal form of aHopf bifurcation (HB), a deterministic framework

underpinning critical transitions between quiescent and oscillatory

states in complex systems. Therefore our findings provide a

versatile framework for illustrating a diverse array of dynamical

patterns near a HB within a heterogeneous configuration. Given

that the two-neuron motif constitutes a fundamental element

in a neuronal network, this study contributes valuable insights

into the generation of diverse network behaviors in the context

of heterogeneity in both noise and coupling. The structure of

the remainder of this paper is as follows: Section 2 provides an

introduction to the mathematical model and the methodologies

used. In Section 3.1, we present the bifurcation diagram of two

deterministic oscillators and Section 3.2 introduces noise-induced

oscillations. Section 3.3 focuses on demonstrating noise-induced

synchrony and how asymmetric noise affects this synchrony. In

Section 3.4, we study the effects of the bifurcation parameter on

synchronization, and in Section 3.5, we examine the dual effects

of uneven coupling and asymmetric noise on synchrony. Finally,

Section 4 offers a summary and engages in a discussion of the

findings.

2 Materials and methods

Synchrony in neural oscillators is not solely determined by

their phase; rather, the statistical prevalence of amplitude dynamics

influencing synchronization is noteworthy (Gambuzza et al., 2016).

This phenomenon, referred to as amplitude-sensitive synchrony, is

a distinctive characteristic of oscillators located near an HB. Hence,

our research employs the λ − ω system, recognized as a minimal

model (or normal form), capable of capturing both amplitude and

phase dynamics of an oscillator in the proximity of a HB. Therefore,

the insights gained from this study have broader applicability to

other dynamical systems situated in the vicinity of a HB.

2.1 Model

We examine a duo of coupled λ − ω oscillators, selected with

specific parameters that position the model near a supercritical

HB. In the absence of noise, these oscillators remain quiescent,

but they become excited upon the introduction of an intrinsic

noise stimulus. Their coupling strength is uneven, and they are

subjected to asymmetric intensities of additive noise. Moreover,

both oscillators are represented by the set of stochastic differential

equations (SDEs).

dxi = [λ(ri)xi − ω(ri)yi + di(xj − xi)]dt + δidηi(t) (1)

dyi = [ω(ri)xi + λ(ri)yi + di(yj − yi)]dt (2)

r2i = x2i + y2i (3)

where i, j = 1, 2. ri =

√

x2i + y2i represents the amplitude of

the ith oscillator. λ(ri) = λ0 + αr2i + γ r4i controls the increment

and decrement of the amplitude of the ith oscillator. λ0 is the

control parameter and a HB occurs at λ0 = 0 (see Figure 1A).

ω(ri) = ω0 + ω1r
2
i determines the increment and decrement of

the frequency of the ith oscillator. We consider a supercritical HB

by setting the parameter values as α = −0.2, γ = −0.2, ω0 = 2,

and ω1 = 0. di(xj − xi) and di(yj − yi) represent diffusive coupling

between oscillators i and jwith oscillator specific coupling strength,

di, i = 1, 2. δidηi(t) represents an independent intrinsic noise

applied to xi (i.e., the noise is unique to each oscillator) where ηi(t)

is a Wiener process with zero mean and unity variance and δi is the

noise intensity. We restrict our attention to the excitatory coupling

in the range 0.01 ≤ d1, d2 ≤ 0.3 (as in Yu et al., 2008).
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FIGURE 1

Bifurcation diagrams of the deterministic system (δ1 = δ2 = 0) vs. control parameter λ0. (A) single/uncoupled oscillator (x = x1 = x2) with d1 = d2 = 0,

a single Hopf bifurcation (HB) occurs at λ = 0. (B) symmetrically coupled oscillators (x1, x2) with d1 = d2 = 0.05, (C, D) asymmetrically coupled

oscillators (x1 and x2, respectively) with d1 = 0.1 and d2 = 0.01. Two HB points, HB1 and HB2, occur and are indicated by blue and orange dots,

respectively. The value of λ0 corresponding to HB1 is zero in (B–D). Stable solutions are marked by solid blue lines and solid black lines, and unstable

solutions are marked by dashed blue lines and dashed black lines. Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; and ω1 = 0.

2.2 Methods

To study the interplay of noise and coupling and its effect on

the synchronization of our model we analyze the synchrony of both

oscillators when subject to the additive noise, δidηi, i = 1, 2. Since

the oscillators rotate about the fixed point (xi, yi) = (0, 0), i = 1, 2,

when driven by noise, the time-dependent phase of each oscillator

is taken to be the natural phase (Rosenblum et al., 2001),

φi(t) = arctan (yi(t)/xi(t)) (4)

i = 1, 2. In the classical treatment of phase analysis, synchrony

measures are often based on the distribution of the phase difference,

1φn,m = nφ2 − mφ1, where n,m ∈ N characterize the

order of locking (Rosenblum et al., 2001, 2022). However, in the

presence of noise, the phase of the oscillators can exhibit random

jumps of ±2π , called phase slips, which can cause the phase

difference, 1φn,m, to compound errors, and lead to erroneous

results. Therefore, instead of considering the natural phase in

Equation 4, we consider the cyclic relative phase (Mormann et al.,

2000; Rosenblum et al., 2001),

ϕi(t) = φi(t) mod 2π (5)

which is the natural phase wrapped over the unit circle.

This procedure ensures that errors in 1ϕn,m caused by phase

slips do not compound which leads to more stable numerical

results. Furthermore, for simplicity, we consider only 1 − 1

synchronization: 1ϕ = 1ϕ1,1.

The bifurcation diagrams (i.e., Figures 1, 2) are generated

using XPPAUT software (Ermentrout, 2012). All further analysis

(i.e., Figures 3–9) is conducted using MATLAB. To simulate the

SDEs in Equations 1, 2 we use the Euler-Maruyama method with

time-step dt = 0.01 and arbitrary random initial conditions

xi(0), yi(0) ∼ N(0, 0.0082), i = 1, 2. Due to the nature of

white noise, noise-induced oscillations contain high-frequency

fluctuations at very low or very high noise intensities, which

poses difficulties in the computation of phase. Hence, to achieve

more consistent numerical results a low-pass filter is applied to

remove high-frequency fluctuations. The signal-to-noise ratio, β ,

and synchronization measures |1ϕ|, R, and ρ in Equations 6–9,

respectively, are averaged over N = 200 trials. The XPPAUT

and MATLAB source code can be found at: https://github.com/

TMUcode/CoupleNeurons.

3 Results

3.1 Bifurcation analysis

The dynamics of the deterministic system (δ1 = δ2 = 0) are

examined in this section. We consider three cases and compare

their bifurcation diagrams: single (i.e., uncoupled) oscillators with

d1 = d2 = 0 (Figure 1A), two symmetrically coupled oscillators

with d1 = d2 6= 0 (Figure 1B), and two asymmetrically coupled

oscillators with d1 6= d2 (Figures 1C, D). When λ0 < 0, both

oscillators in all three cases are quiescent, they rest at stable fixed

points, as shown in Figure 1 (solid black line). Conversely, when

λ0 > 0, the fixed points are destabilized (dashed black line), and

stable periodic orbits emerge (solid blue line) in all three cases.

Both isolated (Figure 1A) and coupled (Figures 1B–D) oscillators

undergo a supercritical HB (denoted as HB1) at λ0 = 0. However,

when the oscillators are coupled, the system exhibits a second HB

(denoted as HB2) which leads to unstable periodic orbits (dashed

blue line in Figures 1B–D).

When the oscillators are symmetrically coupled (e.g., d1, d2 =

0.05 in Figure 1B), the amplitudes of the periodic orbits generated

by both oscillators are identical for each λ0 value, however,

the unstable periodic orbits have an amplitude that is slightly

less than the amplitude of the stable periodic orbits. When

the oscillators are coupled asymmetrically (e.g., d1 = 0.1

and d2 = 0.01 in Figures 1C, D), the bifurcation diagram

for one oscillator (Figure 1C) is identical to its counterpart in

Figure 1B, whereas, the bifurcation diagram of the other oscillator

(Figure 1D) shows a single difference: the amplitude of the unstable

periodic orbit is near zero, which is much smaller counterpart in

Figure 1B.

To further explore the effects of coupling on the deterministic

system, we calculate the two-parameter bifurcation diagrams of our

model by taking both the coupling strength, di, and λ0 as control

parameters. The trajectory of HB1 (solid blue line) in the two-

parameter bifurcation diagram in Figure 2 indicates the transition

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1347748
https://github.com/TMUcode/CoupleNeurons
https://github.com/TMUcode/CoupleNeurons
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jagdev and Yu 10.3389/fncom.2024.1347748

FIGURE 2

Two-parameter bifurcation diagrams (coupling strength di vs. λ0) for three coupling cases: (A) symmetric coupling strengths, d1 = d2, (B) asymmetric

coupling strengths with varying d1 and fixed d2 = 0.05, and (C) asymmetric coupling strengths with varying d2 and fixed d1 = 0.05. The branches

labeled HB1 (solid blue) and HB2 (dashed blue) represent the same two distinct HB points in Figure 1. The value of λ0 corresponding to HB1 is

consistently zero across three cases, aligning with the observation in Figure 1. Conversely, the value of λ0 corresponding to HB2 linearly increases

with di. Other parameters are: δ1 = δ2 = 0; α = −0.2; γ = −0.2; ω0 = 2; and ω1 = 0.

of the system between the quiescent and oscillatory states in the

deterministic regime remains the same (λ0 = 0) no matter the

coupling strength. Moreover, the deterministic system is quiescent

when λ0 < 0, but can be excited by an external stimulus (e.g., noise)

to produce oscillations. Thus, we refer to the left side of HB1 as the

excitable regime, and the right side of HB1 as the oscillatory regime.

Although HB2 is not a determinant factor of the excitability in

the deterministic regime, we find that it has a relationship with the

coupling strength: λ0 ≈ d1 + d2. Specifically, when the coupling is

symmetric (d1 = d2), HB2 occurs at λ0 ≈ 2di, i = 1 or 2, resulting

in a line with a slope approximately equal to 1/2, as depicted by

the dashed blue line in Figure 2A. For asymmetric couplings, such

those obtained by varying d1 while fixing d2 = 0.05, HB2 appears

as a straight line with a slope approximately equal to 1 (dashed

blue line in Figure 2B), since λ0 ≈ d1 + 0.05. Another example

of asymmetric coupling is obtained by varying d2 while fixing d1 =

0.05, which yields a straight line with the equation λ0 ≈ d2 + 0.05

(dashed blue line in Figure 2C).

3.2 Noise-induced oscillations

In this section, we study noise-induced oscillations. The control

parameter λ0 is set to be in the excitable regime, for example,

λ0 = −0.5. As a result, the deterministic system, with δ1 =

δ2 = 0, displays damped oscillations that eventually converge

to the fixed point (xi = yi = 0, i = 1, 2), as illustrated in

Figure 3A. However, when the intrinsic noise, δidηi, is introduced,

it can trigger repeated excursions from the stable fixed point which

leads to oscillatory motion; otherwise known as noise-induced

oscillations. Examples are presented in Figures 3B–D which display

sample time series of x1 and x2 in the presence of the intrinsic

noise stimulus with different intensities. When the noise intensity

is small and symmetric (e.g. δ1 = δ2 = 0.01 in Figure 3B) there are

intermittent periods of phase drift and phase locking; both in-phase

and anti-phase. When the noise intensities become asymmetric by

increasing one of the noise intensities, for example, δ1 = 0.01

and δ2 = 0.05 as in Figure 3C, the time series for x1 (blue line)

and x2 (orange line) exhibit increased regularity and longer epochs

of in-phase locking. Furthermore, if δ2 is increased further, for

example, δ2 = 3 as in Figure 3D, the oscillations of x2 become

less regular and more chaotic. Overall, these examples demonstrate

that synchrony can be optimized by tuning just one of the noise

intensities to be an intermediate value.

To determine an appropriate range of noise intensities, δ1 and

δ2, we make use of the signal-to-noise ratio measure (Gang et al.,

1993; Pikovsky and Kurths, 1997).

β = hp(1ω/ωp)
−1 (6)

where hp and ωp denote the height and central frequency of the

power spectrum density peak of x, respectively, and 1ω denotes

the width of the power spectrum density peak at half-maximal

power, e−1/2hp. We have computed the relationship between β

and δ for a single λ − ω oscillator, (x, y), and present the results

in Figure 4. When δ < 0.01, we find β is significantly small,

indicating that the noise level is too weak. However, as the level

of noise gradually increases, the β curve displays a peak around

δ = 0.9, indicating that this noise intensity is optimal. For larger

values of δ, specifically, when δ > 0.9, we observe a sharp decrease

in β , suggesting that the noise intensity is now overpowering the

regularity of oscillations. Therefore, based on these observations,

we select the range 0.01 ≤ δ1, δ2 ≤ 5 for our analysis.

3.3 Noise-induced synchronization and
asymmetric noise intensity

The results presented in Section 3.2 suggest that the synchrony

of our system with asymmetric noise and uneven coupling can be

optimized by adjusting the noise intensities, δ1 and δ2. To quantify

the effects of noise on the synchrony of our model more rigorously,

we introduce three measures of synchrony. The first measure is the

absolute phase difference, denoted |1ϕ|, which is defined as

|1ϕ| =
1

T − t0

∫ T

t0

|ϕ1(t)− ϕ2(t)| dt (7)

where ϕi(t) is the phase of the ith oscillator. Since our model

considers excitatory coupling, we focus on the in-phase dynamics
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FIGURE 3

Time series of x1 and x2 in the excitable regime (λ0 < 0) with various noise intensities: (A) δ1 = δ2 = 0, (B) δ1 = δ2 = 0.01, (C) δ1 = 0.01 and δ2 = 0.05,

and (D) δ1 = 0.01 and δ2 = 3. The blue lines represent x1 and the orange lines represent x2. (A) shows the deterministic system with a stable fixed

point at xi = 0, resulting in an overlap between x1 and x2. (B–D) illustrate the noise-induced oscillations, with (C) showing higher levels of regularity

and synchrony in comparison to (B, D). Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; λ0 = −0.5; d1 = 0.3; and d2 = 0.01.

FIGURE 4

Signal-to-noise ratio measure β vs. noise intensity δ for a

single/uncoupled neuron oscillator in the excitable regime (λ0 < 0).

Greater regularity in noise-induced oscillations is indicated by larger

values of β. The largest β occurs when noise intensity is δ = 0.9.

Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; and

λ0 = −0.5.

of the oscillators, such that smaller values of |1ϕ| correspond to

a greater degree of synchrony. The second measure we use is the

mean phase coherence, denoted R, which is defined as (Mormann

et al., 2000; Rosenblum et al., 2001),

R =

√

√

√

√

(

1

T − t0

∫ T

t0

sin1ϕ dt

)2

+

(

1

T − t0

∫ T

t0

cos1ϕ dt

)2

(8)

where 1ϕ = ϕ1 − ϕ2. The value of R ranges from 0 to 1, and

larger values of R indicate a greater degree of synchrony. The third

synchronization measure we use is the normalized synchronization

index, denoted ρ, which is defined as (Rosenblum et al., 2001),

ρ =
Smax − S

Smax
(9)

where S = −
∑M

k=1 pk ln pk is the Shannon entropy, Smax = lnM

is the maximum entropy, pk refers to the probability of finding 1ϕ

in the kth bin of the histogram, and M is the total number of bins.

The quantity ρ is normalized to 0 ≤ ρ ≤ 1, and smaller values of ρ

indicate a narrower distribution of 1ϕ and thus a greater degree of

synchrony.

To begin we consider the effect of a single noise intensity on

the degree of synchrony between two unevenly coupled oscillators.

To achieve this, we set d1 6= d2, fix one noise intensity to

be δ1 = 0.05, and vary the other noise intensity, δ2, from

0.01 to 5 and compute the level of synchrony using the three

measures listed above. We present the results in Figure 5A, where

the blue, orange, and black curves correspond to |1ϕ|, R, and

ρ, respectively. For weak δ2, both ρ and |1ϕ| show a rapid

decrease while R displays a rapid increase. These consistent

results suggest that the level of synchrony is increasing. However,

for strong δ2, we notice an opposite trend, where ρ and |1ϕ|

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1347748
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jagdev and Yu 10.3389/fncom.2024.1347748

FIGURE 5

(A) Three measures of phase synchronization: |1ϕ| (the absolute value of the phase di�erence), R (the mean phase coherence), and ρ (the

synchronization index) vs. δ2. The orange, blue, and black curves correspond to R, |1ϕ|, and ρ, respectively. The three vertical dashed lines labeled by

a, b, and c correspond to δ2 = 0.05, 0.95, and 3, respectively. Smaller values of |1ϕ| and ρ, and larger values of R indicate greater noise-induced

synchrony. All three measures demonstrate consistent synchrony dynamics as δ2 varies, reaching maximum synchrony at δ2 = 0.95. (B) The empirical

probability density functions of 1ϕ, with the curves a, b, and c corresponding to noise intensities δ2 = 0.05, 0.95, and 3 as in (A), respectively. The

peaks of density functions corresponding to a, b, and c are 1ϕ = −0.12, 0.08, and 0.12, respectively. Curve b with δ2 = 0.95 exhibits the most

concentrated distribution of 1ϕ, indicating optimal noise-induced synchrony, consistent with the finding in (A). Other parameters are: δ1 = 0.05;

α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; λ0 = −0.5; d2 = 0.01; and d1 = 0.3.

increase while R decreases, indicating a decrease in the level of

synchrony.

Furthermore, synchrony is maximized at an intermediate noise

intensity, which we find to be δ2 = 0.95 for all three measures

in Figure 5A. Notice that it is close to the optimal noise intensity

of a single oscillator as shown in Figure 4. These changes in

synchrony may also be observed from the probability density

functions of1ϕ shown in Figure 5B. The dotted blue curve (labeled

a), solid blue curve (labeled b), and dashed blue curve (labeled c)

correspond to noise intensities δ2 = 0.05, 0.95, and 3, respectively

(i.e., points a, b, and c in Figure 5A). As δ2 increases from weak

to intermediate levels, the center of the distribution of 1ϕ shifts

from small negative values toward the point 1ϕ = 0, which

represents in-phase synchronization. Moreover, the distribution

of 1ϕ is centered at 0.08 at the optimal noise intensity δ2 =

0.95 in Figure 5A. Additionally, the width and peak of the

distribution become narrower and higher, respectively, indicating

a more concentrated distribution of phase differences between the

two oscillators (i.e., a higher level of synchrony). As the noise

intensity continues to increase, the center of the 1ϕ distribution

remains almost unchanged, but its width and peak increase and

decrease, respectively, which is indicative of a lower degree of

synchrony.

Next, we investigate how both noise intensities, δ1 and δ2, affect

the level of synchrony between two unevenly coupled oscillators.

To systematically examine their influence, we generate heat maps,

which represent the level of synchrony using the measures |1ϕ|

and R over the parameter space 0.01 ≤ δ1, δ2 ≤ 5, as illustrated

in Figures 6A, B, respectively. In Figure 6A, warmer colors indicate

larger values of |1ϕ| (i.e., lower levels of synchrony), while cooler

colors correspond to smaller values of |1ϕ| (i.e., higher levels of

synchrony). Note, a three-dimensional representation of Figure 6A

is also presented in Supplementary Figure 1A. The heat map of

R in Figure 6B corroborates the results obtained from Figure 6A,

but with a different color scheme; warmer colors indicate higher

levels of synchrony (i.e., larger R values), while cooler colors denote

lower levels of synchrony (i.e., smaller R values). As such, we

will primarily focus on Figure 6A. The highest level of synchrony

(i.e., the absolute minimum of |1ϕ|) is observed in the dark blue

triangular region [where δ1 ∈ [0.01, 0.06], δ2 ∈ [0.1, 1], and

δ1/δ2 ≈ 0.2]. A local minimum of |1ϕ| is also observed in

the lower right part of the heat map [where δ1 ∈ [0.8, 3] and

δ2 ∈ [0.01, 0.015]], with a relatively high level of synchrony. Due

to uneven coupling strengths (d1 = 0.3 and d2 = 0.01) used in

Figure 6, the locations of the absolute and local minima are not

symmetrical. Our numerical results further indicate a relationship

between the coupling strength and the optimal noise intensity

required to achieve the maximum level of synchrony (i.e., the

absolute maximum of |1ϕ|). For instance, as shown in Figure 6,

oscillator 1 has a larger coupling strength than oscillator 2 (i.e.,

d1 > d2), thus requiring δ1 < δ2 to achieve the largest level

of synchrony. In Section 3.5 we study the interplay of coupling

and noise intensity and their effects on the synchrony in greater

detail.

3.4 The e�ects of λ0 on synchronization

As explained in Section 2.1, our system operates in the excitable

regime, λ0 < 0, where HB1 occurs at λ0 = 0. Previous

research (e.g., Yu et al., 2009, 2021) has demonstrated that in

excitable networks, the distance of the control parameter from

a critical point (or excitation threshold) is negatively correlated

with synchronization. Moreover, in this section, we investigate the

effects (if any) of the control parameter λ0 on the level of synchrony.
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FIGURE 6

(A) Heat map of the mean absolute phase di�erence |1ϕ|, as a function of noise intensities δ1 and δ2. Colder colors correspond to smaller values of

|1ϕ| and a decrease in |1ϕ| indicates greater synchrony. The maximum synchrony is located within the dark blue triangle on the left side. The

three-dimensional visualization of (A) is depicted in Supplementary Figure 1A. (B) Heat map of mean phase coherence, R, as a function of δ1 and δ2.

Warmer colors correspond to larger values of R and an increase in R indicates better noise-induced synchrony. The maximum synchrony is within

the yellow triangle on the left side, consistent with the observation in (A). Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; λ0 = −0.5;

d1 = 0.3; and d2 = 0.01.

We only use |1ϕ| as a measure of synchrony since it shows results

consistent with ρ and R, as demonstrated in Figures 5, 6.

We begin by evaluating |1ϕ| for various λ0 values within the

excitable regime, λ0 < 0, as illustrated in Figure 7 (|1ϕ| vs. δ2 with

fixed δ1 = 0.1). The solid blue, dashed orange, and dotted black

lines correspond to λ0 = −0.03,−0.5, and −1, respectively. As

observed for the blue curve in Figure 5A, all three |1ϕ| curves in

Figure 7A exhibit a decreasing trend until they reach a minimum

value, after which they start increasing again. This suggests that

the level of synchrony can be optimized by adjusting the intrinsic

noise intensity δ2. Furthermore, for a fixed δ2 within the weak

intensity range (e.g., δ2 < 0.5 in Figure 7A), |1ϕ| is smaller

when λ0 is closer to zero. This indicates that in the weak noise

regime synchronization is enhanced as λ0 approaches the excitation

threshold λ0 = 0 (i.e., HB1 in Figures 1, 2). Conversely, when δ2 is

fixed within the strong intensity range (e.g., δ2 > 1.5 in Figure 7A),

|1ϕ| increases as λ0 approaches the excitation threshold, resulting

in lower levels of synchrony.

Furthermore, we observe that theminimum values of |1ϕ| vary

for different λ0, and the corresponding optimal noise intensities

differ as well. The minimum |1ϕ| values, denoted by min{|1ϕ|},

are marked by black dots in Figure 7A. When λ0 is closer to

the excitation threshold, our model achieves a greater degree of

synchrony, and a smaller optimal δ2 is required to produce it (for

fixed δ1 = 0.1). To explore this further, we plot the values of

min{|1ϕ|} and the sum of the optimal noise intensities, denoted

δ∗1 + δ∗2 , for a range of λ0 values in Figures 7B, C, respectively. For

λ0 values that are relatively far from the excitation threshold (e.g.,

λ0 < −0.3), the curve in Figure 7B is relatively flat and the curve in

Figure 7C has a relatively low slope (≈ −0.332). This indicates that

min{|1ϕ|} and the corresponding optimal intensities remain stable

over this region of λ0. Hence, it follows that small changes in λ0 do

not significantly affect the synchronization of our model when λ0

is far from the threshold λ0 = 0. However, when λ0 approaches

the excitation threshold (e.g., −0.5 < λ0 < 0 in Figures 7B, C),

min{|1ϕ|} decreases exponentially, and δ∗1 + δ∗2 decreases with a

steeper slope (≈ −1.84) as λ0 → 0−. These findings suggest that

by shifting λ0 closer to the excitation threshold, the noise-induced

synchrony of our system can be enhanced, with smaller intensities

of noise required to produce this effect.

3.5 The dual e�ects of uneven coupling
and asymmetric noise on synchrony

In Section 3.3, we briefly described the relationship between

the necessary coupling strength and the optimal noise intensity for

attaining the maximum level of synchrony. Figure 6 illustrates that

when the coupling strength d1 of oscillator 1 is greater than that of

oscillator 2 (d2), achieving the greatest level of synchrony requires

δ1 < δ2. In this section, we investigate how uneven coupling and

asymmetric noise intensities interact with one another to influence

synchrony. For the sake of simplicity, we set λ0 = −0.5 and use

|1ϕ| to quantify synchrony.

We begin by examining the change in |1ϕ| as a function of δ1

and δ2 in four disparate coupling cases: d1 ≫ d2 (e.g., d1 = 0.3 and

d2 = 0.01 in Figure 6A); d1 > d2 (e.g., d1 = 0.2 and d2 = 0.1 in

Figure 8A); d1 < d2 (e.g., d1 = 0.1 and d2 = 0.2 in Figure 8B),

and d1 ≪ d2 (e.g., d1 = 0.01 and d2 = 0.3 in Figure 8C). The four

cases are also visualized in three dimensions using surface plots and

presented in Supplementary Figure 1. Both heat maps and surface

plots show that |1ϕ| has both a unique absolute minimum and

unique local minimum which correspond to points of increased

synchrony. Furthermore, each panel in Figure 8 exhibits a relatively

low degree of synchrony along the line δ1 = δ2 (i.e., a relatively
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FIGURE 7

(A) Absolute value of the phase di�erence, |1ϕ|, vs. noise intensity δ2 for λ0 = −0.03,−0.5, and − 1 with δ1 = 0.1. The blue solid, orange dashed, and

black dotted lines correspond to λ0 = −0.03,−0.5, and − 1, respectively. Increasing λ0 leads to a decrease in the minimum value of |1ϕ|, implying

enhanced synchrony as λ0 approaches zero. (B) Minimum |1ϕ|, denoted as min{|1ϕ|}, as a function of λ0 by varying both δ1 and δ2 over from 0.01 to

5. min{|1ϕ|} significantly decreases when λ0 > −0.3, suggesting a rapid improvement in synchrony as λ0 approaches zero. (C) The sum of the

optimal noise intensities, δ∗1 + δ∗2 , decreases as λ0 increases, indicating that smaller noise intensities are needed to achieve min{|1ϕ|} as λ0 approaches

zero. Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; d1 = 0.3; and d2 = 0.01.

FIGURE 8

Heat maps of |1ϕ|, as a function of δ1 and δ2 for three cases of coupling strengths: (A) d1 > d2 (with d1 = 0.2, d2 = 0.1); (B) d1 < d2 (with d1 = 0.1,

d2 = 0.2); and (C) d1 ≪ d2 (with d1 = 0.01, d2 = 0.3). When d1 ≫ d2 (Figure 6A) and d1 > d2 [(A) here], the absolute minimum of |1ϕ| is located on

the upper left side of the heat map, where δ1 < δ2. When d1 < d2 (B) and d1 ≪ d2 (C), the absolute minimum of |1ϕ| lies on the lower right side,

where δ1 > δ2. The maximum synchrony varies with both δi and di, but it is never achieved when δ1 = δ2, regardless of the chosen coupling strengths.

Other parameters are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; and λ0 = −0.5. The three-dimensional visualization of Figure 8 (surface plots) is illustrated

in Supplementary Figures 1B–D.

larger |1ϕ|), which is in agreement with our results in Figure 6.

These observations suggest that noise-induced synchrony tends to

be maximized by asymmetric noise intensities (i.e., δ1/δ2 6= 1) as

opposed to symmetric noise intensities (i.e., δ1/δ2 = 1).

Figures 6A, 8 further indicate that the ratio of coupling

strengths, d1/d2, determines whether theminimumpoint of |1ϕ| is

local or absolute. Let abs.min{|1ϕ|} denote the absolute minimum

of {|1ϕ|} and δ∗1/δ
∗
2 denote the corresponding ratio of optimal

noise intensities. We find that when d1 ≫ d2 or d1 > d2,

abs.min{|1ϕ|} is located on the upper left (i.e., δ2 > δ1) of the

heat maps in Figures 6A, 8A, with δ∗1/δ
∗
2 ≪ 1. Conversely, when

d1 < d2 or d1 ≪ d2, abs.min{|1ϕ|} is located on the lower right

(i.e., δ1 > δ2) of the heat maps in Figures 8B, C, with δ∗1/δ
∗
2 ≫ 1.

Supplementary Figure 1 provides a clear depiction of the gradual

transition of abs.min{|1ϕ|} from the left side (with δ1 < δ2) to the

right side (with δ1 > δ2) as d1/d2 changes from larger to smaller

values.

To systematically explore the interaction and effects of the

noise intensities and coupling strengths on synchrony, we consider

the parameter space d1, d2 ∈ [0.01, 0.3] and δ1, δ2 ∈ [0.01, 0.3],

and compute abs.min{|1ϕ|} and δ∗1/δ
∗
2 . We present the results in

Figures 9A, B in the form of heat maps. The upper-left “triangle”

of Figures 9A, B, where d1 < d2, corresponds to the absolute

minimum points on the lower right of the heat maps in Figures 8B,
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FIGURE 9

(A) Heat map illustrates the ratio of the optimal noise intensities, δ∗1/δ
∗
2 , required to minimize |1ϕ|, in relation to varying both coupling strengths, d1

and d2. (B) Heat map of the absolute minimum of |1ϕ|, denoted as abs.min{|1ϕ|}, as a function of d1 and d2. The maximal noise-induced synchrony

is not achieveed when δ∗1/δ
∗
2 = 1 or when d1 = d2. (C) Schematic illustration of a two-neuron motif used to enhance noise-induced synchrony. One

oscillator (receiver neuron) receives robust coupling from the other oscillator (source oscillator) along with minimal noise input. Conversely, the

source neuron experiences minimal coupling from the receiver neuron but substantial noise input. (D) Two-neuron motif featuring a uni-directional

connection, optimizing noise-induced synchrony. Other parameters in (A, B) are: α = −0.2; γ = −0.2; ω0 = 2; ω1 = 0; and λ0 = −0.5.

C. And the lower-right “triangle” of Figures 9A, B, with d1 > d2,

correspond to the absolute minimum points on the upper left of

the heat maps in Figures 6A, 8A.

Figure 9A illustrates how the choice of coupling affects δ∗1/δ
∗
2 .

Previously, we have shown that the optimal δ∗1/δ
∗
2 does not equal

1 for some example pairs of d1 and d2 in Figures 6, 8. Here our

result is more robust: noise-induced synchrony is never maximized

at δ1/δ2 = 1 no matter the choice of coupling strengths d1 and

d2. In particular, even when d1 = d2, δ∗1/δ
∗
2 6= 1. Figure 9A also

indicates that there is a strong relationship between d1/d2 and

δ∗1/δ
∗
2 . Specifically, when d1/d2 < 1 (upper-left “triangle”), δ∗1/δ

∗
2 ∈

[15, 35] ≫ 1; whereas, when d1/d1 > 1 (lower-right “triangle”),

δ∗1/δ
∗
2 ∈ [0.025, 0.04] ≪ 1. We also compute δ∗1 and δ∗2 for both

d1/d2 cases. When d1/d2 < 1, the mean optimal noise intensities

are δ∗1 = 0.3462 and δ∗2 = 0.015, which results in an average

ratio of 0.3462/0.015 ≈ 23.08. And conversely, when d1/d2 > 1,

δ∗1 = 0.015 and δ∗2 = 0.3462, which results in an average ratio of

0.015/0.3462 ≈ 0.043 (note that the latter ratio is the reciprocal the

former).

Next, we examine how the coupling strengths influence the

degree of synchrony of our system, as measured by abs.min{|1ϕ|}.

As in Figure 9B, abs.min{|1ϕ|} exhibits symmetry with respect

to the diagonal line d1 = d2. Along this line, abs.min{|1ϕ|}

decreases as both d1 and d2 increase. However, the smallest value

of abs.min{|1ϕ|} is not located along this line. This suggests

that when the oscillators are symmetrically coupled, the degree

of synchrony is positively correlated with the coupling strength

d1 = d2, but does not lead to maximal synchronization.

In contrast, when the coupling strengths are asymmetric,

abs.min{|1ϕ|} decreases as the absolute difference between two

coupling strength, |d1 − d2|, becomes larger, as seen in Figure 9B.

Furthermore, the lowest values of abs.min{|1ϕ|} occur at the

upper-left and lower-right corners of Figure 9B, where one

coupling strength is nearly zero and the other is the largest in

the considered range. This indicates that a one-way coupling

maximizes noise-induced synchronization between two coupled

oscillators. Overall, synchrony is maximized when d1 ≪ d2 and

δ1/δ2 ≈ 15 (the upper-left corner in Figures 9A, B), or d1 ≫ d2
and δ1/δ2 ≈ 1/15 (lower-right corner in Figures 9A, B).

Our findings indicate that the noise-induced synchrony

between two coupled oscillators is enhanced in a specific scenario,

as illustrated in Figure 9C. Specifically, one oscillator (referred to as

the source neuron) experiences strong intrinsic noise and receives

weak coupling input from the other oscillator (the receiver neuron).

Conversely, the receiver neuron experiences weak intrinsic noise

but receives substantial coupling input from the source neuron.

The optimum noise-induced synchrony occurs in the extreme

case, i.e., a uni-directional connection where the input from the

receiver neuron to the source neuron is absent, as demonstrated

in Figure 9D.

4 Discussion

In many investigations exploring the noise-inuced

synchronization of coupled excitable neurons, assumptions

of homogeneity or near-homogeneity (e.g., common noise,

symmetric noise, and equal coupling strength) are undertaken.

To move beyond these seemingly unrealistic setups, our study

considers a heterogeneous configuration through the introduction

of independent noise sources with varying intensities and

distinct coupling strengths for each neuron. We investigate

the synchronous dynamics of the most representative neuron

motif, characterized mathematically as a pair of coupled λ − ω

oscillators in the heterogeneous context. These neural oscillators

remain are quiescent in the absence of noise but may be excited

by adding an intrinsic noise stimulus. Our results show that

noise can induce synchronization in coupled oscillators, and this

synchronization is enhanced by positioning the model closer to the

bifurcation point (i.e., excitation threshold), which is consistent

with previous studies (e.g., Yu et al., 2006, 2008, 2021; Thompson

et al., 2012). In previous research, the noise-induced synchrony

of excitable systems has been studied extensively with a focus

on symmetrical interactions between oscillators (e.g., Neiman
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et al., 1999; Rosenblum et al., 2001; Freund et al., 2003). However,

in biological systems, interactions between oscillators are often

asymmetric, and thus, the assumption of symmetric interactions

may be overly restrictive (Cimponeriu et al., 2003; Sheeba et al.,

2009).

We investigate the impacts of two sources of heterogeneity

(uneven coupling and asymmetric intrinsic noise) on the noise-

induced synchrony of two coupled oscillators. Our results indicate

that when the two noise intensities, δ1 and δ2, are asymmetric

(i.e., δ1/δ2 6= 1), synchrony is promoted. We further find that

the synchronization between two coupled oscillators is optimized

when the absolute difference between the coupling strengths, |d1 −

d2|, is as large as possible, irrespective of the coupling strengths

selected. Furthermore, we have identified a correlation between

the asymmetry of coupling and the intensity of noise required to

maximize it. Specifically, when d1/d2 < 1, it leads to δ∗1/δ
∗
2 > 1,

whereas, when d1/d2 > 1, it leads to δ∗1/δ
∗
2 < 1.

Our results suggest that there is a strong relationship

between uneven coupling and asymmetric noise in coupled

oscillators, which have potential applications in various real-world

problems that exhibit asymmetry in the interactions between

oscillators, such as cardio-respiratory electroencephalogram (EEG)

interactions (Paluš and Stefanovska, 2003; Sheeba et al., 2009),

optical communication systems, the detection of radar signals in

presence of channel noise (Tsang and Lindsey, 1986), and neuronal

dynamics (Singer, 1999; Sheeba et al., 2009). Moreover, our results

indicate that two-neuron motifs with uni-direction (i.e., one-

way) connections may exhibit a greater propensity for in-phase

synchronization than two-neuron motifs with bi-directional (i.e.,

two-way) connections, which reinforces our understanding of the

functional significance of network motifs in neuronal dynamics.

However, further investigations are necessary to explore the

relationship between the ratios d1/d2 and δ1/δ2 more extensively.

An extension of our current work may include investigating:

(1) the role of asymmetric noise and coupling in the anti-phase

synchronization of coupled oscillators by considering inhibitory

coupling (i.e., di < 0 for i = 1 or 2); and (2) investigation of the

role of noise and coupling asymmetries in other common network

motifs, such as three-neuron feed-forward-loops.

The HB is one of the most common bifurcation schemes as it

describes the appearance or disappearance of regular orbits with

a slight change of a parameter. In this study, we employ the

normal form of HB to investigate a specific scenario: noise-induced

synchrony near a supercritical Hopf point. By focusing on this

particular region, we aim to uncover the underlying mechanisms

that lead to synchronized oscillations in physical or biological

systems. Our results not only shed light on the phenomena of

interest but also offer potential explanations or predictions for

various systems that undergo similar shifts from a quiescent state

to sustained oscillations. However, it is important to acknowledge

that different systems may exhibit other bifurcation structures,

necessitating further investigation to comprehensively understand

their dynamic behavior.
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