
TYPE Original Research

PUBLISHED 21 February 2024

DOI 10.3389/fncom.2024.1345644

OPEN ACCESS

EDITED BY

Petia D. Koprinkova-Hristova,

Institute of Information and Communication

Technologies (BAS), Bulgaria

REVIEWED BY

Soumyajit Mandal,

Brookhaven National Laboratory (DOE),

United States

Avishek Nag,

University College Dublin, Ireland

*CORRESPONDENCE

Chunxiao Lin

chunxiaol@vt.edu

RECEIVED 28 November 2023

ACCEPTED 29 January 2024

PUBLISHED 21 February 2024

CITATION

Lin C, Azmine MF, Liang Y and Yi Y (2024)

Leveraging neuro-inspired AI accelerator for

high-speed computing in 6G networks.

Front. Comput. Neurosci. 18:1345644.

doi: 10.3389/fncom.2024.1345644

COPYRIGHT

© 2024 Lin, Azmine, Liang and Yi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Leveraging neuro-inspired AI
accelerator for high-speed
computing in 6G networks

Chunxiao Lin*, Muhammad Farhan Azmine, Yibin Liang and

Yang Yi

Bradley Department of Electrical and Computing Engineering, Virginia Tech, Blacksburg, VA,

United States

The field of wireless communication is currently being pushed to newboundaries

with the emergence of 6G technology. This advanced technology requires

substantially increased data rates and processing speeds while simultaneously

requiring energy-e�cient solutions for real-world practicality. In this work,

we apply a neuroscience-inspired machine learning model called echo state

network (ESN) to the critical task of symbol detection in massive MIMO-OFDM

systems, a key technology for 6G networks. Our work encompasses the design

of a hardware-accelerated reservoir neuron architecture to speed up the ESN-

based symbol detector. The design is then validated through a proof of concept

on the Xilinx Virtex-7 FPGA board in real-world scenarios. The experiment results

show the great performance and scalability of our symbol detector design

across a range of MIMO configurations, compared with traditional MIMO symbol

detection methods like linear minimum mean square error. Our findings also

confirm the performance and feasibility of our entire system, reflected in low

bit error rates, low resource utilization, and high throughput.

KEYWORDS

echo state network, 6G, massive MIMO, OFDM, AI, FPGA

1 Introduction

Since the 3GPP fifth-generation (5G) standard was proposed in 2015, it has brought

great evolution to many areas, such as mobile applications, autonomous vehicles, the

Internet of Things, smart cities, etc. (Sah et al., 2019). Enhanced by many key technologies

such as millimeter wave (mmWave) frequencies, multiple-input multiple-output (MIMO),

5G is capable of providing higher data rates, high user density, and lower latency.

However, the theoretical peak capability of 5G can be predicted from the 3GPP technical

specifications. For new applications such as holographic communication, virtual reality,

and remote robotic surgery, the sixth-generation (6G) wireless network, is expected to

provide ultra-high bandwidth and ultra-low latency (Saad et al., 2019).

Antennas in 6G devices can be compact in size due to ultra-high mmWave frequency.

Therefore, the use of large arrays of antennas becomes one of the characteristics of

6G networks for the purpose of performance improvement. Novel multiple-antenna

technologies such as massive MIMO (mMIMO), extremely large MIMO (XL-MIMO), and

cell-free mMIMO (CF-mMIMO) are proposed in this situation.

Massive MIMO, which builds on existing MIMO technology, increases the number

of antennas at base stations to tens or hundreds, leading to a significant improvement in

throughput and efficiency (Rusek et al., 2012). To make the most of this advancement,

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1345644
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1345644&domain=pdf&date_stamp=2024-02-21
mailto:chunxiaol@vt.edu
https://doi.org/10.3389/fncom.2024.1345644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1345644/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

both network systems and mobile devices must be designed in a

more complex way to coordinate MIMO operations, which brings

new technical challenges. In particular, symbol detection is one

of the key challenges to tackle in massive MIMO. Conventional

methods based on channel state information (CSI) estimation can

handle the MIMO system with a limited number of antennas.

However, obtaining accurate CSI for an extremely large number of

antennas is a hard task with high computational complexity. In this

case, AI-based symbol detection methods become good candidates

for massive MIMO systems.

Among different AI models, the echo state network (ESN)

shows a good potential to handle the challenge of symbol detection.

ESN is part of the broader concept of reservoir computing, which is

inspired by the way how biological brains process information. As

a variation of recurrent neural networks, ESN is able to model the

complicated and dynamic channel in massive MIMO. Compared

to traditional neural networks, ESN shows better computational

efficiency due to its fixed reservoir layer. Furthermore, ESN has a

low requirement for the size of the training dataset. Thismakes ESN

a better option for massive MIMO symbol detection tasks since

there are limited data symbols available for data training in high-

speed wireless communication. The dataset we use for ML model

training will be discussed later in Section 2.4, where only a small

part of the transmitted data symbols can be used in the training.

Another benefit brought by ESN to the symbol detection

task is converting the task running in serial into a single-

instruction-multi-data (SIMD) task, introducing the possibility

of being accelerated by computation-efficient hardware like field

programmable gate array (FPGA). FPGA accelerator, with high

parallelism, can implement SIMD tasks in a much more cost-

effective way. Computation-specific circuit designs in FPGA

platforms can greatly increase processing speed and reduce power

consumption. Therefore, we can improve the performance of the

massive MIMO system by designing an FPGA-accelerated ESN

symbol detector.

1.1 Relevant prior art

Although massive MIMO is a hot research topic, the research

on the detection algorithms has been started decades ago. For

small-scale MIMO, simple detection algorithms like a matched

filter (MF) can show good performance (Marzetta, 2010). When

it comes to practical medium-size massive MIMO systems, these

simple algorithms would produce unacceptable results (Wu et al.,

2014). Therefore, other linear schemes, such as the zero-forcing

(ZF) and minimummean square error (MMSE) detectors (Tuchler

et al., 2002a,b), are widely used nowadays. These methods are based

on the estimation of the wireless channel and further detection

on the estimated channel. And in Neumann et al. (2015) and

Xie et al. (2016), different improvements for channel estimation

were proposed, like the semi-blind method to suppress pilot

contamination interference (Neumann et al., 2015), and low-rank

methods to reduce effective channel dimensions (Xie et al., 2016).

In terms of another challenge of computational complexity, AI-

based methods have shown greater performance.

AI techniques are widely used to replace conventional methods

in wireless communication (Wang et al., 2017; Qin et al., 2019;

Hoydis et al., 2021; Liu et al., 2021). And more AI-based methods

are applied to massiveMIMO tasks, such as channel estimation (He

et al., 2018), CSI compression (Wen et al., 2018), and precoding

matrix design (Sohrabi et al., 2021).

Echo state networks, known as the brain-inspired RNN with

low training overhead and low computation complexity, are also

explored a lot in the wireless domain, mainly focusing on the

symbol detection task in OFDM symbol detection tasks. Mosleh

et al. (2017) has proven that ESN-based methods perform well in

MIMO-OFDM symbol detection. Further improvements for the

ESN symbol detector were proposed by Zhou et al. (2020a,b).

The introduction of ESN successfully solves the problem

of MIMO-OFDM symbol detection in terms of computational

efficiency. However, FPGA-based ESN designs further accelerate

the symbol detection task with much lower resource utilization and

power consumption. Gan et al. (2021) and Lin et al. (2022) explored

the design of ESN reservoir neurons with different architectures in

SISO-OFDM symbol detection. These two accelerators decrease the

resource utilization of the ESNwith validations on the FPGA board,

showing the potential of FPGA acceleration in the MIMO-OFDM

system. In our work, we further explore the FPGA acceleration in

both the MIMO and massive MIMO systems.

1.2 Contribution and outline

In this research, significant contributions are made to AI

acceleration for 6G networks. The first contribution is the

application of the ESN method to massive MIMO-OFDM symbol

detection. Additionally, we introduce a cost-efficient ESN neuron

architecture using advanced digital signal processing (DSP) to

accelerate the ESN symbol detector. Furthermore, we verified the

performance and efficiency with sufficient simulations for different

MIMO configurations. Finally, the architecture is validated

through a proof-of-concept implementation on an FPGA board,

demonstrating its practice efficiency.

The remainder of this paper is structured as follows. Section II

introduces the massive MIMO-OFDM system and the ESN-based

symbol detector. The architecture design for ESN acceleration is

then described in Section III. Then in Section IV, we display the

simulation results of the ESN-based symbol detector for different

MIMO configurations. Section V is dedicated to the proof of

concept of our AI accelerator on a jointed software-defined radio

(SDR) / FPGA testbed. The paper concludes with Section VI, where

we summarize the key takeaways in this work and acknowledge the

limitations of our study.

2 Background

2.1 Massive MIMO-OFDM

The massive MIMO-OFDM (mMIMO) architecture is

demonstrated in Figure 1, where an uplink transmission is

displayed, allowing data and signals to be transmitted from the

user device to the base station (BS) using an uplink channel. In

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 1

Massive MIMO-OFDM system for uplink transmission.

this mMIMO system, there are Nt antennas at the transmitter side,

sending Nt independent data streams to the wireless channel. Prior

to the transmission of signals, an inverse fast Fourier transform

(IFFT) is performed to convert each signal from the frequency

domain to the time domain. And the last Ncp symbols of each

signal are copied and inserted to the beginning as cyclic prefix

(CP). At the receiver side, Nr receiver antennas are used for data

stream reception. The ith frequency domain OFDM symbol for tth

data stream are denoted as Equation 1:

X̃
t
i,[X̃t

i(0), · · · , X̃
t
i(k), · · · , X̃

t
i(Nsc − 1)]T (1)

where ·T denotes matrix transposing operation, and Nsc stands

for the total number of sub-carriers in each OFDM symbol.

For subcarrier k, X̃t
i (k) is considered as the QAM symbol after

modulation.

For case of all the data streams, the ith frequency-domain QAM

symbols at kth sub-carrier are weighted using one precodingmatrix

Q(k) ∈ C
Nt×Nt before doing OFDM modulation as Xi = Q(k)X̃i,

where Xi , [X0
i (k), · · · ,X

t
i (k), · · · ,X

Nt−1
i (k)]T denotes precoding

process output. Xi = X̃i where Q(k) is an identity matrix.

At the rth receiver, the ith received OFDM symbol in time

domain can be designated as yri ∈ C
(Ncp+Nsc) in Equation 2:

yri , [yri (0), · · · , y
r
i (n), · · · , y

r
i (Ncp +Nsc − 1)]T (2)

and its frequency domain can be denoted as Equation 3:

Yr
i , [Yr

i (0), · · · ,Y
r
i (k), · · · ,Y

r
i (Nsc − 1)]T (3)

Symbol detection is on the receiver side, recovering all

transmitted data streams X̃
t
i by processing simultaneously received

signals yri from all receivers.

In Figure 2, we show the structure of a data frame with

OFDM symbols. The first several symbols are designated as the

training sequence (TS), which is usually for synchronization.

The rest are data symbols containing the payload. Each OFDM

symbol is divided into subcarriers in the frequency domain. In

FIGURE 2

An overview of OFDM frame.

our simulation, subcarriers at fixed locations of the data symbols

are used for model training, which are called pilots. With both

TS symbols and pilots, we are able to get our AI model trained

continuously in the data transmission.

2.2 Conventional method for
mMIMO-OFDM symbol detection

Various methods exist in both the practical and theoretical

domains for mMIMO-OFDM symbol detection. The most

widely used method in practical application in mMIMO

systems is LMMSE because of its low complexity among all.

LMMSE, as a typical method based on channel estimation, is

applied for mMIMO-OFDM symbol detection in the following

two sequences:

Step 1: Estimation of the channel is based on the known TS

symbols, which are designated by the first NTS OFDM symbols

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

in a frame. Then the TS symbols received on the RX side at kth

subcarrier can be presented as Equation 4:

YTS(k) = H(k)XTS(k)+ G, (4)

where H(k) is the channel response matrix and XTS(k) is the

transmitted TS symbol matrix for the kth subcarrier. G indicates

Gaussian noise matrix with variance σ 2. Since the transmitted

symbol matrix XTS(k) and the recovered symbol matrix YTS(k)

are already known, the channel model can be estimated using

Equation 5:

Ĥ(k) =
YTS(k)X

∗
TS(k)

XTS(k)X
∗
TS(k) + σ

2I
, (5)

Here [.∗] means conjugate transpose matrix and Gaussian

Noise matrix G = σ 2I where I is an identity matrix.

Step 2: In this step, symbol detection is performed with the

estimated channel model inherited from step 1, for the unknown

symbols. If the ith transmitted symbol is X̂i(k) and recovered

symbol for the same sequence is Ŷi(k) for the k sub-carrier, the

recovered symbol sequence ˆYi(k) can be represented as Equation 6:

Ŷi(k) = Ĥ(k)X̂i(k) + G, (6)

So, transmitted ith symbol for k sub-carrier X̂i(k) can be

recovered using Equation 7:

X̂k(i) =
Ĥ∗(k)Yi(k)

Ĥ∗(k)Ĥ(k) + σ
2I
, (7)

This is how the OFDM symbols can be recovered with the

estimated channel model in the LMMSE method. Although this

method is widely used in real-time applications due to its linearity

and low complexity, it still suffers some limitations. The channel

noise distribution has to be known beforehand. The channel

response estimation must also be calculated accurately for the

training sequence before starting to recover the unknown symbols.

Such dependency on a pre-estimatedmodel makes the performance

limited with varying channel environments and with signals having

a low signal-to-noise (SNR) ratio. Limited performance with

challenging scenarios will be demonstrated in the result section.

In addition to LMMSE, there are some other well-known

methods for such symbol detection tasks. However, they are not

prioritized for practical situations for various reasons. Two of the

well-known existing methods are as follows:

• The maximum likelihood method: This method operates

by choosing the hypothesis that maximizes the likelihood

function for the given received signal. It can theoretically

provide the optimal solution. However, it has a major

limitation due to its exponential complexity. For applications

such as massive MIMO systems, the computational

requirement grows exponentially with the size of the

system, making such methods impractical to implement in

real-time systems.

• Sphere decoding (SD): The SD method is an efficient non-

convex solver that can provide highly optimized performance

from methods like maximum likelihood symbol detection.

Despite its effectiveness in a mathematical perspective, it

becomes challenging to implement in real-time systems due to

the high computational demand compared to linear receivers.

Such computational demand becomes more complex in larger

systems like massive MIMO systems where a larger number of

receivers are required.

The ESN-based method is superior to the LMMSE model,

too, because it does not require prior knowledge such as noise

variance information of the channel. In the research from Shafin

et al. (2018), ESN-based symbol detectors were also shown to be

less energy-consuming for an LMMSE-based transmitter-receiver

system. In our previous research from Zhou et al. (2020b), the

ESN-based method for symbol detection of both SISO and MIMO

has been found to surpass the limitations mentioned above from

traditional methods in the aspect of computational complexity.

The conclusion is reached under the condition of a large number

of OFDM subcarriers, which also works for the massive MIMO

systems.

2.3 Introduction to ESN

ESN is a computationally efficient artificial neural network

(ANN) that has shown its effectiveness in chaotic time-serial tasks.

It was initially introduced by Jaeger and Haas (2004) who applied

ESN to non-linear chaotic system prediction through supervised

learning. A typical architecture of ESN model is provided in

Figure 3.

ESN has even been shown to outperform recurrent neural

networks (RNN) for temporal pattern detection and information

processing tasks as learned from Jaeger (2001, 2002). ESN uses

its reservoir to create a high-dimensional representation of its

input features and provide the inherent dynamics (Gallicchio and

Micheli, 2011; Lukoševičius et al., 2012). If the number of input

neurons of an ESN model is Nin and the current input data is

x(n) ∈ R
Nin , along with Nres reservoir neurons producing state

output s(n) ∈ R
Nres , the concurrent state representation equation

which governs the reservoir dynamics can be written as Equation 8:

s(n) = f(Winx(n)+Wress(n− 1)+Wfby(n− 1)), (8)

Here, reservoir weight matrix is Wres ∈ RNres×Nres and input

weightmatrix isWin ∈ RNres×Nin along with output feedback weight

matrix asWfb ∈ RNres×Nout . For our system, we do not consider the

feedback weight connection for simplification of the state equation.

SinceWfb = 0, the equation becomes simplified to Equation 9:

s(n) = f(Winx(n)+Wress(n− 1)), (9)

The extracted state s(n) of the reservoir tends to contain the

most recent information and loses memory of past events gradually

(Lukoševičius et al., 2012). This dynamic state is then fed into

the output layer of Nout neurons which generates the final output

y(n). f (.) is the non-linear activation function on the output of

each reservoir neuron unit and is implemented element-wise. The

reservoir state s(n) is initialized as a zero vector. The output y(n)

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 3

The architecture of a typical ESN.

can be represented by a combination of the reservoir state s(n) and

the input x(n) as Equation 10:

y(n) = g((Wout)T[s(n) : x(n)]), (10)

where [s(n) : x(n)] = z(n) is an extended system state and g(n) is

the output activation function. The training for the ESN can be

implemented in the following steps:

The original design of the ESN contains the following steps.

Step 1: Initialize the random reservoir and input weights

Wres,Win.

Step 2:All the input samplesNtrain are fed into the ESN as input

X = {x(1), ..., x(Ntrain)} and corresponding reservoir state vectors

z(n)T = [s(n) : x(n)]T are collected in a matrix Z ∈ RNout×(Nres+Nin)

and the target labels are stored in a matrix Y label ∈ R(Nout×1).

Step 3: We take the loss function for the ESN network

regression prediction problem as MSE (Mean Square Error) and

the ESN works on tuning the weights Wout to minimize MSE as

much as possible. The MSE can be represented as Equation 11:

MSE = min ‖Ypredict − Ylabel‖22 (11)

which can be rewritten to Equation 12,

MSE = min ‖ZWout − Ylabel‖22 (12)

Here, ‖.‖2 is denoted as the l2 norm. If the output activation

function g(.) is an identity function then theWout can be solved as

least square estimation by taking the Moore-Penrose inversion of

matrix Z using Equation 13,

Ŵout = Z†Ylabel (13)

where Ŵout is the estimation ofWout.

Step 4: After getting the output weights trained, the ESN

network can be inferred upon new testing data samplesNtest so that

the predicted output y(n) = {y(1), y(2)...y(Ntest)} can be computed

using the estimated weights Ŵout.

2.4 ESN-based symbol detector for
massive MIMO

A brief overview of the architecture of the ESN detector is

provided in Figure 4. The recovered symbols at the RX antenna

are denoted as yri , which are then sent to the ESN detector. At the

output of ESN, the predicted transmitted symbols x̂ti are generated.

Inside the ESN detector, the training methodology is carried out in

two steps.

TS training: Train the ESN with the NTS pre-known TS

symbols for which the target labels are already known. The training

tuple on this step is created as Equation 14.

Tuple(InputTS; LabelTS) = {y1, y2, . . . , yNTS; x1, x2, . . . , xNTS}

(14)

Here, xti = [x1, x2, . . . , xNTS] represents the target label of the

TS symbols. The output weights Wout of the ESN reservoir are

trained for the above tuple using the Equation 13.

Pilot training: After training with the TS symbols, for each

ith symbol where i > NTS, the pilot training tuple is prepared.

The input and target label for the pilot symbol sequence can be

described as Equations 15 and 16:

Inputpilot,i ≡ (Input0pilot,i, . . . , Input
Nr−1
pilot,i)

T (15)

Labelpilot,i ≡ (Label0pilot,i, . . . , Label
Nt−1
pilot,i)

T (16)

In order to prepare pilot training input Inputr
pilot,i

the data

subcarriers of the received frame Yr
i are nulled, and then it is

converted to time domain where CP is added with the time domain

sequence using Equation 17:

Inputrpilot,i = Addcp(F
H6Yr

i) (17)

FH signifies inverse Fourier transform matrix; 6 denotes

diagonal matrix where the entries are 0 in data sub-carrier positions

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 4

ESN-based symbol detection at Rx of a massive MIMO system.

and 1 in pilot positions diagonally. The training labels for pilot

symbols are also prepared in a similar way using Equation 18:

Labeltpilot,i = Addcp(F
H6Xt

i) (18)

After training the ESN with the prepared pilot tuples, the

output weights are updated and ESN takes the next ith symbol

at receiver yi and infers the transmitted symbol x̂i. This type of

method is called the recursive method, which is more efficient for

training ESN weights than the one-shot matrix inversion method

since the ESN learning parameters are updated on a timely basis

with incoming new training pilot samples. This helps the ESN to

track the changing environment of the channel and provide better

accuracy.

3 Reconfigurable ESN architecture
design

3.1 Introduction to DSP48E1 IP

To design a high processing speed and power-efficient

architecture, DSP48E1, a dedicated DSP IP block provided by

Xilinx, was exploited in the design. As designed for high-speed

signal processing tasks, it can perform arithmetic operations

(i.e., multiplications, additions, subtractions, and accumulations)

efficiently. Considering the large amount of multiplication and

accumulation (MAC) operations in ESN implementation, DSP48E1

slices can play a significant role in the processing speed, accuracy,

and power consumption of the accelerator.

The use of DSP48E1 can cut down the utilization of

combinational logic blocks (CLB) which can take significantly

higher space with low processing power. Generally, CLB-built

multipliers are avoided in digital circuits to make the design

cost-efficient. But this assumption is not true for DSP-built

designs that have vendor-provided optimized circuit design.

The approximate computing architecture of the DSP (Digital

Signal Processor) units using efficient algorithms can perform

multiplication efficiently with less power and with high speed

(Immareddy and Sundaramoorthy, 2022). DSP IP slices are

provided in almost all 7-series boards such as Xilinx Artix-7,

Kintex-7, Virtex-7 and Zynq-7000. Virtex-7 series FPGA has 2800

DSP slices, which is significantly higher compared to other similar

generation boards (Gan et al., 2021).

From Figure 5, the short overview of DSP48E1 architecture can

be seen. Significant blocks of the DSP slice that will be relevant to

our architecture configuration are: (1) a 25 × 18 optimized two’s

complement binary multiplier, (2) a pattern detector, (3) a 48-bit

accumulator, and (4) a low power pre-adder. The inputs to the DSP

slice can be stored in the four input registers named A,B,C,D, and

the output can be stored in the P register. The combination logic

between the output P and the input registers can be shown by the

Equation 19:

P = C± (B× (A±D)) (19)

The inputs to the A and B registers can be concatenated

up to 48 bits (i.e., [A:B]) through a design provision and

then can be used as one of the inputs to the 3-input SIMD

ALU. Another feature that can play a significant role in

compressor operations is the exploitation of PCIN/PCOUT

ports as interconnections among DSP slices. This can help

in parallel operation execution through a pipe-lining facility.

These pipeline facility ports are only exploitable for DSP

interconnections. The sophisticated architecture designed in this

paper takes advantage of this feature which helps to improve

its performance for Multiplication and Accumulation operation

(MACC) against the custom CLB-based binary multipliers and

adders significantly.

3.2 ESN configuration of DSP48E1 IP

The ESN reservoir synapses generate the state representation

by getting input data from the input neurons and also previous

states from the state memory. From Equation (9), it can be

summarized that the related mathematical operation for the ESN

state generation can be done in two sequential stages: (1) Calculate

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 5

DSP48E1 IP overview.

the linear combination of vector-matrix multiplication of the

weight matrix {Wres;Win} and data vectors {s(n − 1); x(n)} and

(2) Applying a non-linear function operation f (.) on the result

from the previous step. In this section, we explain the hardware

configuration in FPGA for the 2× 2 MIMO system OFDM symbol

detection as a proof of concept.

In our design, each neuron inside the reservoir has to perform

(Nres+Nin) number of multiplications and (Nres+Nin−1) number

of additions at each time step. For the 2× 2 MIMO-OFDM symbol

detection, our sophisticated configuration was able to perform all

the (8 + 40) multiplications and (8 + 40 − 1) number of adders

with only nine DSPs demanded by each neuron. We tried to avoid

the traditional approaches like using (Nres + Nin) DSP slices for

multiplication and log
(Nres+Nin)
2 compressor tree adders. Such an

approach would make the design less efficient since there are so

many CLB-based adders, which results in less power efficiency and

more processing time demand (Xilinx, 2018) and also introduces

difficulty in scalability when a large neural network is built with

neurons of similar design.

In addition, our configuration was able to achieve both

stages of calculation from matrix-vector multiplication and non-

linear function approximation by using the same nine DSPs. The

configuration was designed to use the pipelining capacity of the

DSP slices and achieve parallel execution, which almost eliminates

the need for CLBs for the execution of Equation (9) by any reservoir

neuron.

The architecture of a single reservoir neuron is shown in

Figure 6. The weight parameters of a single neuron from both

Win and Wres are saved in the local weight memory register. The

configuration formation of the nine DSPs that are required to

complete the full operation of Equation (9) can be divided into four

different stages, where the first three stages are used for the linear

combination operation and the last stage is used for the application

of hyperbolic tangent functions.

A basic pseudo-code listing of the different configurations of

DSP slices for the first three stages used for the vector-matrix

multiplication is written in Algorithm 1. The DSP_ij corresponds

to the sequence of DSPs labeled in Equation (6) for each reservoir

neuron, and the input/output ports labels can be associated with

Equation (5). Note: Some of the statements are executed parallelly

in the hardware DSP, which will be explained in detail in the

following paragraph.

• Stage I: In the first stage, all DSPs of the neuron will load,

multiply, and accumulate nine groups of weights and states.

The ALUMODE and OPMODE of Figure 5 are configured to

perform Equation 20:

P = P± (B× A) (20)

• Stage II: At this stage, the PCIN/PCout ports of the DSP slices

are used for pipeline application. Every group of three DSPs

(i.e., DSP_0j, DSP_1j, DSP_2j) is joined using the pipeline.

Two DSPs (DSP_0j & DSP_2j) retain their SoPs in their P

registers inherited from the first stage by setting up their own

input registers A & B as 0. The ALUMODE & OPMODE

configuration of DSP_1j is set up to perform Equation 21:

P = PCIN+ C+ P, (21)

The stage takes 2 clock cycles to perform all the required

operations as shown in the pseudocode Algorithm 1. Every

group of three SoPs are compressed into one SoP at the end

of this stage.

• Stage III: At the end of the second stage operation, only three

DSPs’ output register P (i.e., DSP_10, DSP_11 & DSP_12)

out of the nine DSPs retain data, where each DSP contains

compressed SoP gained from second stage input of three SoPs.

In the third stage, two of these DSPs’ (DSP_10, DSP_11) P-

register values are sent as input to the third DSP (DSP_12)

which already contains one SoP in its own P register. All

three SoPs are accumulated into one SoP using the three-input

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

// Three-stages MAC operation

Initialize all DSP blocks;

while true do

// Stage I, MAC operation of the weights and

states is done in every individual DSP

block

SoP.P← 0;

for each DSP_ij block in Stage I (i, j = 0, 1, 2) do
DSP_ij.B ←

Load_weight_from_local_weight_memory();

DSP_ij.A ←

Load_state_from_global_state_memory() ;

DSP_ij.M ← {DSP_ij.B × DSP_ij.A};

DSP_ij.SoP.P ← DSP_ij.M + DSP_ij.SoP.P;

end

// Stage II, the nine DSPs are divided into

three groups, and nine SoPs are compressed

to three.

for each group of 3 DSP blocks (DSP_0j, DSP_1j, DSP_2j) in Stage II

do

DSP_0j.A ← 0;

DSP_0j.B ← 0;

DSP_2j.A ← 0;

DSP_2j.B ← 0;

DSP_1j.C ← DSP_0j.SoP.P ;

DSP_1j.PCIN ← DSP_2j.SoP.P;

DSP_1j.SoP.P ← DSP_1j.SoP.P + DSP_1j.C +

DSP_1j.PCIN;

end

// Stage III, the final SoP is generated from

the three SoPs in Statge II.

for DSP_10, DSP_11, DSP_12 blocks in Stage III do

DSP_12.A ← DSP_10.SoP.P[47:30] ;

DSP_12.B ← DSP_10.SoP.P[29:0] ;

DSP_12.C ← DSP_11.SoP.P ;

DSP_12.SoP.P ← concat(DSP_12.A, DSP_12.B) +

DSP_12.C + DSP_12.SoP.P;

end

// Send DSP_12.SoP.P to DSP_22 as input for

applying non-linear tanh approximation

..........
end

Algorithm 1. Pseudo code for the three-stage MAC operation. The

DSP notation matches (Figure 6).

SIMD ALU which is configured to perform the operation of

Equation 22 in DSP_12:

P = {A :B} + C+ P, (22)

For each reservoir neuron, it needs to process (Nres + Nin)

number of weights and states in total at each epoch. For all

nine DSPs of each neuron, it takes (⌈(Nres + Nin)/9⌉ + 1) (at

Stage I) + 2 (at Stage II) + 2 (at Stage III) clock cycles to

process all these weights & states and complete the Matrix-

Vector multiplication operation of the ESN reservoir in each

epoch.

Next, the resultant SoP of stage III is sent to the DSP_22 for

hyperbolic-tangent approximation. For efficient area utilization in

the hardware, this non-linear application was designed taking a

fixed-point approach. A brief overview of the design can be noticed

in Figure 7. Here, we use the notation of < l, f > for a fixed-

point number design with a total bitwidth of l and f fractional

bits. The fixed point design exploits two LUTs (lookup tables). The

contents of LUTs are used for estimating a slope and an intercept.

The LUTs are generated using a similar method learned from Bajger

and Omondi (2008). To apply this method, the tanh function is

simplified using first-order piece-wise linear approximation in the

Equation 23:

tanh(x) ≈















−1+ error for x ≤ −a

slope× x+ intercept for − a < x < a

1− error for x ≥ a

, (23)

Since the tanh is a symmetrical function, just estimating the

function output for the positive half of the input using LUTs can be

sufficient. Moreover, when |x| ≥ 8, tanh output tends to be almost

1 with error ≡ 0 (<10−6). Therefore, we take a = 8 in our design.

The resulting SoP of the vector-matrix operation is fed as an

index input to both LUTs. After extracting the slope and intercept

values from two individual LUTs separately, they are fed into

another DSP unit to perform the MAC operation on the equation

(slope× x+ intercept).

Considering that the limitation bit width of the DSP multiplier

(25 × 18) and the importance of utilization control, the input to

both lookup tables are taken by truncating the MSB and redundant

LSBs LUTSoP = |SoP|36 : 29 which keeps the error of tanh output

within the range of 10−6. Since the input of the LUT is 8-bit wide,

the depth of both LUTs becomes 28. The input x = |SoP|28 : 21
is also truncated, which is sufficient to generate results with good

precision.

The final implementation of the ESN on the FPGA has 40

input neurons and four output neurons. The number of reservoir

neurons was chosen to be 8, which was found to be the second-

best parameter for producing accuracy in neurons. Parameter 8

was chosen to save hardware space as this halved the number of

required DSPs in the ESN accelerator.

For the calculation of Equation 10, the width of the values in

Wout also needed optimization. In our design, it was decided that

Wout can be within the range of (−700, 700) for a normalized input

range of (−0.1, 0.1). Wout was decided to be 16-bit wide with a

precision of 2−5. A short table description of the parameter for the

non-linear part and ESN structure for the proof of concept 2 × 2

MIMO is displayed in Table 1 for clarity.

4 Simulation results and analysis

In conventional neural networks, the selection of parameters

can significantly influence the accuracy of the proposed model. We

conducted an experiment on the impact of reservoir size on BER

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 6

Proposed reservoir neuron architecture.

FIGURE 7

Non-linear fixed point approximation.

performance for different settings of MIMO systems, including

2 × 2, 4 × 4, 4 × 16, and 4 × 64. Here we focus on the

massive antennas at the receiver side in uplink transmission. The

window length remains constant during the entire simulation.

The results are shown in Figure 8. In each chart, the BER of

the MIMO system is compared between different numbers of

reservoir neurons, from 4 to 512. It shows that ESN with 8–16

neurons can achieve the lowest BER in most of the cases listed

here.

We also compared the performance of the traditional LMMSE

method with the ESN methods in different MIMO configurations.

The number of OFDM subcarriers for each case is set to 1,024,

which is a common value used in massive MIMO systems to

support high data transmission. The BER comparison results in

Table 2 reveal that the ESN symbol detector exceeds the LMMSE

methods in all cases, showing its better recovery capability for the

received OFDM symbols. And from the small MIMO system (2

× 2) to the larger MIMO system (4 × 64), the wireless channel

becomes more complicated to model for these symbol detectors.

LMMSE-based symbol detector fails to keep a good performance

with increasing system size due to the limitation of its estimation

capability. However, ESN is able to get trained with the signals and

keep the model updated continuously. The BER of the ESN symbol

detector is kept in a relatively low level and even achieves great

results in 4× 64 MIMO simulation.

5 Proof of concept of the FPGA design

5.1 Hardware setup

A real-time hardware experiment was performed for 2 × 2

proof-of-concept MIMO-OFDM symbol detection on a software-

defined radio(SDR) / FPGA joined testbed, which consists of a

Xilinx Virtex-7 FPGA board, a GNU Radio software, and two

universal software radio peripheral devices (USRPs).

In Figure 9, a MIMO-OFDM radio system was implemented

using GNU Radio development software, where USRPs were used

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

to transmit and receive RF signals. The received signal was sent to

the ESN symbol detector on FPGA via a high-speed wired ethernet

transmission. The ESN then performs the symbol detection task

and sends back the predicted results for the transmitted signals

to the GNU Radio application, where the accuracy is measured.

Moreover, the LMMSE-based symbol detection is also performed

in GNU Radio for comparison.

The design was validated in our RF lab where various wireless

communication experiments were tested in real-world scenarios

(Liang et al., 2022). Multipath scattering effects were presented in

such environments. Various test scenarios were created using metal

shelves and toolboxes to block the line of sight (LoS) between the

TABLE 1 Parameter description of the ESN accelerator.

Parameter Value

Input neurons 40

Reservoir neurons 8

Output neurons 4

Input range (−0.1, 0.1)

Output range (−700, 700)

a (in Tanh approximation) 8

Depth of Tanh LUTs 28

TX/RX antennas. We performed FPGA testing in five different

scenarios where each test was run for three trials without any

change in antenna orientation or TX/RX position. The antenna

orientation and positions of the transceivers are changed between

different test scenarios to assess the prototype under different RF

front-end gains. An overview of the setup of the five scenarios is

given in Table 3.

5.2 FPGA synthesis results

In the FPGA onboard verification, we ran the real-time

operation with a central clock speed of 125 MHz. From the

synthesis report, the ESN architecture showed a dynamic power

of 0.256 W and a static power of 0.262 W. The temperature

report proves that the junction temperature remains around

25.9◦C, which suffices to the board’s requirement that the junction

TABLE 2 Comparison of the BER between ESN method and LMMSE

method in di�erent MIMO configurations.

MIMO
configuration

2 × 2 4 × 4 4 × 16 4 × 64

BER of LMMSE method 5.460% 13.088% 3.167% 6.68o%

BER of ESN method 2.261% 2.022% 2.079% 0.001%

FIGURE 8

BER performance for di�erent sizes of MIMO with changing reservoir size. The impact of reservoir size on BER performance for (A) 2×2 MIMO, (B)

4×4 MIMO, (C) 4×16 MIMO, and (D) 4×64 MIMO.

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

FIGURE 9

Setup of the SDR/FPGA jointed testbed.

TABLE 3 Setup of five test scenarios.

Scenario Description

Scenario 1 Setting up Tx-Rx 10m apart (long distance) with clear line-of-sight

(LoS) signal path.

Scenario 2 Setting up Tx-Rx 5m apart with non-line-of-sight signal path (NLoS)

where the Tx & Rx are blocked partially.

Scenario 3 Tx-Rx placed further apart (NLoS) where Tx & Rx are fully blocked.

Scenario 4 Tx-Rx placed further apart (NLoS) and partially blocked.

Scenario 5 Tx-Rx placed furthest apart where the Tx/Rx are totally blocked.

temperature should stay below 85◦C, according to the Vivado

temperature report.

The ESN implementation for 2 × 2 MIMO on the Virtex-707

board achieves almost 3.3 times the processing speed compared to

a SISO-specific ESN implementation where the authors achieved

10.53 million input samples/s (Gan et al., 2021) for their FPGA

implementation. Our processing speed reaches up to 34.8 million

input sample/s. The proposed accelerator was able to save 50%

BRAM memory usage and 33.3% DSP IP blocks compared to the

SISO FPGA design above. Despite gaining such a high throughput,

the design only increased the usage of LUT by 21.4% and FF by

33%, respectively. The detailed comparison of resource utilization

between the two FPGA-based ESN implementation is shown in

Table 4.

TABLE 4 Summary of resource utilization.

Optimization type Max processing speed

LUT 13,314 (4.9%)

FF 10,750 (1.77%)

BRAM 6 (0.58%)

DSP 108 (3.86%)

6 Conclusions

In this research, we conducted significant efforts into AI-

enabled 6G tasks with FPGA acceleration. The performance

of ESN-based symbol detectors is experimented across MIMO

systems with different configurations. The findings demonstrate

the efficiency of the ESN architecture in handling various sizes of

the MIMO system without substantial increases in reservoir size.

Another key aspect of our work is to leverage the DSP slices within

the ESN reservoir neuron architecture, significantly enhancing

the cost-efficiency of the FPGA accelerator of ESN. Furthermore,

our FPGA accelerator was validated through a proof-of-concept

experiment. This not only affirmed the accuracy of our approach

but also indicated better resource utilization than previous studies.

However, because of the limitations of the equipment, we are not

able to perform FPGA validation for the MIMO systems with a

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Lin et al. 10.3389/fncom.2024.1345644

large number of antennas. And the potential of FPGA acceleration

in massive MIMO can be explored even further.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

CL: Writing – original draft, Writing – review & editing. MA:

Writing – original draft, Writing – review & editing. YL: Writing –

review & editing. YY: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by the U.S. National Science Foundation

(NSF) under Grant CCF-1750450, Grant ECCS-1731928, Grant

ECCS-2128594, Grant ECCS-2314813, and Grant CCF-1937487.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bajger, M., and Omondi, A. (2008). Low-error, high-speed approximation of the
sigmoid function for large FPGA implementations. J. Signal Process. Syst. 52, 137–151.
doi: 10.1007/s11265-007-0140-z

Gallicchio, C., and Micheli, A. (2011). Architectural and markovian factors of echo
state networks. Neural Netw. 24, 440–456. doi: 10.1016/j.neunet.2011.02.002

Gan, V. M., Liang, Y., Li, L., Liu, L., and Yi, Y. (2021). A cost-efficient digital ESN
architecture on FPGA for OFDM symbol detection. ACM J. Emerg. Technol. Comp.
Syst. 17, 1–15. doi: 10.1145/3440017

He, H., Wen, C.-K., Jin, S., and Li, G. Y. (2018). Deep learning-based channel
estimation for beamspace mmwave massive MIMO systems. IEEE Wireless Commun.
Lett. 7, 852–855. doi: 10.1109/LWC.2018.2832128

Hoydis, J., Aoudia, F. A., Valcarce, A., and Viswanathan, H. (2021). Toward a 6GAI-
native air interface. IEEE Commun. Mag. 59, 76–81. doi: 10.1109/MCOM.001.2001187

Immareddy, S., and Sundaramoorthy, A. (2022). A survey paper on design and
implementation of multipliers for digital system applications. Artif. Intell. Rev. 55,
4575–4603. doi: 10.1007/s10462-021-10113-0

Jaeger, H. (2001). The “Echo State” Approach to Analysing and Training Recurrent
Neural Networks-With an Erratum Note. Bonn: German National Research Center for
Information Technology GMD Technical Report 148, 13.

Jaeger, H. (2002). Adaptive nonlinear system identification with echo state
networks. Adv. Neural Inf. Process. Syst. 15, 609–616.

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science 304, 78–80.
doi: 10.1126/science.1091277

Liang, Y., Li, L., Yi, Y., and Liu, L. (2022). “Real-time machine learning for symbol
detection in MIMO-OFDM systems,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications (London: IEEE), 2068–2077.

Lin, C., Liang, Y., and Yi, Y. (2022). “FPGA-based reservoir computing with
optimized reservoir node architecture,” in 2022 23rd International Symposium on
Quality Electronic Design (ISQED) (Santa Clara, CA: IEEE), 1–6.

Liu, S.,Wang, T., andWang, S. (2021). Toward intelligent wireless communications:
Deep learning-based physical layer technologies. Digit. Commun. Netw. 7, 589–597.
doi: 10.1016/j.dcan.2021.09.014

Lukoševičius, M., Jaeger, H., and Schrauwen, B. (2012). Reservoir computing trends.
Künstliche Intelligenz 26, 365–371. doi: 10.1007/s13218-012-0204-5

Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers
of base station antennas. IEEE Transact. Wireless Commun. 9, 3590–3600.
doi: 10.1109/TWC.2010.092810.091092

Mosleh, S. S., Liu, L., Sahin, C., Zheng, Y. R., and Yi, Y. (2017). Brain-inspired
wireless communications: where reservoir computing meets MIMO-OFDM. IEEE
Transact. Neural Netw. Learn. Syst. 29, 4694–4708. doi: 10.1109/TNNLS.2017.2766162

Neumann, D., Joham, M., and Utschick, W. (2015). Channel estimation in massive
MIMO systems. arXiv [preprint]. doi: 10.48550/arXiv.1503.08691

Qin, Z., Ye, H., Li, G. Y., and Juang, B.-H. F. (2019). Deep learning
in physical layer communications. IEEE Wireless Communications 26, 93–99.
doi: 10.1109/MWC.2019.1800601

Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al.
(2012). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE
Signal Process. Mag. 30, 40–60. doi: 10.1109/MSP.2011.2178495

Saad, W., Bennis, M., and Chen, M. (2019). A vision of 6g wireless systems:
applications, trends, technologies, and open research problems. IEEE Netw. 34,
134–142. doi: 10.1109/MNET.001.1900287

Sah, D. K., Kumar, D. P., Shivalingagowda, C., and Jayasree, P. (2019). 5g
Applications and Architectures. 5G Enabled Secure Wireless Networks. Cham: Springer,
45–68.

Shafin, R., Liu, L., Ashdown, J., Matyjas, J., Medley, M., Wysocki, B., et al.
(2018). “Realizing green symbol detection via reservoir computing: an energy-
efficiency perspective,” in 2018 IEEE International Conference on Communications
(ICC) (Kansas City, MO: IEEE), 1–6.

Sohrabi, F., Attiah, K. M., and Yu, W. (2021). Deep learning for distributed channel
feedback and multiuser precoding in FDD massive MIMO. IEEE Transact. Wireless
Commun. 20, 4044–4057. doi: 10.1109/TWC.2021.3055202

Tuchler, M., Koetter, R., and Singer, A. C. (2002a). Turbo equalization:
Principles and new results. IEEE Transact. Commun. 50, 754–767.
doi: 10.1109/TCOMM.2002.1006557

Tuchler, M., Singer, A. C., and Koetter, R. (2002b). Minimum mean squared error
equalization using a priori information. IEEE Transact. Signal Process. 50, 673–683.
doi: 10.1109/78.984761

Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., and Jin, S. (2017). Deep learning
for wireless physical layer: opportunities and challenges. China Commun. 14, 92–111.
doi: 10.1109/CC.2017.8233654

Wen, C.-K., Shih, W.-T., and Jin, S. (2018). Deep learning for massive MIMO CSI
feedback. IEEE Wireless Commun. Lett. 7, 748–751. doi: 10.1109/LWC.2018.2818160

Wu, M., Yin, B., Wang, G., Dick, C., Cavallaro, J. R., and Studer, C. (2014). Large-
scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations. IEEE J.
Sel. Top. Signal Process. 8, 916–929. doi: 10.1109/JSTSP.2014.2313021

Xie, H., Gao, F., and Jin, S. (2016). An overview of low-rank channel
estimation for massive MIMO systems. IEEE Access 4, 7313–7321.
doi: 10.1109/ACCESS.2016.2623772

Xilinx (2018). 7 Series DSP48E1 Slice User Guide (UG479). San Jose, CA: Xilinx, Inc.

Zhou, Z., Liu, L., Chandrasekhar, V., Zhang, J., and Yi, Y. (2020a).
Deep reservoir computing meets 5G MIMO-OFDM systems in symbol
detection. Proc. AAAI Conf. Artif. Intell. 34, 1266–1273. doi: 10.1609/aaai.v34i0
1.5481

Zhou, Z., Liu, L., and Chang, H.-H. (2020b). Learning for detection: MIMO-OFDM
symbol detection through downlink pilots. IEEE Transact. Wireless Commun. 19,
3712–3726. doi: 10.1109/TWC.2020.2976004

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2024.1345644
https://doi.org/10.1007/s11265-007-0140-z
https://doi.org/10.1016/j.neunet.2011.02.002
https://doi.org/10.1145/3440017
https://doi.org/10.1109/LWC.2018.2832128
https://doi.org/10.1109/MCOM.001.2001187
https://doi.org/10.1007/s10462-021-10113-0
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.dcan.2021.09.014
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1109/TWC.2010.092810.091092
https://doi.org/10.1109/TNNLS.2017.2766162
https://doi.org/10.48550/arXiv.1503.08691
https://doi.org/10.1109/MWC.2019.1800601
https://doi.org/10.1109/MSP.2011.2178495
https://doi.org/10.1109/MNET.001.1900287
https://doi.org/10.1109/TWC.2021.3055202
https://doi.org/10.1109/TCOMM.2002.1006557
https://doi.org/10.1109/78.984761
https://doi.org/10.1109/CC.2017.8233654
https://doi.org/10.1109/LWC.2018.2818160
https://doi.org/10.1109/JSTSP.2014.2313021
https://doi.org/10.1109/ACCESS.2016.2623772
https://doi.org/10.1609/aaai.v34i01.5481
https://doi.org/10.1109/TWC.2020.2976004
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Leveraging neuro-inspired AI accelerator for high-speed computing in 6G networks
	1 Introduction
	1.1 Relevant prior art
	1.2 Contribution and outline

	2 Background
	2.1 Massive MIMO-OFDM
	2.2 Conventional method for mMIMO-OFDM symbol detection
	2.3 Introduction to ESN
	2.4 ESN-based symbol detector for massive MIMO

	3 Reconfigurable ESN architecture design
	3.1 Introduction to DSP48E1 IP
	3.2 ESN configuration of DSP48E1 IP

	4 Simulation results and analysis
	5 Proof of concept of the FPGA design
	5.1 Hardware setup
	5.2 FPGA synthesis results

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

