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With the vigorous development of data mining field, more and more algorithms 
have been proposed or improved. How to quickly select a data mining algorithm 
that is suitable for data sets in medical field is a challenge for some medical 
workers. The purpose of this paper is to study the comparative characteristics 
of the general medical data set and the general data sets in other fields, and find 
the applicability rules of the data mining algorithm suitable for the characteristics 
of the current research data set. The study quantified characteristics of the 
research data set with 26 indicators, including simple indicators, statistical 
indicators and information theory indicators. Eight machine learning algorithms 
with high maturity, low user involvement and strong family representation were 
selected as the base algorithms. The algorithm performances were evaluated by 
three aspects: prediction accuracy, running speed and memory consumption. 
By constructing decision tree and stepwise regression model to learn the above 
metadata, the algorithm applicability knowledge of medical data set is obtained. 
Through cross-verification, the accuracy of all the algorithm applicability 
prediction models is above 75%, which proves the validity and feasibility of the 
applicability knowledge.
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1 Introduction

1.1 Background

With the development of data mining technology and interdisciplinary fields, more and 
more algorithms have been proposed and applied. With the development of science and the 
innovation of technology, hospital information system has been established and gradually 
popularized. The acquisition, storage and rapid transmission of large amounts of data are 
gradually realized, thus accumulating huge medical data resources. In the biomedical field, it 
is critical to translate the growing volume of biomedical data into meaningful and valuable 
information for practicing physicians. Traditional data analysis methods are mainly based on 
statistics. However, with the increasing of data sets, the wide application of multimedia storage 
media and object-oriented technology, the traditional statistical analysis methods are no 
longer enough to support the current data analysis needs. As a result, a series of new data 
analysis methods came into being, and data mining methods have been paid more and more 
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attention and applied in the biomedical field. How to choose an 
algorithm, which is more suitable for the current task, from a large 
number of algorithms, is a problem to be  solved in various 
research fields.

In this context, a novel and prospective research field - hybrid 
methods between metaheuristics and machine learning, has arisen. 
The novel research field successfully combines machine learning and 
swarm intelligence approaches and proved to be  able to obtain 
outstanding results in different areas (Malakar et al., 2019; Bacanin 
et al., 2021, 2022; Zivkovic et al., 2022).

For medical workers without science and engineering background, 
it has become an urgent need to quickly choose a method suitable for 
current research data among many data mining algorithms. In view 
of the above problems, this paper adopts 8 data mining algorithms to 
construct models and evaluate results on different data sets according 
to research questions, obtain the applicability knowledge of 
algorithms, and provide empirical guidance for the selection of data 
mining algorithms. Aiming at the inconsistency of multiple evaluation 
indicators, this paper studied mapping knowledge from three aspects: 
prediction accuracy, modeling running time and memory occupancy 
requirements, which provided the possibility for users to choose 
according to the priority of research problems.

1.2 Related works

In 1976, Rice formally defined the conceptual model of algorithm 
selection, which consists of four parts: problem space, feature space, 
algorithm space and performance space (Rice, 1976). In order to make 
algorithm selection more targeted, Berrer introduced the concept of 
user preference into the algorithm evaluation system, enabling users 
to assign different weights to each evaluation index according to 
business characteristics, which is an important way for users to 
participate in the model selection process (Guoxun, 2013). Some early 
studies laid the foundation for meta-learning (Rendell and Cho, 1990; 
Aha, 1992; Schaffer, 2010; Jianshuang et al., 2017). Meta-learning, in 
simple terms, is learning about learning, that is, relearning on the basis 
of learning results (Brodley, 1995). Meta-learning studies how to learn 
from experience to enhance learning performance (Makmal et al., 
2017). At present, researches on algorithm selection based on meta-
learning ideas mainly focus on the description of dataset 
characteristics, the determination of meta-algorithms (Vilata and 
Drissi, 2002; Finn and Choi, 2017; Finn and Levine, 2017; Lee and 
Levine, 2018a,b) and the expansion and application of meta-learning 
to a specific problem (Doan, 2016; Li et al., 2017).

High-quality description of dataset characteristics can provide a 
reasonable explanation for the difference in algorithm performance, 
while few dataset characteristics were taken into account in early 
studies, which were expanded by two subsequent ESPRIT projects. (1) 
Comparative testing of statistical and logical learning(STATLOG) 
project (King et al., 1995): From 1991 to 1994, a large-scale project was 
carried out in Europe to compare classification algorithms. By 
applying different types of classification algorithms on different 
datasets from different fields, and comparing the performance of each 
algorithm, the relationship between algorithm performance and 
dataset characteristics was obtained, so as to provide empirical 
knowledge for algorithm selection. The STATLOG project selects 22 
classification task datasets in the UCI database, 23 algorithms based 

on machine learning methods, such as statistics, rules, tree structure 
and neural network, and 16 dataset characteristics description 
indicators, such as mean, variance and information entropy. The 
accuracy of prediction is taken as the evaluation criterion. The C4.5 
decision tree algorithm is used to generate rules applicable to data 
characteristics for each algorithm. The results of the STATLOG project 
show that no algorithm can perform optimally on all datasets, that 
confirms the No free lunch (NFL) theorem (Wolpert, 1996). The 
STATLOG project provides extremely valuable metadata that has been 
widely used in the field of meta-learning over the years. (2) A meta-
learning assistant for providing user support in machine learning and 
data mining (METAL) project (Smith, 2008): From 1998 to 2001, 
based on the research results of the STATLOG project and the research 
progress of meta-learning, another algorithm selection research 
project was carried out in Europe, which mainly focused on algorithm 
selection in classification and regression problems. The METAL 
project selects a total of 53 classification task datasets from UCI 
database and other sources, 10 algorithms such as based on rules, 
decision trees, neural networks, instances and linear discrimination. 
The METAL project continues to use the 16 characteristic description 
indicators of datasets in STATLOG, and takes prediction accuracy and 
time performance as evaluation criteria. The computing performance 
of each algorithm is evaluated and sorted by 10-fold 
cross-validation.

After the two European ESPRIT projects, there is limited research 
on algorithm selection for general datasets without significant macro 
features. In 2000, Lim et al. selected 22 kinds of decision tree 
algorithms, 9 statistical algorithms and 2 neural network algorithms 
to run on 32 datasets respectively, and evaluated each algorithm in 
terms of classification accuracy, training time and number of leaf 
nodes in decision tree (Lim et  al., 2000). In 2006, Ali and Smith 
conducted a large-scale algorithm selection study for classification 
problems. They selected 112 classification task datasets in the UCI 
database and 8 algorithms based on statistics, rules and neural 
networks. On the basis of STATLOG, they introduced statistical 
features from Matlab toolbox and other sources, such as the dispersion 
index and the maximum and minimum eigenvalues of covariance 
matrix, and expanded the characteristic description indicators of the 
dataset to 31. F-measure is added as evaluation criteria, and C4.5 
decision tree algorithm is used to learn mapping rules to predict the 
optimal algorithm (Ali and Smith, 2006). For the first time, support 
vector machine (SVM) is included in the research scope, and the 
indicators of dataset characteristic description and algorithm 
evaluation are extended. Since 2014, some researchers focused on the 
integration of several basic classifiers (Cruz et al., 2015) or the overall 
workflow of some software (Nguyen and Kalousis, 2014; Soares, 2014). 
These studies only show the final result, which is equivalent to a black 
box for users, and the specific judgment process is unknown. For the 
specific field of supervised machine learning problems, Luo (2016) 
reviewed the literature on machine learning algorithms and automatic 
selection of hyperparameter values, and found that these methods 
have limitations in the context of biomedical data. Because the 
performance of machine learning algorithms is shown to be problem 
dependent (Heremans and Orshoven, 2015), it is recommended to 
compare different candidate algorithms in specific application 
environments. Some studies have been conducted in the fields of time 
series (Adhikari, 2015) and bioinformatics (Ding et al., 2014), which 
the data has significant temporal variation or high dimensional 
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characteristics. Elmahgiubi (2016) developed a general meta-learning 
framework for automatic algorithm selection, applied to the selection 
problem of package classification algorithms and evaluated.

Algorithm selection should compare the performance of 
algorithms from multiple aspects. On the basis of some existing 
researches, the following three theorems have been widely recognized. 
(1) NFL theorem:Wolpert and Macerday proposed the NFL theorem 
for comparing two optimization algorithms to determine which one 
is better. However, the performance of the optimization algorithm is 
equivalent due to the mutual compensation of all possible functions. 
Specifically, it can be  described as follows: For all optimization 
problems in a specific field, after m steps of iteration, the cumulative 
sum of all possibilities of algorithm A and algorithm B reaching the 
given value of the objective function is equal (David and Wolpert, 
1997). NFL theorem shows that the algorithm is selected by the data, 
that is, the background of the problem. If we  do not make any 
assumptions about the background of the problem, there is no 
universal optimal algorithm, so it is meaningless to study the universal 
optimal algorithm. (2) Occam’s razor principle (Warmuth, 1987): The 
principle states that “if it is not necessary, do not add entities,” that is, 
the “simple and effective principle.” The principle holds that for a given 
domain, the simplest explanation of a phenomenon is most likely to 
be correct, that is, for a given number of models with approximate 
goodness-of-fit, the more concise model should be chosen (Domingos, 
2010). However, due to the simplicity and necessity of this principle is 
difficult to quantify in practice, this algorithm selection principle has 
not been widely promoted. (3) Minimum description length (MDL) 
principle (Rissanen, 1978): This principle was proposed by Rissanen 
(1978) from the perspective of information theory, and its basic idea 
is that for a given data set, the optimal compression of the data is the 
best hypothesis for the dataset. The MDL principle holds that the 
complexity of a model is the sum of the description length of the 
model itself and the encoding length of the data represented by the 
model (Barron et  al., 1998). The principle is the formalization of 
Occam’s razor principle and one of the most practical branches of 
Kolmogorov complexity (Nannen, 2010). A highly complex hypothesis 
may accurately describe all the data, but lose generality at the same 
time. However, too simple description will miss a lot of data features, 
MDL principle is the compromise of the above two cases, avoids 
overfitting or underfitting of the model.

Ideally, we want to identify or design an algorithm that works best 
for all situations. However, both experimental results (Michie et al., 
1994) and theoretical work (David, 1995) suggest that this is not 
possible. The choice of which algorithms to use depends on the dataset 
at hand, so a system that can provide recommendations for such 
choices would be  very useful (Mitchell, 2003). By trying all the 
algorithms for this problem, we  can narrow the algorithm 
recommendation problem down to a performance comparison 
problem. In practice, however, this is usually not feasible because there 
are too many algorithms to try, and some of them run slowly. This 
problem is exacerbated especially when dealing with large amounts of 
data, which often occurs in knowledge discovery in databases.

Many algorithm selection methods are limited to selecting a single 
algorithm or a small group of algorithms (Abdulrahman, 2017), that 
are expected to perform well on a given problem (Kalousis and 
Theoharis, 1999; Pfahringer and Bensusan, 2000; Todorovski, 2003). 
Brazdil et al. believe that the algorithm recommendation problem is 
more similar to the ranking task in nature, which is similar to the 

common ranking task in information retrieval and recommendation 
systems (Brazdil and Costa, 2003). In these tasks, it is not known in 
advance how many alternatives the user will actually consider. If the 
user’s preferred algorithm performs slightly less well than the one at 
the top of the ranking, the user can decide to stick with his favorite 
algorithm. If you have enough time and hardware conditions, you can 
try more algorithms. Since we do not know how many algorithms a 
user might actually want to choose, consider providing a ranking of 
all the algorithms. In 1994, Brazdil, Gama and Henery first used meta-
learning algorithm recommendation to deal with sorting tasks 
(Brazdil, 1994). Later Nakhaeizadeh and Schnabl (1997), and later 
Keller et al. (2000), and Brazdil and Soares (2000) also adopted similar 
methods. In 2011, RBC Prudencio, MCPD Souto and TB Ludermir 
applied the ordering meta-learning method to the time series and 
gene expression data clustering field (Prudêncio et al., 2011). In 2017, 
Finn et al. introduced the theory of meta-learning in the fast 
adaptation study of deep networks (Finn and Levine, 2017).

The study of algorithm recommendation is the further 
improvement of the study of algorithm selection, and it is also the 
theoretical basis of the study of algorithm applicability in this paper.

Medical data has different characteristics from other data. The 
theoretical framework for the applicability study of medical data 
mining algorithm proposed and constructed in this paper can provide 
more targeted empirical knowledge on algorithm selection for medical 
research compared with previous studies. The algorithm applicability 
knowledge base constructed in this paper solves the problem of lack 
of empirical knowledge of data mining algorithms in medical research, 
and provides theoretical guidance for users to choose 
suitable algorithms.

2 Materials and methods

2.1 Base dataset

In the selection of datasets, this paper follows the principles of 
universality, openness and less intervention, and uses the machine 
learning database of University of California Irvine (UCI) as the 
source of the base dataset. The UCI database is a database used by the 
machine learning community for empirical analysis of machine 
learning algorithms, and it is a collection of data that covers domain 
theory data as well as data generated by data generators. Since 
inception in 1987 by David Aha and others, the UCI database has 
been used by students, teachers, and researchers around the world as 
the primary source of machine learning datasets. At present, the UCI 
database has reached more than 1,000 citations, making it one of the 
top 100 most cited in computer science. According to the dataset 
range studied in this paper, that is, open data sets aiming at 
classification that can be  converted into structured data through 
simple or slightly complex operations, open datasets included in UCI 
database are selected. One hundred and thirty-eight independent 
datasets from 335 UCI datasets were included in the study.

2.2 Data preprocessing

The datasets in the UCI database come from various industries, 
and a considerable part of them are shared raw data. The data 
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collection and storage software used by the sharers are not the same, 
so there are some differences in data formats. The quality of data is the 
basic guarantee of data analysis, and only high-quality data can obtain 
high-quality analysis results. Therefore, this paper conducted data 
preprocessing on 138 selected datasets in order to carry out 
characteristic quantization and subsequent algorithm applicability 
research. Since the purpose of this paper is to study the characteristics 
of universal medical datasets compared with general datasets in other 
fields, the principle of “only necessary preprocessing without affecting 
the basic characteristics of data” is adhered to in the data preprocessing 
stage. Specifically, that is to simulate the preliminary data 
preprocessing carried out by the researchers after obtaining the 
original data for the current research scheme. Data preprocessing in 
the study mainly includes the following aspects:

2.2.1 Deficient data
In the process of data acquisition, many reasons may cause the 

incompleteness of collected data. For datasets that lack a column 
name, define the column name to clarify the meaning of the attribute. 
Since medical data involves different individuals, and individual 
differences exist among patients, it is easy to introduce greater errors 
if the missing values are filled by mean, median, chain equation and 
other methods hastily. Therefore, data samples containing missing 
values are removed in this paper to ensure the integrity of each 
analysis sample. At the same time, in order to avoid a large reduction 
in the sample size of the dataset after excessive removal of missing 
values of a variable, this paper with a limit of 30%, removes attributes 
with missing values exceeding 30%. Because some attributes in the 
dataset have more missing values, if the samples with missing values 
are directly removed, the sample size of the dataset will be greatly 
reduced. Therefore, the threshold of 30% is set in this study. When the 
missing value ratio of an attribute is greater than this threshold, the 
attribute will be removed.

2.2.2 Inconsistent data
In the process of data recording and collection, there may 

be  inconsistent presentation, spelling errors and other problems 
resulting in inconsistent data. In this paper, by comparing with the 
description of the dataset, the inconsistent data that can be clearly 
judged are normalized, the uncertain differences are retained and 
multi-party verification is carried out, and the sample data is removed 
if there is no confirmed information to reduce noise.

2.2.3 Data integration
Different data collection scenarios and storage media will cause 

the collected data to be dispersed in different data files, showing the 
characteristics of phased and distributed storage. In this case, the data 
of different data sources need to be associated and integrated through 
data integration operations, and stored in a unified data set.

After data preprocessing, a total of 293 sub datasets of 138 
independent datasets were included in this study.

2.3 Dataset characteristic metadata

By focusing on the analysis and comparison of the calculation 
indicators adopted by the two European Spirit projects - STATLOG 
and METAL, and combining the research purpose and needs of this 

study, this paper adopts 26 indicators to quantify the characteristics of 
the research datasets. These 26 quantitative indicators can be divided 
into three categories: simple indicators, statistical indicators and 
information theory indicators.

2.3.1 Simple indicators
 1 Number of variables (P).
 2 Sample size (N).
 3 Number of categories (N_class).
 4 Ratio of largest class (R_largest).
 5 Ratio of least class (R_least).
 6 Ratio of binary variable (R_binary).
 7 Ratio of discrete variable (R_discrete).
 8 Ratio of continuous variable (R_continuous).
 9 Ratio of missing values (R_missing).

2.3.2 Statistical indicators
 1 Geometric mean (Geomean).
 2 Harmonic mean (Harmean).
 3 Trim mean (Trimean).
 4 Percentile (Prctile).
 5 Mean absolute deviation (MAD).
 6 Variance (Var).
 7 Standard deviation (Std).
 8 Mean of absolute correlation coefficient (MAr).
 9 Interquartile range (IQR).
 10 Index of dispersion (D).
 11 Skewness.
 12 Kurtosis.

2.3.3 Informational indicators
 1 Mean entropy of attribute variables (ME_V).
 2 Entropy of class (E_C).
 3 Mean mutual entropy of class and attribute variables 

(MME_CV).
 4 Equivalent number of variables (ENV): The ratio of E_C to 

MME_CV.
 5 Noise-signal ratio (NSR).

2.4 Base algorithm selection

Classification, as one of the most important techniques in data 
mining, has a wide applicable range, and many classification 
algorithms have been proposed so far. According to the learning 
characteristics of each algorithm, data mining classification 
algorithms can be  divided into the following four categories: 
classification algorithm based on tree, classification algorithm based 
on neural network, classification algorithm based on Bayes, and 
classification algorithm based on statistics. In recent years, on the 
basis of statistical learning theory, support vector machine (SVM) 
have developed vigorously, showed unique advantages in solving 
small sample, nonlinear and high-dimensional pattern recognition 
problems, and received attention and promotion from scholars in 
multiple fields. In addition, rough set theory, fuzzy set theory, 
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genetic algorithm and ensemble learning methods are introduced 
into the classification task.

In the study, the following three selection criteria for alternative 
base algorithms are formulated:

 1 High maturity in theory and practice;
 2 Less user involvement in the design stage;
 3 Strong family representation.

According to the above three criteria, this paper filters many data 
mining algorithms for aiming at classification task. This paper selects 
five classification algorithms among the ten classic algorithms: k 
nearest neighbor (kNN) algorithm, decision tree C4.5 (C4.5) 
algorithm, support vector machine (SVM) algorithm, naive bayes 
(NB) algorithm, AdaBoost (AB) algorithm, and the increasingly 
popular - random forest (RF) algorithm, the representative of neural 
network algorithm  - backpropagation network (BP), and logistic 
regression (LR), which is commonly used in medical research. The 
above 8 algorithms are used as the alternative base algorithm in 
this paper.

2.5 Algorithm performance metadata

In the process of algorithm applicability research, algorithm 
performance evaluation is an essential component. In the field of 
machine learning, the commonly used algorithms performance 
evaluation indexes include: accuracy rate, true positive rate, true 
negative rate, recall rate, average absolute error, Area under the ROC 
curve (AUC), Akaike information criterion (AIC), running time, 
interpretability, etc. For different data mining methods, there are 
specific evaluation indexes.

The evaluation of the classification methods is mainly based on 
the following five items:

 1 Accuracy of prediction: the proportion of correct classification 
in sample data;

 2 Running speed: the time of model construction and 
classification using the model. Since the time required to 
generate the model accounts for most of the total time, the 
model construction time is mainly used as the measurement 
standard of the speed of the classification method in 
the experiment;

 3 Robustness: The ability of the model to accurately predict data 
with noise or missing values;

 4 Processable data volume: The ability to effectively construct a 
model in the face of a large amount of data, mainly referring to 
the ability to solve the problem of resident disk data;

 5 Interpretability: The level at which a model can be understood.

In the field of medical research, sensitivity, specificity and 
accuracy are often used to evaluate predictive models constructed in 
a particular study. Sensitivity is the proportion of individuals with 
actual disease who are accurately judged to be true positive, that is, the 
true positive rate described above. Specificity is the proportion of 
individuals who are not actually sick that are accurately judged to 
be  true negative, i.e., the true negative rate and recall rate 
described above.

By focusing on the analysis and comparison of the calculation 
indicators adopted by the two European Spirit projects - STATLOG 
and METAL, and combining the research purpose and needs of this 
study, this paper mainly evaluates each alternative base algorithm in 
three aspects, the prediction accuracy, running speed and 
memory consumption.

2.5.1 Prediction accuracy
The accuracy (Acc) of training set and test set, as well as the 

analog expansion of sensitivity and specificity, are used as the 
evaluation indexes for the prediction accuracy of each alternative 
base algorithm.

In this paper, the analogy of sensitivity and specificity can 
be briefly described as calculating the correct prediction rate of the 
class with the most and least samples in the target variable, respectively 
denoted as S largest_  and S least_ . The calculation formulas are 
shown in (1) and (2).

 

S largest The number of samples correctly predicted in
the

_ =        

       

   

category with the largest sample size
The actual number/ oof samples in the category
with the largest sample size

     

    ×1000%  (1)

 

S least The number of samples correctly predicted in the
c

_ =         

aategory with the smallest sample size
The actual number o

     

   / ff samples in the category
with the smallest sample size

     

    ×1000%  (2)

2.5.2 Running speed
The modeling time of 8 alternative base algorithms on each base 

dataset is monitored and collected as an evaluation indicator. Since 
each algorithm will produce an order of magnitude difference in the 
dataset with different characteristics, the logarithmic operation of the 
modeling time of each algorithm is carried out in order to carry out 
comparative analysis.

2.5.3 Memory consumption
Monitor and collect the memory occupation of the prediction 

model built by 8 alternative base algorithms on each base dataset as 
an evaluation indicator. Considering that each algorithm will produce 
an order of magnitude difference in the dataset with different 
characteristics, the logarithmic operation of the memory usage of each 
algorithm is carried out for comparative analysis.

For different research objectives and programs, the focus of 
researchers may be  different. For the diagnosis of a rare disease, 
researchers are more concerned about the identification and screening 
rate of this minority group of people with the disease, that is, the above 
S least_  value need to meet the acceptable threshold. For the 
diagnosis or prediction of the development of some emergency 
conditions, such as judging whether a patient with chest pain is an 
acute myocardial infarction or a patient in need of timely intervention 
in the emergency room, the prediction model to be used at this time 
has high requirements on the prediction accuracy and time, that is, 
the performance evaluation algorithm indicators mentioned above 
need to be considered comprehensively.
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2.6 Algorithm applicability evaluation

Because several algorithms reach the optimal level on some 
datasets at the same time, the optimal algorithm result is the 
combination of several algorithms. The number of these combinations 
can be reduced by combining the prediction accuracy evaluation with 
the runtime and memory usage, respectively. However, due to the 
differences in dataset characteristics that affect the running time and 
memory usage, this method has some defects. Considering the ratio 
between the number of datasets included in this paper and the 
combined results, in order to ensure the accuracy and generalization 
of the algorithm applicability knowledge, we decided to discretized the 
ranking of prediction accuracy of each algorithm on each dataset, that 
is, the top three algorithms are labeled as recommended algorithm 
(Y), and the fourth and fifth algorithms are labeled as medium (M), 
ranking sixth through eighth and modeling failures are marked as not 
recommended (No).

Due to the 34 discrete variable datasets included in the study, 
limited by the amount of data, they are not suitable for modeling 
learning features. Therefore, this paper only conducts modeling 
learning on mixed variable datasets and continuous variable datasets 
to evaluate the algorithm applicability on different 
characteristic datasets.

3 Results

3.1 Preliminary statistical results

In 293 UCI data subsets included in the study, modeling failures 
occurred in all eight algorithms. Among them, the main reason for LR 
algorithm modeling failure is that the dimension is too high or the 
number of weight coefficients contained in the discrete variable 
exceeds the maximum threshold allowed by the algorithm, resulting 
in modeling failure. The main reason for AB algorithm modeling 
failure is memory overflow, that is, the memory required for modeling 
exceeds the upper limit allocated by the system. The main reason for 
RF algorithm modeling failure is discrete variables include too many 
categories exceeding the upper limit and memory overflow. The main 
reason for BP algorithm modeling failure is basically the same with 
LR. The modeling success rate of the eight algorithms is shown in 
Table 1.

As can be  seen from Table 1 that the BP algorithm modeling 
failure rate is relatively high, 22.87%. Preliminary analysis, the number 
of weight coefficients exceeded the maximum threshold allowed by 
the algorithm due to too many categories of discrete variables. Further 
analysis and discussion will be conducted in accordance with the 
specific characteristics of the dataset.

Since the learning and modeling time of the eight algorithms on 
different datasets presents an order of magnitude difference, the 
learning and modeling time result values after logarithmic are 
compared in this paper, and the scatter diagram is shown in Figure 1.

The number on X axis corresponds to the serial number of the 
research dataset. As can be seen from Figure 1 that the same algorithm 
has different learning and modeling time on datasets with different 
characteristics. The overall trend shows that the modeling time of NB 
algorithm is the shortest on most datasets, while the modeling time of 
ensemble method AB is significantly several orders of magnitude 
higher. Dataset characteristics that affect modeling time will be further 
discussed and analyzed later.

In view of the fact that the memory usage of the eight algorithms 
in learning and modeling on different datasets also presents an order 
of magnitude difference, this paper compares the memory occupation 
result values after logarithmic, as shown in Figure 2.

As can be seen from Figure 2 that the memory occupied by the 
same algorithm is different to some extent, when learning and 
modeling on datasets with different characteristics. The overall trend 
shows that on most datasets, NB algorithm requires the smallest 
amount of memory for modeling, followed by C4.5 algorithm, while 
RF and AB two ensemble methods have significantly higher memory 
consumption of several orders of magnitude. Dataset characteristics 
that affect memory usage will be further analyzed and summarized in 
subsequent studies.

Because the number of the discrete variable dataset is small, the 
modeling analysis is not used, but the chi-square test analysis of R*C 
contingency table is carried out. The recommendation of the 8 
algorithms on the datasets in different fields was sorted into 
contingency tables, respectively. Taking the LR algorithm as an 
example, as shown in Table 2, the differences between groups were 
compared by the χ 2 values calculated according to formula (3). 
Similarly, contingency table analysis was performed on the other 7 
base algorithms to explore the applicability of each algorithm on the 
dataset in the biomedical field. The contingency table analysis results 
of whether there are differences in data domain among LR, C4.5, 

TABLE 1 Summary of modeling completed by 8 algorithms.

Algorithm Mixed variable datasets Discrete variable datasets Continuous variable 
datasets

Total 
failed

Completed Failed Completed Failed Completed Failed

LR 93 9 29 5 138 19 33

C4.5 101 1 34 0 157 0 1

SVM 101 1 33 1 157 0 2

AB 96 6 32 2 153 4 12

kNN 101 1 33 1 157 0 2

NB 102 0 34 0 157 0 0

RF 95 7 33 1 152 5 13

BP 68 34 25 9 133 24 67
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SVM, AB, kNN, NB, RF and BP  8 base algorithms are shown in 
Table 3.
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(3)

In the formula, Aij  is the actual frequency of each cell in the 
contingency table, and nRi  and nCj

 are the combined counts of row 
i and column j corresponding to Aij .

As can be  seen from Table  3, there are differences in the 
recommendation of NB algorithm on datasets in the medical, 
biological and general fields. By referring to the occurrence table of 

NB algorithm, it can be found that the recommendation rate of NB 
algorithm on datasets in the medical and biological fields is relatively 
high, which is 60.0 and 50.0% respectively, while the recommendation 
rate on datasets in the general field is only 4.8%.

3.2 Predictive accuracy modeling analysis

Through the above exploratory analysis, we have a preliminary 
understanding of the algorithm applicability. In order to further 
discover the hidden feature knowledge in the algorithm applicability, 
this paper uses stepwise regression and decision tree C4.5 algorithm 
to build a model, so as to find the features and rules that need to 
be  further analyzed and discussed in the previous exploratory 
statistical analysis.

FIGURE 1

Modeling time of 8 algorithms on different datasets.

FIGURE 2

Modeling memory usage of 8 algorithms on different datasets.
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3.2.1 Mixed variable datasets
With “whether to recommend” as the target variable and 26 

quantization characteristics of datasets as attribute variables, a 
stepwise regression model was constructed to obtain dataset 
characteristics related to the applicability of LR, C4.5, SVM, AB, kNN, 
NB, RF and BP 8 algorithms, as shown in Table 4.

In Table 4, “√” indicates that there is a statistically significant 
correlation between an algorithm and a dataset characteristic after 
stepwise regression screening.

With “whether to recommend” as the target variable and the 26 
quantization characteristics of datasets as attribute variables, a 
decision tree model was constructed using the C4.5 algorithm. The 
applicability judgment decision trees of 8 algorithms on the obtained 
mixed variable data set are built. According to the decision trees, the 
applicability of 8 algorithms on mixed variable datasets can be judged 
and predicted.

3.2.2 Continuous variable datasets
In Table  5, after stepwise regression screening, there is a 

statistically significant correlation between an algorithm and the 
characteristics of a dataset, which is represented by “√”.

With “recommend or not” as the target variable and 26 data sets 
quantization characteristics as attribute variables, a decision tree 
model is constructed using C4.5 algorithm. The applicability judgment 
decision tree of 8 algorithms obtained on continuous variable datasets 
are built. According to these decision trees, the applicability of 8 
algorithms on continuous variable datasets can be  judged and 
predicted. Through the validation on the training set and test set of 
the algorithm applicability metadata, both the decision tree judgment 
model and the stepwise regression judgment model reached the 
accuracy of more than 75%.

3.3 Running time modeling analysis

Since the learning and modeling time of the eight algorithms on 
different datasets presents an order of magnitude difference, this paper 
calculates the running time logarithmic value, and then construct a 
model to perform magnitude prediction.

Associated the running time of the algorithm with the dataset 
characteristics, and analyzed the integrated metadata set. Taking 
“log10(Time)” as the target variable and 26 quantized dataset 
characteristics as the attribute variables. Firstly, the correlation 
between the target variable and the attribute variable is calculated, and 
the attribute variable with the absolute value of the correlation 
coefficient greater than 0.3 is taken as the correlation variable and 
included in the next modeling analysis. The model was constructed by 
stepwise regression, and the running time order prediction formulas 
of LR, C4.5, SVM, AB, kNN, NB, RF and BP 8 algorithms on the three 

categories datasets were obtained respectively, as shown in formulas 
(4)–(27).

3.3.1 Mixed variable datasets
The running time magnitude prediction formula of LR algorithm 

on mixed variable datasets is shown in formula (4).

 

log . . _

. .

10 0 0034 3 948

0 000002 0 0149

Time R least

N
LR( ) = − −

+ −

∗

∗ ∗Harmeean  (4)

The running time magnitude prediction formula of C4.5 
algorithm on mixed variable datasets is shown in formula (5).

 

log Time N
R least E C

C10 4 5
0 607 0 000001

2 349 0 7297

( ) = + ∗
− ∗ − ∗
−

.
. .

. _ . _

00 011. ∗Harmean  (5)

The running time magnitude prediction formula of SVM 
algorithm on mixed variable datasets is shown in formula (6).

 

log Time N R least
Har

SVM10 0 4845 0 000003 2 263

0 0206

( ) = − + ∗ − ∗
− ∗

. . . _

. mmean R largest+ ∗1 047. _  (6)

The running time magnitude prediction formula of AB algorithm 
on mixed variable datasets is shown in formula (7).

 

log . .

. _ . _

10 2 171 0 000001

2 358 1 205

Time N

R least E C
AB( ) = +

− −

∗

∗ ∗
 (7)

The running time magnitude prediction formula of kNN 
algorithm on mixed variable datasets is shown in formula (8).

 

log . .

. _ . _

10 0 9135 0 000005

4 344 2 054

Time N

R least E C
kNN( ) = +

− −

∗

∗ ∗
 (8)

The running time magnitude prediction formula of NB algorithm 
on mixed variable datasets is shown in formula (9).

TABLE 2 The recommended usage of LR algorithm on different domain 
datasets – discrete variable datasets.

LR Y M No

Medical 1 2 2

Biology 3 3 2

General 3 5 13

TABLE 3 R*C contingency table analysis results of 8 algorithms – discrete 
variable datasets.

Algorithm
χ2 Difference 

between groups

LR 3.8052 No

C4.5 2.9952 No

SVM 2.1799 No

AB 4.2213 No

kNN 3.8980 No

NB 11.2935 Yes

RF 7.9518 No

BP 7.5466 No
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log Time N R binary
ME

NB10 0 6855 0 000002 0 5441

1 241

( ) = − + ∗ − ∗
− ∗

. . . _

. _VV R least
E C P

− ∗
− ∗ + ∗

1 228

0 528 0 0013

. _

. _ .  
 (9)

The running time magnitude prediction formula of RF algorithm 
on mixed variable datasets is shown in formula (10).

 

log . . . _

. _ .

10 1 395 0 000002 3 898

1 439 0 0

Time N R least

E C
RF( ) = + −

− −

∗ ∗

∗ 1167∗Harmean  (10)

The running time magnitude prediction formula of BP algorithm 
on mixed variable datasets is shown in formula (11).

 

log . . . _ arg
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3.3.2 Discrete variable datasets
The running time magnitude prediction formula of LR algorithm 

on discrete variable datasets is shown in formula (12).

 

log . . . _

.

10 1 419 0 00007 0 0526

0 0074

Time LR( ) = − + +
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N N class
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The running time magnitude prediction formula of  
C4.5 algorithm on discrete variable datasets is shown in 
formula (13).

 

log . .

. . _

.10 4 5
0 8812 0 00003

0 0015 0 0097

Time N

P N class
C( ) = − +

+ +

∗
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 (13)

The running time magnitude prediction formula of  
SVM algorithm on discrete variable datasets is shown in 
formula (14).

TABLE 4 Summary of dataset characteristics related to the applicability of 8 algorithms – mixed variable datasets.

Dataset 
characteristic

LR C4.5 SVM AB kNN NB RF BP

P √ √ √ √ √ √

N √ √ √ √ √ √ √

N_class √ √ √ √

R_largest √ √ √ √

R_least √ √ √ √ √ √

R_binary √ √ √ √

R_discrete √ √ √ √ √

R_continous √ √ √ √

Geomean √ √ √ √ √

Harmean √ √ √ √ √ √

MAD √ √ √ √ √ √

Var √ √

Std √ √ √ √

MAr √ √ √ √ √ √

IQR √ √ √

D √ √ √ √ √ √

Skewness √ √ √ √ √

Kurtosis √ √ √ √ √ √

Trimean √ √ √ √ √

Percentile √ √ √ √ √

ME_V √ √ √ √ √

E_C √ √ √ √

MME_CV √ √ √ √ √

ENV √ √ √ √ √ √ √

NSR √ √ √ √ √

Field label √ √ √
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The running time magnitude prediction formula of AB algorithm 
on discrete variable datasets is shown in formula (15).
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The running time magnitude prediction formula of kNN 
algorithm on discrete variable datasets is shown in formula (16).

 log . .10 1 064 0 00006Time NkNN( ) = − + ∗
 (16)

The running time magnitude prediction formula of NB algorithm 
on discrete variable datasets is shown in formula (17).

 

log . . . _

.

10 1 983 0 0017 0 1835

0 000018

Time P R

N
NB( ) = − + +

+

∗ ∗

∗

binary

 (17)

The running time magnitude prediction formula of RF algorithm 
on discrete variable datasets is shown in formula (18).

 log . . . _10 1 641 0 00005 1 566Time N E CRF( ) = − + +∗ ∗
 (18)

The running time magnitude prediction formula of BP algorithm 
on discrete variable datasets is shown in formula (19).

 log . . . _10 0 7675 0 00006 0 0549Time N N classBP( ) = − + +∗ ∗
 (19)

3.3.3 Continuous variable datasets
The running time magnitude prediction formula of LR algorithm 

on continuous variable datasets is shown in formula (20).

 

log . . . _

. _

10 0 5703 0 000009 1 897

0 0322

Time N R least

N cl
LR( ) = − + −

+

∗ ∗

∗ aass
Geomean+ ∗0 0000008.  (20)

The running time magnitude prediction formula of C4.5 
algorithm on continuous variable datasets is shown in formula (21).

 log . . . _
.10 4 5

0 2581 0 000006 0 7944Time N R leastC( ) = − + −∗ ∗
 (21)

The running time magnitude prediction formula of SVM 
algorithm on continuous variable datasets is shown in 
formula (22).

TABLE 5 Summary of dataset characteristics related to the applicability of 8 algorithms – continuous variable datasets.

Dataset 
characteristic

LR C4.5 SVM AB kNN NB RF BP

P √ √ √ √ √ √ √

N √ √ √ √ √ √ √

N_class √ √ √ √ √

R_largest √ √ √ √ √ √

R_least √ √ √

Geomean √ √ √ √ √

Harmean √ √ √

MAD √ √ √ √ √

Var √ √ √ √ √ √ √

Std √ √ √ √ √

MAr √ √ √ √ √ √

IQR √ √ √ √ √

D √ √ √ √

Skewness √ √ √ √ √ √ √ √

Kurtosis √ √ √ √ √

Trimean √ √ √ √

Percentile √ √ √ √ √

E_C √ √ √

Field label √ √ √ √ √
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The running time magnitude prediction formula of AB algorithm 
on continuous variable datasets is shown in formula (23).
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. _
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0 5567
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R
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−

∗ ∗

∗ lleast  (23)

The running time magnitude prediction formula of kNN 
algorithm on continuous variable datasets is shown in formula (24).

log . . .

.

10 0 3235 0 00001 0 0000008

3 446

Time N Geomean

M
kNN( ) = − + +

−

∗ ∗

∗ AAr R least− ∗1 569. _  
 (24)

The running time magnitude prediction formula of NB algorithm 
on continuous variable datasets is shown in formula (25).

 log . .10 1 578 0 000004Time NNB( ) = − + ∗
 (25)

The running time magnitude prediction formula of RF algorithm 
on continuous variable datasets is shown in formula (26).
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The running time magnitude prediction formula of BP algorithm 
on continuous variable datasets is shown in formula (27).
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3.4 Memory requirement modeling analysis

The memory usage of algorithms during running is related to the 
inherent characteristics of the dataset, and there will be differences of 
orders of magnitude among each algorithm on the same dataset. 
Therefore, logarithmic operation is carried out on the memory 
occupation of the learning and modeling process of each algorithm 
for comparative analysis and prediction.

The memory usage of the algorithm is associated with the dataset 
characteristics, and the integrated metadata set is learned and 
analyzed, with “log10(Memory)” as the target variable and 26 
quantization characteristics of the dataset as the attribute variable. 
Firstly, the correlation between the target variable and the attribute 
variable is calculated, and the attribute variable with the absolute value 
of the correlation coefficient greater than 0.3 is taken as the correlation 
variable and included in the next modeling analysis. The model was 

constructed by stepwise regression, and the prediction formulas of the 
memory usage level of LR, C4.5, SVM, AB, kNN, NB, RF and BP 8 
algorithms on the three categories datasets were obtained, as shown 
in formulas (28)–(51).

3.4.1 Mixed variable datasets
The memory usage level prediction formula of LR algorithm on 

mixed variable datasets is shown in formula (28).

log . . . _

. _

10 5 055 0 000003 1 556

0 7283

Memory N R least

R
LR( ) = + −

+

∗ ∗

∗ larrgest + ∗0 554. _R binary  (28)

The memory usage level prediction formula of C4.5 algorithm on 
mixed variable datasets is shown in formula (29).

log . . .

. _
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3 354 0 0021 0 000002
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R
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+

∗ ∗
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The memory usage level prediction formula of SVM algorithm on 
mixed variable datasets is shown in formula (30).

log . . . _

.
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∗ eean Skewness− ∗0 1251.  (30)

The memory usage level prediction formula of AB algorithm on 
mixed variable datasets is shown in formula (31).
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. _
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Memory N R binary

R
AB( ) = + +

+
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+

∗

∗
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. _

. _

R discrete
E C  

 (31)

The memory usage level prediction formula of kNN algorithm on 
mixed variable datasets is shown in formula (32).

log . . . _

. _

10 5 206 0 000003 1 84

1 174

Memory N R least
R lar

kNN( ) = + ∗ − ∗
+ ∗ ggest  (32)

The memory usage level prediction formula of NB algorithm on 
mixed variable datasets is shown in formula (33).

 log . . .10 4 559 0 0018 0 0000005Memory P NNB( ) = + −∗ ∗
 (33)

The memory usage level prediction formula of RF algorithm on 
mixed variable datasets is shown in formula (34).
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.
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The memory usage level prediction formula of BP algorithm on 
mixed variable datasets is shown in formula (35).
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3.4.2 Discrete variable datasets
The memory usage level prediction formula of LR algorithm on 

discrete variable datasets is shown in formula (36).

 log . . . _10 4 872 0 00004 0 0346Memory N N classLR( ) = + +∗ ∗
 (36)

The memory usage level prediction formula of C4.5 algorithm on 
discrete variable datasets is shown in formula (37).

 log . .
.10 4 5

4 5535 0 0027Memory PC( ) = + ∗
 (37)

The memory usage level prediction formula of SVM algorithm on 
discrete variable datasets is shown in formula (38).

log . . . _

. _
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Memory N N class
R la

SVM( ) = + ∗ + ∗
− ∗ rrgest  

 (38)

The memory usage level prediction formula of AB algorithm on 
discrete variable datasets is shown in formula (39).
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The memory usage level prediction formula of kNN algorithm on 
discrete variable datasets is shown in formula (40).
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The memory usage level prediction formula of NB algorithm on 
discrete variable datasets is shown in formula (41).
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The memory usage level prediction formula of RF algorithm on 
discrete variable datasets is shown in formula (42).

 log . . . _10 5 872 0 00004 0 6054Memory N ERF( ) = + +∗ ∗ C (42)

The memory usage level prediction formula of BP algorithm on 
discrete variable datasets is shown in formula (43).

 log . . . _10 4 715 0 00004 0 0407Memory N N classBP( ) = + +∗ ∗
 (43)

3.4.3 Continuous variable datasets
The memory usage level prediction formula of LR  

algorithm on continuous variable datasets is shown in 
formula (44).
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The memory usage level prediction formula of C4.5 algorithm on 
continuous variable datasets is shown in formula (45).
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The memory usage level prediction formula of SVM algorithm on 
continuous variable datasets is shown in formula (46).

 log . . . _10 5 996 0 000008 1 687Memory N R leastSVM( ) = + −∗ ∗
 (46)

The memory usage level prediction formula of AB  
algorithm on continuous variable datasets is shown in 
formula (47).
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The memory usage level prediction formula of kNN algorithm 
on continuous variable datasets is shown in formula (48).
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The memory usage level prediction formula of NB algorithm on 
continuous variable datasets is shown in formula (49).
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The memory usage level prediction formula of RF algorithm on 
continuous variable datasets is shown in formula (50).
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The memory usage level prediction formula of BP  
algorithm on continuous variable datasets is shown in 
formula (51).

 

log . . . _

.
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0 0000006
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Ge
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4 Discussion

In 293 UCI data subsets included in the study, the rankings of 
the eight algorithms varied according to three prediction accuracy 
evaluation indicators. As can be  seen from Figure  3, on some 
datasets, the rankings of the eight algorithms vary among different 
evaluation indicators. No algorithm can maintain the optimal 
position under any evaluation index framework, which proves the 
scientific nature of NFL theorem and the necessity of this paper. In 
addition, on some datasets, several algorithms reach the optimal 
level at the same time.

In 2000, Lim et al. found that among decision tree algorithms, 
C4.5, IND-CART and QUEST had a better balance between 
accuracy and speed, but C4.5 tended to generate trees twice or 
larger than the latter two. Among statistical algorithms, Logistic 
regression algorithm has a more prominent performance 
(Smith, 2008).

Based on the results of exploratory analysis of the above three 
types of datasets and the results of evaluation and comparison of 
stepwise regression and decision tree modeling results, the following 
knowledge of algorithm applicability based on prediction accuracy 
can be obtained.

4.1 Mixed variable datasets

The performance of AB, NB and BP algorithms on datasets from 
different fields will be different. AB algorithm is suitable for medical 
datasets with discrete variable ratio less than 77.78%, and NB algorithm 
is suitable for datasets with noise to signal ratio greater than −38.7407.

4.2 Discrete variable datasets

The performance of NB algorithm on datasets in biomedical field 
is obviously better than that on datasets in general field. Due to the 
small number of discrete variable datasets in the UCI public dataset, 
other algorithms did not show a statistically significant performance 
gap on the discrete variable datasets included in the study.

4.3 Continuous variable datasets

Five algorithms, C4.5, SVM, NB, RF and BP, have different 
performance on datasets from different fields. The C4.5 algorithm is 
recommended for medical datasets with more than 15 variables. For 
medical datasets whose mean variance of variables is less than or equal to 
4.5815, SVM algorithm can be  considered. The RF algorithm is 
considered for medical datasets with the information entropy of class 
variables greater than 0.2383 and the geometric mean less than or equal 
to 0.2241. The corresponding decision tree model is shown in Figures 4–6.

From formulas (4)–(27), it can be found that sample size N is 
an important factor affecting the modeling running time of each 
base algorithm on the three types of datasets. In addition, the 
running time of each base algorithm on the mixed variable datasets 
is also related to R_least and Harmean. The running time of each 

FIGURE 3

Prediction accuracy ranking of 8 algorithms under different evaluation indexes (on the dataset “Abalone”).
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base algorithm on continuous variable datasets is mainly related to 
R_least and Geomean.

From formulas (28)–(51), it can be found that sample size N is 
an important factor affecting the modeling memory of each base 
algorithm on the three types of datasets. In addition, the memory 
usage of each base algorithm on the mixed variable datasets is also 
related to R_least and R_largest. The memory usage of each base 
algorithm on discrete variable datasets is mainly related to N_class. 
The memory usage of each base algorithm on continuous variable 
datasets is related to R_least and Geomean.

5 Conclusion

The validity and feasibility of the algorithm applicability 
knowledge base constructed in this paper have been verified 
theoretically, thus realizing the construction of the algorithm 
applicability knowledge base of the dataset oriented to classification 
task. Compared with other studies, this paper focuses the problem 
space of algorithm applicability in the medical field for the first time, 
and it is found that C4.5 algorithm has outstanding performance on 
most medical datasets, ranking in the forefront of prediction accuracy, 
comparable to the ensemble methods, and the order of magnitude 
modeling running time and memory occupation is relatively smaller.

As for the applicability of data mining algorithms, although this 
paper has carried out a relatively in-depth analysis by introducing 
algorithm selection concept, algorithm recommendation and meta-
learning theory, expected to obtain rule knowledge with guiding 
value for medical data mining practice. However, due to the 
limitations of theory and practice, this paper still has some 
shortcomings and needs further research. All kinds of specific 
problems in the biomedical field can be  abstractions into 
classification, numerical prediction, clustering, association rules 
and time series analysis in data mining, and 70% of problems in real 
life can be transformed into classification problems. In this paper, 
the applicability of the algorithm is studied only in the field of 
classification tasks, and subsequent studies can expand the breadth 
of mining tasks, such as continuing to study the applicability of the 
algorithm in the field of numerical prediction tasks, the applicability 
of various deep neural networks in medical image analysis, the 
influence of data preprocessing methods on modeling results, etc.
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