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Rényi entropy-complexity
causality space: a novel
neurocomputational tool for
detecting scale-free features in
EEG/iEEG data

Natalí Guisande and Fernando Montani*

Instituto de Física de La Plata (IFLP), Consejo Nacional de Investigaciones Científicas y Técnicas –

Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Buenos Aires, Argentina

Scale-free brain activity, linked with learning, the integration of di�erent time

scales, and the formation of mental models, is correlated with a metastable

cognitive basis. The spectral slope, a key aspect of scale-free dynamics,

was proposed as a potential indicator to distinguish between di�erent sleep

stages. Studies suggest that brain networks maintain a consistent scale-free

structure across wakefulness, anesthesia, and recovery. Although di�erences

in anesthetic sensitivity between the sexes are recognized, these variations

are not evident in clinical electroencephalographic recordings of the cortex.

Recently, changes in the slope of the power law exponent of neural activity

were found to correlate with changes in Rényi entropy, an extended concept

of Shannon’s information entropy. These findings establish quantifiers as a

promising tool for the study of scale-free dynamics in the brain. Our study

presents a novel visual representation called the Rényi entropy-complexity

causality space, which encapsulates complexity, permutation entropy, and the

Rényi parameter q. The main goal of this study is to define this space for

classical dynamical systems within theoretical bounds. In addition, the study

aims to investigate how well di�erent time series mimicking scale-free activity

can be discriminated. Finally, this tool is used to detect dynamic features

in intracranial electroencephalography (iEEG) signals. To achieve these goals,

the study implementse the Bandt and Pompe method for ordinal patterns. In

this process, each signal is associated with a probability distribution, and the

causal measures of Rényi entropy and complexity are computed based on

the parameter q. This method is a valuable tool for analyzing simulated time

series. It e�ectively distinguishes elements of correlated noise and provides a

straightforwardmeans of examining di�erences in behaviors, characteristics, and

classifications. For the iEEG experimental data, the REM state showed a greater

number of significant sex-based di�erences, while the supramarginal gyrus

region showed themost variation across di�erentmodes and analyzes. Exploring

scale-free brain activity with this framework could provide valuable insights

into cognition and neurological disorders. The results may have implications for

understanding di�erences in brain function between the sexes and their possible

relevance to neurological disorders.
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1 Introduction

In brain activity, oscillations and scale-free neuronal activity

coexist (Zilber et al., 2013; He, 2014; Zilber, 2014; Bongers et al.,

2020). Brain oscillations are recurrent patterns of neuronal activity

that follow a specific temporal rhythm. In the study of brain

electrical activity, different frequency bands have been identified,

each with its own characteristics and correlations with specific

cognitive states and brain functions (He, 2014).

Regardless of its precise origin, across various spatiotemporal

scales, brain activity exhibits a power spectrum that conforms to a

f−k power law, as evidenced by local field potentials (LFPs; Miller

et al., 2009; He et al., 2010; Jones et al., 2023). This implies that as the

frequency increases, the power decreases, suggesting intricate self-

organization and self-regulation within the brain across different

levels (Marković and Gros, 2014; Plenz et al., 2021; Grosu et al.,

2022). A power law function signifies scale invariance, indicating

that no specific time or frequency scale dominates the dynamics,

resulting in an absence of periodicity (He, 2014).

For decades, scale-free brain activity, a type of brain activity

without dominant frequencies, has been considered unimportant

and often dismissed as background noise. On many occasions,

it was excluded from analyzes to emphasize brain oscillations.

However, there is growing evidence suggesting that both brain

oscillations and aperiodic brain activity exist, and the latter actively

contributes to brain functioning (He, 2014; Grosu et al., 2022;

Jones et al., 2023). The existence of scale-free brain activity has

been associated with the learning process, suggesting its potential

importance in integrating different temporal scales and shaping

cognitive frameworks (Zilber et al., 2013; Zilber, 2014; Bongers

et al., 2020). Similar behaviors have been investigated in speech,

linking them to the metastable foundation of cognition (Kello et al.,

2008).

That is, neurophysiological signals are partly characterized by

non-oscillatory activity consistent with a f−k pattern. Under the

oscillatory peaks, the “background” of the power spectral density

(PSD) exhibits a decay from slower to faster frequencies, following

an inverse power law distribution, resembling the shape of a f−k

curve. The underlying source of this background activity may

stem from either truly irregular patterns of neuronal firing (Juel

et al., 2018) or from brief oscillations with varying frequencies

observed across a wide spatial or temporal range (Palva and

Palva, 2018). This phenomenon is evident in diverse neural

signals, including electrocorticography (He et al., 2010), local

field potentials (Buzsáki and Mizuseki, 2014), membrane potential

fluctuations (Destexhe et al., 2003), functional magnetic resonance

imaging (He, 2011), and magnetoencephalography (Dehghani

et al., 2010). The scale-free distribution of brain activity leads to

variations in the power law exponent that are typical of different

functional neurophysiological states (He, 2014; Tozzi et al., 2018).

Importantly, recent research has explored the relationship between

changes in scaling slope and changes in Rényi entropy, which is an

extension of Shannon’s information entropy (Tozzi et al., 2018).

In information theory, it is common to use Shannon

permutation entropy to distinguish among time series. However, in

some cases, comparing permutation entropy alone is inadequate to

differentiate time series exhibiting regular, chaotic, and stochastic

behaviors (Rosso et al., 2007). Time series associated with the fully

developed chaos of the logistic map and time series associated

with correlated power law noise can exhibit nearly identical

permutation entropy values (Rosso et al., 2007). For this reason, it is

common to use both permutation entropy and another measure of

complexity known as statistical complexity simultaneously (López-

Ruiz et al., 1995; Anteneodo and Plastino, 1996; Lamberti et al.,

2004). Statistical complexity is essentially the product of the

normalized permutation entropy and the difference in probability

distributions between the ordinal pattern probability distribution

and the uniform distribution (Jauregui et al., 2018).

The values of Shannon entropy (H) and statistical complexity

(C) associated with a time series are often represented graphically as

points (H,C) on the complexity-entropy causality plane (H × C),

where the term “causality” refers to the consideration of temporal

correlations in the Bandt and Pompe approach (Bandt and Pompe,

2002; Rosso et al., 2007; Pessa and Ribeiro, 2021).

In time series of both chaotic and stochastic nature, noise can

be distinguished from chaos as they are separated in this plane.

This separation enables the differentiation between noise and chaos

(Rosso et al., 2007; Montani and Rosso, 2014).

Recently, there have been descriptions of several situations

where entropy and complexity values alone were insufficient to

distinguish between time series of different natures (Ribeiro et al.,

2017). This has led to the extension of these concepts from the

causal entropy-complexity plane to generalized entropies such as

Tsallis (Ribeiro et al., 2017) and Rényi (Jauregui et al., 2018). By

combining Rényi entropy with a generalized form of statistical

complexity, Jauregui et al. associated a parametric curve (the Rényi

complexity-entropy curve) with a given time series (Jauregui et al.,

2018). This approach demonstrates that these curves effectively

distinguish between chaotic, stochastic, and periodic time series

(Jauregui et al., 2018), with the parameter q playing a crucial role.

The f−k behavior is observed across various brain states,

encompassing both pathological and physiological conditions

(Colombo et al., 2019; Medel et al., 2023). While unconsciousness

is associated with EEG slowing (a shift in EEG power spectral

distribution (PSD) from higher to lower frequencies), it’s important

to note that these oscillations are not exclusive indicators of an

unconscious state (Colombo et al., 2019). Recent evidence suggests

that both complexity and power law decay serve as key indicators

of these states (Medel et al., 2023).

Research shows that brain networksmaintain a scale-free global

organization during consciousness, anesthesia, and recovery phases

(Lee et al., 2010). Anesthetics play a crucial role in millions of

life-saving treatments performed while patients are unconscious

(Wasilczuk et al., 2024). Although sex differences in sensitivity

to anesthetics are well-documented, with sex hormones playing a

fundamental role in modulating sensitivity (Braithwaite et al., 2023;

Wasilczuk et al., 2024), these differences are not discernible in the

cortical electroencephalographic records commonly used in clinical

settings (Wasilczuk et al., 2024).

These findings highlight the critical need to examine the

influence of scale-free activity on neuronal encoding, particularly in

the areas of learning, memory, and different states of consciousness.

Fundamentally, it is scientifically relevant to distinguish scale-

free brain activity among biological sexes, as it could contribute
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to elucidating, for example, the origin of clinical differences in

response to anesthesia between men and women.

Motivated by the procedure of Jauregui et al. (2018), our

current study proposes the implementation of Rényi causal

entropy (Hq; Rényi, 1961; Pessa and Ribeiro, 2021) and associated

complexity (Cq; Martin et al., 2006) to calculate multiple causal

entropy-complexity planes that form a space for analyzing the

scale-free characteristics of brain signals. These planes are depicted

as functions of the Rényi parameter (q), which, when combined,

create what is referred to as the Rényi entropy-complexity

causality space (Hq × Cq × q). This space adeptly distinguishes

the complexity-entropy curves of various systems, including those

that obey power laws, even in situations where their projections

onto a plane overlap. Both theoretical and experimental cases are

examined in this work.

Through a simple simulation, we modeled scale-free brain

dynamics using time series of correlated noise, which are

then analyzed within the Rényi entropy-complexity causality

space. To demonstrate its applicability to real-world datasets,

this methodology is applied to iEEG data from the Montreal

Neurological Institute (MNI) atlas (Frauscher et al., 2018a,b;

von Ellenrieder et al., 2020), covering different brain regions, to

investigate disparities in neural dynamics associated with biological

sex. This application was chosen based on a large body of evidence

highlighting differences in both structural and dynamic aspects of

the brain between individuals of different biological sexes (Silas

et al., 2010; Arnegard et al., 2020; Bučková et al., 2020; Cave and

Barry, 2021).

In addition, the 1
f
spectral slope of the EEG, which indicates

scale-free activity, has been proposed as an arousal marker to

distinguish between different states of wakefulness and sleep

(Kozhemiako et al., 2022; Schneider et al., 2022). Specifically,

differences between men and women have been noted, especially

during REM sleep, with men generally having flatter slopes than

women in all states (Kozhemiako et al., 2022). Our methodology

aims to identify and visualize these differences within the Rényi

entropy-complexity causality space.

The primary objective of this study is to introduce the Rényi

entropy-complexity causality space as an innovative computational

tool useful for identifying differences attributed to scale-free

behavior. This tool aims to streamline the study of scale-free

dynamics in the brain, allowing for precise differentiation of

different neural dynamical features. Specifically, we aim to evaluate

how classical dynamical systems are positioned within this space

and to apply the computational tool to simulated time series and

experimental data. The goal of this effort is to identify differences

in neural dynamical properties that are due to scale-free behavior

and to improve the understanding and analysis of complex brain

dynamics, especially those that exhibit scale-free patterns.

2 Methods

2.1 Calculating time-causal quantifiers in
information theory

This section outlines the methodologies employed to compute

the causal theoretical quantifiers for the LFPs acquired from

iEEG. Accurately quantifying the information content within

observed neural activity is vital for the analysis of neural systems.

Integrating “permutation patterns” with various metrics offers a

more comprehensive understanding of the characteristics of a time

series (Olivares et al., 2020).

The initial step in quantifying information using causal entropy

measures for a time series involves associating it with a probability

distribution function (PDF) extracted using the Bandt and Pompe

(BP) methodology. Each time series, χ(t) = {xt; t = 1, · · · ,M},

consists of M measurements of the observable χ . To analyze

the time series, it is divided into n = M − (D− 1)τ overlapping

segments, where the chosen embedding dimension is D and the

embedding delay is τ . This method is based on the construction

of a histogram of ordinal patterns. A brief description is given here,

as it has been studied extensively, but the reader is referred to the

following references for a formal explanation, simple examples, and

similar applications (Bandt and Pompe, 2002; Jauregui et al., 2018;

Pessa and Ribeiro, 2021; Zanin and Olivares, 2021; Amigó and

Rosso, 2023; Guisande et al., 2023).

The partitions are represented by a D-dimensional vector,

which is used to determine the permutation of index numbers.

All possible permutations of order D are considered, and the

relative frequency of each permutation is calculated to obtain the

distribution of ordinal patterns. Thus, the frequency of BP can be

calculated using the following equation:

pj(5j) =
number of partitions of type 5j in πi

n
,

where pj(5j) represents the relative frequency of the j− th ordinal

pattern, 5j, and πi is the sequence of all ordinal patterns for

all partitions. Note that the estimated PDF is discrete since it is

computed using a histogram. It is also important to emphasize that

for reliable statistics, the analyzed time series, χ(t), needs to be

much longer than the total number of possible ordinal patterns

(M >> D!. where D! represents the total number of possible

ordinal patterns of size D).

This study employs the method of ordinal patterns to identify

and quantify the existence of ordinal structures in time series data.

The objective is to compare computationally simulated data, based

on the power law (k-noise) and experimental data by analyzing

the dynamics of physiological signals in normal brain regions

across biological sexes, while taking into account the causality

of the signals. Using the resulting probability distribution, the

causal entropy (also known as permutation entropy) and causal

complexity (also known as permutation complexity) of Rényi are

computed. In this study, any mention of entropy or complexity

refers specifically to these two quantifiers.

2.2 Rényi permutation entropy and Rényi
statistical complexity

The Rényi entropy serves as a measure of uncertainty within a

probability distribution. It offers a unique advantage over Shannon

entropy, especially in the context of evaluating brain activity, due

to its exceptional versatility in capturing diversity within complex

systems. While Shannon entropy provides a single information
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index, Rényi entropy employs a parametric family of indices,

allowing for a more comprehensive sensitivity to both rare and

abundant elements (Jost, 2007).

The Rényi entropy is defined as (Rényi, 1961; Pessa and Ribeiro,

2021):

Sq =
1

1− q
ln

N
∑

j=1

pj
q for q > 0 ∧ q 6= 1.

In the context of BP, N represents the total number of possible

states in the probability distribution, corresponding to the number

of potential ordinal patterns (N = D!).

The q factor in the Rényi entropy formula functions as a

weighting coefficient for the probability distribution. It indicates

the order of entropy and determines the specific type of Rényi

entropy being calculated. By adjusting the value of q, the Rényi

entropy formula can reveal various aspects of the distribution, such

as inclination toward rare events or focus on common events.

Essentially, q facilitates the analysis of different characteristics of

the probability distribution based on its value.

If the probabilities are uniform, all Rényi entropies of the

distribution are equal, given by Sq = lnN. For non-uniform

distributions, the entropies weakly decrease with respect to q. As

q approaches 0, it converges to the max-entropy
(

Sq→0 = lnN
)

,

assigning equal weight to all possible events regardless of their

probabilities. When q = 0, it represents the logarithm of the size

of the support of χ . As q approaches ∞, it converges to the min-

entropy
(

Sq→∞ = − lnmaxj(pj)
)

, considering only events with the

highest probability. The intermediate case at q = 1 corresponds to

Shannon entropy
(

Sq=1 = −
∑N

j=1 pj ln(pj)
)

; (Zmeskal et al., 2013;

Zhou and Zheng, 2022).

The adaptability of Rényi entropy makes it a useful measure

for quantifying various levels of information and capturing the

dynamics of non-stationary processes. By utilizing ordinal patterns,

it enables the tracking of changes in entropy distribution over time

(A-iyeh and Peters, 2016; Shalymov and Fradkov, 2016; Jauregui

et al., 2018). Furthermore, Rényi entropy proves highly effective

in describing multifractal systems (Jizba and Arimitsu, 2001) and

maintains a close relationship with the scale-free exponent, making

it a valuable tool for investigating the scale-free dynamics of the

brain.

The human brain, with its intricate network of interconnected

neurons, exhibits multifractal characteristics across various spatial

and temporal scales (França et al., 2018). Hence, one of the primary

reasons for selecting Rényi’s entropic quantifiers as a central

component of this approach is their effectiveness in describing

multifractal systems. This approach can provide valuable insights

into brain systems across different spatial and temporal scales, as

well as varying levels of complexity (Tozzi et al., 2018).

Following the methodology of Martin et al. (2006), the Rényi

statistical complexity is defined as:

Cq =
Dq ·Hq

D∗
q

,

where Hq is defined as

Hq =
Sq

lnN
.

It is important to note that Dq (Jensen-Rényi divergence) is

determined by

Dq =
1

2(q− 1)
·

(

ln

N
∑

j=1

p
q
j

(

pj +
1
N

2

)1−q

+ ln

N
∑

j=1

1

Nq

(

pj +
1
N

2

)1−q)

,

andD∗
q (a constant normalization representing the maximum value

of Dq) is given by

D∗
q =

1

2(q− 1)
·

ln

(

(N + 1)1−q + N − 1

N

(

N + 1

4N

)1−q
)

.

2.3 Modeling scale-free brain dynamics:
generation and analysis of k-noise time
series

Tomodel and analyze patterns of brain activity exhibiting scale-

free structures, correlated noise (k-noise) time series following

a power law distribution (f−k) were computationally simulated.

These time series simulate the intrinsic dynamics of scale-free

neuronal activity, allowing modeling of the diverse and evolving

nature of the brain across different time and frequency scales.

The computational generation process involved three essential

steps: First, a set of k values representing the exponent of the power

TABLE 1 Mean ages (in years) of patients selected to minimize the

di�erences of mean values between males and females in each analyzed

region, along with their respective standard deviations.

Left Hemisphere

Region
Female Male

Mean Std Mean Std

(A) Superior parietal lobule 29 10 41 16

(B) Supramarginal gyrus 27 7 32 10

(C) Precuneus 26 9 29 8

(D) Posterior cingulate 28 11 38 15

(E) Supplementary motor cortex 29 7 33 10

(F) Central operculum 24 6 31 8

(G) Triangular part of inferior frontal

gyrus

34 8 36 5

(H) Middle frontal gyrus 33 9 33 4

(I) Superior frontal gyrus and frontal

pole

26 7 34 6

(J) Precentral gyrus 26 6 26 6

(K) Superior temporal gyrus 36 12 36 4

(L) Middle temporal gyrus 37 5 37 4
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law distribution was defined using a logarithmic scale. Random

noise data points were then generated and transformed from the

time domain to the frequency domain using the Fast Fourier

transform (FFT). The FFT decomposed the signal into its frequency

components, which were then multiplied by a function that

followed a specific power law distribution. This operation adjusted

the amplitudes of different frequencies to match the desired power

law distribution. Finally, the inverse Fourier transform was applied

to obtain the resulting time series with power law characteristics.

After generating the time series, the BP methodology was

used to associate these data points with a PDF. Subsequently,

quantitative measures such as Rényi entropy and Rényi complexity

were calculated for analysis purposes.

2.4 Dataset description: the atlas of the
normal intracranial electroencephalogram

The time series corresponding to the LFPs utilized in this

study were sourced from the MNI Open iEEG Atlas database. This

database comprises recordings of intracranial activity in typical

brain regions during various states, including quiet wakefulness

with eyes closed (W), non-REM sleep stage N2 (N2), non-REM

sleep stage N3 (N3), and REM sleep (R; Frauscher et al., 2018a,b;

von Ellenrieder et al., 2020).

A total of 106 patients with focal epilepsy were included

in the atlas, and recordings were made from 1,772 channels.

Only channels located in gray matter and considered “normal”

(far from epileptic regions) were utilized. Various types of

intracerebral electrodes were employed, including Dixi, homemade

MNI, and AdTech electrodes, as well as AdTech subdural strips

and grids. Importantly, all recorded signals from these electrodes

were incorporated into the analysis in this work without any

differentiation between them.

The dataset contains patient information, including sex,

channel type, hemisphere, channel name, channel position, and

channel region. Additionally, all signals were resampled to 200

samples per second to ensure consistency. Power-line interference

was minimized using an adaptive filter. Furthermore, all channels

were zero-padded to a length of 68 s (13,600 samples) to maintain

uniformity across segments, regardless of their number.

To facilitate the comparison of patient activity and the

accumulation of results from multiple subjects, the electrodes

FIGURE 1

Regions of Interest (ROIs) identified in the left hemisphere: (A) Superior parietal lobule, (B) Supramarginal gyrus, (C) Precuneus, (D) Posterior

cingulate, (E) Supplementary motor cortex, (F) Central operculum, (G) Triangular part of inferior frontal gyrus, (H) Middle frontal gyrus, (I) Superior

frontal gyrus and frontal pole, (J) Precentral gyrus, (K) Superior temporal gyrus, (L) Middle temporal gyrus. Red shading indicates the specific region

studied for each case. All highlighted areas belong to the left hemisphere.
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were placed in a common stereotactic space. For more detailed

information about the database and acquisition methods, readers

can refer to the following references (Frauscher et al., 2018a,b; von

Ellenrieder et al., 2020).

The signals were classified based on hemisphere, region, and

biological sex, allowing for the analysis of each region in both

hemispheres separately for female and male patients. To ensure a

sufficient sample size for comparing behavior between males and

females within each region, a criterion was established, requiring

a minimum of five patients of each sex. This criterion was

consistently applied, regardless of the type of electrodes used in the

signals. Cases that did not meet this minimum requirement were

excluded from the analysis.

To mitigate the effect of age, five males and five females

were selected from each region of interest, specifically those that

minimized differences in mean age and standard deviation between

groups. The analysis was limited to the left hemisphere as it met

more criteria in this region.

The LFPs from each channel for selected patients were

analyzed, associating them with a PDF using the BP method.

Subsequently, Hq and Cq were computed for q in the range [0.1,

7] with a step size of 0.01. The results for males and females were

separately averaged within each region, and the standard deviation

was calculated.

The Table 1 provides a detailed overview of mean ages and

standard deviation values for specific brain regions in both females

and males within the left hemisphere. Figure 1 schematically

illustrates the identified Regions of Interest (ROIs) in the left

hemisphere. The red shading indicates the specific region studied

for each case. All highlighted areas belong to the left hemisphere.

This letter nomenclature for the ROIs is consistent throughout

the study and is used in subsequent figures where the results for

each region are analyzed. These ROIs were reconstructed using the

nodes provided by the MNI Open iEEG Atlas, which follows the

Desikan-Killiany parcellation.

An example of temporal iEEG series fragments used to analyze

the different brain states studied is shown in Figure 2.

2.5 Selection of embedding dimension,
time delay, and Rényi parameter in analysis

An embedding dimension D = 3, 4, 5, and 6 for BP was chosen

to investigate how the choice of embedding dimension affects the

results. This selection satisfies the condition M ≫ D!, where the

length of the atlas iEEG data wasM = 13600.

In this study, the delay time of τ = 1, as recommended by

Bandt and Pompe in their original article (Bandt and Pompe, 2002),

was used to analyze causal relationships on a small time scale for

theoretical scenarios.

For the analysis of iEEG, two time delays were implemented

for each mode in the construction of the probability functions.

On one hand, τ = 1 was implemented, aligning with the

traditional BP methodology. On the other hand, previous studies

have demonstrated a strong relationship between the parameter τ

and the intrinsic temporal scales of the analyzed system (Soriano

et al., 2011; Zunino et al., 2012, 2022). Hence, the embedding time

FIGURE 2

Temporal iEEG fragments depicting di�erent brain states (for a

random patient): amplitude vs. time. This includes periods of quiet

wakefulness with eyes closed (W), non-REM sleep (stages N2 and

N3), and REM sleep (R).

(τ ) was set equal to the shorter characteristic time (τs) to account

for the short intrinsic temporal scales of each mode. Although

investigating different values of τ might have provided additional

insights, the primary goal of this study was to match this parameter

with the shorter characteristic time (τs) observed in the analyzed

iEEG and to maintain the traditional delay of τ = 1.

A reliable determination of a system’s time delay can be

achieved through permutation entropy and statistical complexity.

Importantly, these metrics reach extremes when the embedding

delay τ aligns with the characteristic delay τs of the system.

The detection of this parameter is more sensitive using statistical

complexity (Zunino et al., 2010a,b). The statistical complexity

(MPR; Lamberti et al., 2004; Martin et al., 2006) was computed for

the parameter τ , ranging from 1 to 30, with dimensions D set to 3,

4, 5, and 6, across all channels of the atlas in all states. The analysis

showed that the highest value is achieved when τ = 1. Statistical

complexity may be computed using:

C = QJ ·H.

The normalized Shannon entropy H is defined as:

H =
S

Smax
,

where Smax = S[Pe] = log2 N, and

S = −

N
∑

j=1

pj log2(pj),

where N is the number of possible states of the physical system

under consideration, and pj is the probability of each state. The

disequilibrium, QJ = Q0J , is determined by the Jensen-Shannon

divergence, given by:

J = H

[

P + Pe

2

]

−
H[P]

2
−

H[Pe]

2
,
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with a normalization constant Q0. Here, Pe represents the uniform

distribution (Pe =
1
N ). To obtain the statistical complexity,QJ and

H are multiplied together.

Moreover, a widely utilized conventional tool for measuring the

characteristic time of a signal is autocorrelation (Lepri et al., 1994;

Schäfer and Kratky, 2008; Zunino et al., 2010b). Autocorrelation

involves the cross-correlation of a signal with itself, facilitating

the identification of repetitive patterns and the detection of signal

periodicity, particularly in the presence of noise. Let χ(t) denote

the signal, and the continuous autocorrelation Rχχ (τ ) at a delay τ

is defined as (Zoughi and Boostani, 2010):

Rχχ (τ ) = χ(−τ ) ∗ χ(τ )

=

∫ ∞

−∞

χ(t + τ )χ(t)dt

=

∫ ∞

−∞

χ(t)χ(t − τ )dt.

Where χ represents the complex conjugate and * denotes

convolution. If the function is real, χ(t) = χ(t). For a wide-sense

stationary process, it is defined as (Zoughi and Boostani, 2010):

Rχχ (τ ) = E[χ(t)χ(t − τ )].

iEEG signals are not inherently stationary; however, by

considering epochs, stationarity can be achieved (Zoughi and

Boostani, 2010). In this study, it is assumed that 68-s samples can

be considered stationary epochs.

To test the stationarity of the dataset, an Augmented Dickey

Fuller (ADF) test (Mushtaq, 2011; Avramidis et al., 2021) was

conducted on all continuous signals within the dataset, using

a significance level of 0.05. All signals showed evidence of

stationarity. In the W mode, no signals contained NaN values, so

all signals were considered stationary when subjected to the test.

Furthermore, to determine τ , the autocorrelation of each signal

was calculated, and the distances between the peaks were identified.

Subsequently, these distances were averaged to derive a value of

τ for each signal. To ascertain τs for each mode, the τ values

of all channels were averaged. Figure 3A schematically illustrates

this process for an arbitrary signal from the set. In this figure, the

autocorrelation is visually represented in blue, and the peaks of

local maxima are highlighted with red dots.

When finding the characteristic time (τs) of the system by

analyzing the peaks of the average statistical complexity of all

signals in each state, only the first maximum at τ = 1 is found.

Although this method allowed the calculation of τs for single signals

and sets of several hundred channels, averaging the complexities of

all signals attenuates the peaks, making detection impossible.

To overcome this limitation, autocorrelation is used. This is

a technique that measures the similarity between a signal and a

delayed version of itself. Analysis of the autocorrelation function

helps identify repeating patterns or cycles within the signal.

Autocorrelation is applied individually to each signal to find peaks

in the autocorrelation function that correspond to the periodicity or

characteristic times of the signal. Calculating the average distance

between all of these peaks helps to estimate the characteristic

short period for each channel (MathWorks, 2024). Finally, the

characteristic times are averaged across all channels for each of the

four modes. When using these short periods with the Bandt and

Pompe (BP) method, smaller-scale causal relationships are taken

into account. These short times were preferred in part to preserve

this small-scale causality when sampling the signal to create the

probability function of ordinal patterns, given the limited length

of the signals that ensure stationary epochs to work with.

An example of a REM mode signal is shown in Figure 3B. This

is a zoom-in of a section where the signal exhibits a smooth and

regular periodicity, like a sinusoidal wave. Its characteristic time

surpasses that considered between the sawtooth teeth seen when all

local maxima are considered. Nevertheless, this order is on the scale

of τ = 800, which, when multiplied by the sampling frequency,

yields ∼4 s. This constitutes a considerably large separation for

constructing the distribution of ordinal patterns when analyzing

60-s signals. Therefore, shorter times were chosen. Analyzing

correlations between widely separated regions relative to signal

length is beyond the scope of this study. Using τ significantly larger

than D could result in the loss of significant causal information on

small time scales.

This yielded values of τWs = 10.8, τN2
s = 12.6, τN3

s =

16.6, and τRs = 10.25, for Wakefulness with Closed Eyes, non-

REM Sleep Stage N2, non-REM Sleep Stage N3, and REM Sleep

modes, respectively. Figure 4 presents the MPR complexity curves

as functions of τ across dimensions D = 3, 4, 5, and 6 for each

mode. The corresponding characteristic times τs, computed via

autocorrelation, are also indicated.

Regarding the Rényi parameter, in this study, quantifiers Hq

and Cq were calculated for q in the range [0.1, 7] with a step

size of 0.01. As a specific case to visually illustrate the differences

in mean values of these quantifiers across regions, the value of q

that maximizes Rényi complexity, calculated analogously to τ , was

chosen. For D = 6, this resulted in qWmax = 1.4, qN2
max = 0.93,

qN3
max = 0.81, and qRmax = 1.06.

2.6 Rényi entropy-complexity causality
space

The need to introduce the concept of Rényi entropy-

complexity causality space (Hq × Cq × q) arises from the necessity

to distinguish between different curves of Rényi complexity-

entropy. These curves are formed by points derived from different

parameters q, within the same distribution. Sometimes these curves

overlap when projected onto a single plane. This is true even though

their values differ when compared at certain q values.

When computing generalized quantifiers such as the pair Hq

and Cq, it is necessary to generalize the concept of the entropy-

complexity causality plane (H × C) proposed by Rosso et al. (2007)

in order not to lose information in the graphical representation. By

introducing the dimension corresponding to the parameter q, it is

possible to construct a space, which is analogously called the Rényi

Entropy-Complexity Causality Space (Hq × Cq × q), formed by the

superposition of multiple causality planes for successive values of q.

The bounds of maximum and minimum complexity can

be calculated using the methodology of Martin et al. (2006).

These bounds indicate the theoretical upper and lower bounds

of complexity and serve as a benchmark for placing different
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FIGURE 3

Autocorrelation analysis of a random signal. The x-axis is in units of τ , which can be converted to real time by dividing by the sampling frequency.

Identified peaks are highlighted in red, and a detailed zoom-in section is provided for enhanced peak observation. (A) Wakefulness with eyes closed

(W) mode. (B) REM Sleep (R) mode.

FIGURE 4

Statistical complexity (C) for delay time values τ ranging from 1 to 30 using D = 3, 4, 5 and 6.

dynamical systems in each q plane within the space. They depend

on the choice of parameters of the BPD and the Rényi parameter q.

In this work, the expressions corresponding to Rényi entropy

and complexity were modified for the calculation of maximum

and minimum complexity bounds in the Ordpy library (Pessa

and Ribeiro, 2021)). This library enables the implementation

of the BP methodology for Rényi entropy and complexity.

Additionally, readers can find the modified bounds functions for

Rényi complexity as supplementary material to accompany this

Python library.1

This space is constructed by stacking multiple causal planes

(Hq × Cq) within the interval q ∈ {0.5, 0.7, 1, 1.4, 2, 3, 4, 5, 6, 7},

following the approach by Martin et al. (2006). The Logistic Map

(r = 4), the Hénon Map (a = 1.4 and b = 0.3), Schuster Map

(parameter z ∈ {3/2, 2, 5/2}), white noise, and correlated noise for

k were represented. Below are the equations of the maps used to

generate the temporal series (Pessa and Ribeiro, 2021).

1 https://github.com/Gisandio/Renyi-Entropy-Complexity-Causality-

Space

Logistic Map:

xt+1 = rxt(1− xt).

Hénon Map:

{

xt+1 = 1− ax2t + yt ,

yt+1 = bxt .

Schuster Map:

xt+1 = (xt + xzt ) mod 1.

2.7 Exploring f
−k behavior across

frequency domain: insights from power
spectral density

The f−k behavior of each region under study was explored

in the frequency domain by calculating the Power Spectral

Density (PSD).
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For the PSD estimation, Welch’s method was employed on

iEEG signals. This involved computing the magnitude of the

discrete time Fourier transform for 59 overlapping blocks, each

lasting 2s with a 1s step, and weighted by a Hamming window.

Averaging these transformed blocks yielded the spectral density for

each channel. To ensure independence from the amplitude of the

iEEG signal, the spectral density in each channel was subsequently

normalized to total power. These parameter choices were guided

by prior work from the developers of the MNI Open iEEG Atlas,

as referenced in Frauscher et al. (2018a,b); von Ellenrieder et al.

(2020).

The power law coefficient k was determined by fitting an

exponential function to the data’s PSD within the 10–40 Hz range.

The lower limit of 10 Hz was selected instead of 1 Hz due to

a shoulder between 1 and 10 Hz observed in most channels, as

indicated by the atlas authors (Frauscher et al., 2018a). The upper

limit of 40 Hz is set by the data’s sampling rate. The highest

frequency unaffected by anti-aliasing downsampling filters is 80 Hz,

but accurate computation of the scale-free spectrum is limited to

half that frequency (Frauscher et al., 2018a). Each data channel’s

PSD was adjusted using the least squares method with the formula

A · f−k, where A represents the amplitude and k is the exponent.

Subsequently, the parameters from each channel in all regions were

averaged individually formales and females. Themean fits and their

corresponding coefficient of determination (R-square, denoted as R

below) were plotted on the mean PSD. To compare, a boxplot was

generated for males and females, showing the median, interquartile

range (IQR), outliers, and a notch representing the 95%

confidence interval of the median power law coefficients (k) from

the fits.

3 Results

In this section, the theoretical upper and lower bounds of Rényi

complexity for τ = 1 and embedding dimensions D = 3, 4, 5, and

6 in space (Hq × Cq × q) are presented. Also shown are sections

at certain values of q, illustrating the position of the classical

dynamical systems studied.

Two examples of the implementation of this space are then

given: Case 1 involves theoretical simulations of k-noise, while Case

2 involves an application to real experimental data. Embedding

dimensions ranging from D = 3 to D = 6 were employed,

with a fixed time delay of τ = 1 for all cases, except in

the iEEG time series data where τ = τs was also analyzed.

The Rényi parameter varies between values q ∈ [0.1, 7] to

compute the quantifiers Hq and Cq. The space (Hq × Cq × q)

and the projections onto the plane (Hq × Cq) were plotted for

all cases.

In the case of experimental data, time delays of τ = 1 and

τ = τs were implemented. Additionally, embedding dimensions of

D = 3, 4, 5, and 6 were examined. Results for D = 6 are presented

and compared with the power law exponents obtained for the

PSDs of each region across all modes. A schematic representation

of the brain has been included, highlighting the differences

in the mean values across the analyzed regions for the case

of q = qmax.

3.1 Rényi entropy-complexity causality
space

In Figure 5, four panels show embedding dimensions D =

3, 4, 5, and 6, with a fixed time delay of τ = 1. At the top section

of each panel, classical dynamical systems are shown to illustrate

their positions in the (Hq × Cq) causality planes corresponding

to q ∈ 0.7, 1, 1.4, 4, presented in reading order. These systems

are bounded by the maximum (Cmax
q ) and minimum complexity

(Cmin
q ) lines, shown as solid black lines. Logistic Map (r = 4), the

Hénon Map (a = 1.4 and b = 0.3), the Schuster Map (parameter

z ∈ 3/2, 2, 5/2), white noise, and correlated noise for k ∈ [1, 5],

with increasing values of k from right to left, were represented.

Below each panel, the (Hq × Cq × q) space is shown

schematically. The maximum complexity (Cmax
q ) is shown in red,

and the minimum complexity (Cmin
q ) is shown in blue. At q= 1, the

classical Jensen-Shannon complexity-entropy causal plane (Rosso

et al., 2007) is evident. For q > 1, Cmax
q increases and Cmin

q

decreases, expanding the range of possible values. Conversely, for

q < 1, these bounds approach each other, reducing the area

between the curves. The space (Hq×Cq×q) is defined by the volume

formed between these curves as the number of q values considered

increases.

The position of the systems within the space defined between

the bounds depends on the embedding dimension D used. To

distinguish system features, one should choose an appropriate

τ , optimized according to some criterion (e.g., maximizing

complexity), and implement the D that maximizes the differences

between the dynamical systems under study. Chaotic systems such

as the Hénon map and the logistic map separate at low dimensions

and converge as D increases. The same trend is observed for

the three implemented cases of the Schuster map. In the case of

correlated noise, this behavior depends on the values of k studied.

3.2 Case 1: analysis of simulated time
series of correlated noise (k-noise)

In Figure 6, computationally simulated correlated noise (f−k

with k ranging from 1 to 5 spaced logarithmically) is analyzed.

Rényi entropy-complexity causality (Hq and Cq) calculations

have been performed using embedding dimensions of D = 3, 4, 5,

and 6, with a fixed time delay of τ = 1. This is presented in four

panels, one for each dimension. Time series were generated with a

length of M = 10000, and the Rényi parameter varies within the

range q ∈ [0.1, 7].

For each dimension, three different views of the Rényi Entropy-

Complexity Causality Space (Hq × Cq × q) are presented, with the

projection onto the Hq × Cq plane on the right. A graduated color

scale is used to represent different values of the exponent k.

In the three-dimensional representations, the entropy-

complexity curves of the different series do not intersect, allowing

the dynamics of the time series with different noise values of k to

be distinguished in space. In the case of projections onto the plane

(Hq × Cq), it is more difficult to separate the curves because they

touch at points where the values of (Hq,Cq) are the same, even

though they come from different q parameters.
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FIGURE 5

Rényi entropy-complexity causality plane (Hq × Cq) for various values of q, and Rényi entropy-complexity causality space (Hq × Cq × q). For

embedding dimensions D ∈ {3, 4, 5, 6} and a delay τ = 1. In each panel for D, (Hq × Cq) is depicted with its maximum (Cmax
q ) and minimum complexity

(Cmin
q ) bounds with continuous black lines for Rényi parameter values q ∈ {0.7, 1.0, 1.4, 4.0}. Orange corresponds to the Logistic Map (r = 4), violet to

the Hénon Map (a = 1.4 and b = 0.3), and magenta to the Schuster Map (with parameter z ∈ {3/2, 2, 5/2}). Blue represents white noise, while cyan

represents correlated noise for k ∈ [1, 5]. Note that k values increase from right to left. Below, in each panel, (Hq × Cq × q) is displayed by overlaying

several planes of parameter q ∈ {0.5, 0.7, 1, 1.4, 2, 3, 4, 5, 6, 7}. The upper limit (Cmax
q ) is shown in red, and the lower limit (Cmin

q ) in blue.

Care must be taken when choosing the embedding dimension

D, as the behavior in space appears to be opposite to that of the

plane, which is obtained by projecting three-dimensional curves

onto it. This can be seen especially for the intermediate values

analyzed, where the curves open up in space as D decreases, but

when projected onto the plane, the overlap is greater.
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FIGURE 6

Rényi entropy-complexity causality space for correlated noise for D = 3, D = 4, D = 5, and D = 6 using τ = 1. The temporal series correspond to f−k

with logarithmically spaced values of k ranging from 1 to 5. The color scale on the right corresponds to the values of k for each curve. For each

dimension, three di�erent views of the space (Hq × Cq × q) are shown, along with the projection onto the (Hq,Cq) plane.

3.3 Case 2: analysis of iEEG time series data

This section presents the results of the Hq × Cq × q curves for

both sexes, considering the standard deviation and the exponents

of the fits made to the PSD considering the notches. Emphasis is

placed on the differences found in the Hq × Cq × q curves, relating

them to the differences found in the k exponent of the power law

(f−k).

Figure 7 provides an illustrative comparison of curves within

the causal space (Hq × Cq × q) for both sexes, showcasing the ROI

of region B for the R mode (REM sleep). The curves within the

interval q ∈ (0, 7) do not show complete separation; however,

for values greater than 1, separation occurs when considering one

standard deviation, while they begin to converge as values approach

0. In the upper panel, Figure 7A displays the curves for males (in

cyan) and females (in violet) across the full range, with a zoom to

three q intervals: 0.1–1, 1–2, and 3–7 for D = 6. A schematic of

the theoretical bounds is included in the center, illustrating that for

values <1, the space rapidly contracts, bringing all systems closer

together. The upper corner presents the plane (Hq × Cq), where the

curves almost entirely overlap across the plane when considering

deviations. Below, in Panels B–D, the same curves are shown in the
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FIGURE 7

(A) Rényi entropy complexity causality space for a single ROI at D = 6, τ = 1, illustrating results for both sexes, where the curves are not entirely

separated. Theoretical bounds of Rényi complexity are schematically included within the graph. Surrounding this are three zoomed-in sections

detailing q-ranges of 0.1–1, 1–2, and 3–7. The top-left inset depicts the projection of the curves onto the complexity-entropy plane. (B–D) display

entropy-complexity causality spaces for D = 5, D = 4, and D = 3, respectively, across the analyzed q-range [0.1, 7].

space (Hq × Cq × q) for D = 5, D = 4, and D = 3, respectively. In

all cases, a time delay of τ = 1 was used. It is observed that similar

behaviors are found in other dimensions.

Figure 8 present, from top to bottom, the mean Power Spectral

Density (PSD) within the frequency range of 10− 40Hz, along with

the mean fitting and R values for males and females. Additionally,

boxplots depicting the power law fitting exponents are shown, as

well as the curves within the Rényi Entropy Complexity Space for

D = 6 with delay times of τ = 1 and τ = τs.

Results for females are depicted in violet and for males in light

blue. The top panel corresponds to the Wakefulness with Closed

Eyes state, and the bottom panel to the non-REM Sleep Stage

N2. Each column represents an analyzed Region of Interest (ROI)

following the convention of Figure 1.

In the Appendix Figure A1 display, for interested readers, the

medians of PSD for males and females are shown, along with the

Interquartile Range (IQR) within the frequency range of 0.5−30Hz,

corresponding to the δ, θ , α, and β bands.

Figure 9 are analogous to the aforementioned, but the panels

correspond to non-REM Sleep Stage N3, and the bottom one to

REM Sleep.

Table 2 provides a summary of the sex differences found across

all the analyzed regions. The rows show the k exponent from

the f−k fit over the PSD, analyzing the notches of the boxplots

and the cases of τ = 1 and τ = τs, marking the standard

deviations of Hq and Cq as shaded ellipses. A “1” indicates that

differences were found, while a “0” indicates that no differences

were found. Strong sky blue shading highlights regions where
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differences in exponent were found for both time delays used;

lighter shading indicates regions where only one of the τ showed

curve separation.

The cases where differences were found in the exponents

and curves simultaneously are detailed below. In the W state,

differences were found in τ = 1 in B. In N2, they were found

FIGURE 8

(Continued)
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FIGURE 8

Mean PSD (Power Spectral Density), k-exponent, and the Rényi entropy-complexity causality space (Hq × Cq × q). The top panel corresponds to

Wakefulness with Closed Eyes, and the bottom one to non-REM Sleep Stage N2. Each column represents an ROI defined in Figure 1. The top row

shows the mean PSD (Power Spectral Density) in the 10–40 Hz range with the mean exponential fit represented with dashed lines, the mean R values

of the fits are shown above. Below is a boxplot for the power law coe�cient k. In the two bottom rows, the (Hq × Cq × q) is depicted for τ = 1 and

τ = τs using D = 6. Women are represented in violet and men in light blue. The shaded regions correspond to the standard deviation, depicted with

ellipses. Each letter represents an ROI defined in Figure 1.
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simultaneously in τ = 1 and τ = τs in B, in τ = 1 in I and

J, and τ = τs in E. In N3, they were found simultaneously in

τ = 1 and τ = τs also in F and I and in τ = 1 in B and E. In

R, the greatest number of differences were found, simultaneously

in τ = 1 and τ = τs in A, J, and L and in τ = 1 in B, and τ = τs

in E.

The ROI that shows the most differences in the curves at the

same time as in the exponent is B. On the other hand, in the τ

FIGURE 9

(Continued)
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FIGURE 9

Mean PSD (Power Spectral Density), k-exponent, and the Rényi entropy-complexity causality space (Hq × Cq × q). The top panel corresponds to

non-REM Sleep Stage N3, and the bottom one to REM Sleep. Each column represents an ROI defined in Figure 1. The top row shows the mean PSD

(Power Spectral Density) in the 10–40 Hz range with the mean exponential fit represented with dashed lines, the mean R values of the fits are shown

above. Below is a boxplot for the power law coe�cient k. In the two bottom rows, the (Hq × Cq × q) is depicted for τ = 1 and τ = τs using D = 6.

Women are represented in violet and men in light blue. The shaded regions correspond to the standard deviation, depicted with ellipses. Each letter

represents an ROI defined in Figure 1.
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TABLE 2 Summary of di�erences found between sexes.

W A B C D E F G H I J K L

k-exponent 0 1 0 0 0 0 0 1 0 0 0 0

τ = 1 0 1 0 0 0 0 0 0 0 0 0 0

τ = τs 0 0 1 0 0 1 1 0 0 1 0 1

N2 A B C D E F G H I J K L

k-exponent 0 1 0 0 1 0 0 0 1 0 0 1

τ = 1 0 1 0 1 0 0 0 0 1 0 0 1

τ = τs 0 1 0 0 1 0 0 0 0 1 0 0

N3 A B C D E F G H I J K L

k-exponent 0 1 0 0 1 1 0 0 1 0 0 1

τ = 1 0 1 0 1 1 1 0 1 1 0 0 0

τ = τs 0 0 0 0 0 1 0 0 1 0 1 0

R A B C D E F G H I J K L

k-exponent 1 1 0 0 1 0 0 0 1 0 1

τ = 1 1 1 0 1 0 0 0 1 1 0 1

τ = τs 1 0 0 0 1 0 1 1 1 1 1

The columns correspond to the analyzed ROIs, with letter nomenclature referring to Figure 1. A “1” indicates found differences, while “0” indicates no difference.

curves, differences were found simultaneously with differences in

the k exponent with a higher frequency with respect to τs, the

frequency of occurrence of this event being 12 and 8, respectively.

In Figure 10, four panels present a visual scheme illustrating the

regions studied using D = 6 and q = qmax across the four states

investigated: Wakefulness with Closed Eyes, non-REM Sleep Stage

N2, non-REM Sleep Stage N3, and REM Sleep from top to bottom.

Each panel displays four different views of a brain diagram, color-

coded to represent the findings in the regions of interest (ROI) as

delineated in Figure 1. The colors indicate the absolute difference in

average Rényi entropy and complexity between men and women,

ranging from the minimum difference to the maximum (indicated

by the scale to the right of each panel). In each instance, the regions

are labeled in the order of decreasing differences in the reading

direction. For the Wakefulness state, the regions with the most

significant differences between men and women in Rényi entropy

are B, L, and I, while in complexity, they are J, A, and D. For the

N2 and N3 stages of non-REM sleep, the regions with the greatest

disparities in entropy and complexity for qmax in descending order

are H, E, and G for both metrics. In the case of REM Sleep, the

regions with the most notable differences in entropy are G, B, and

E, while for complexity, they are B, E, and G.

4 Discussion

This paper proposes a graphical representation of Rényi

entropy and complexity in a space that includes the Rényi

parameter for all values of q. This space is named Rényi

Entropy-Complexity Causality Space (Hq × Cq × q) following the

terminology introduced in Martin et al. (2006). The purpose of this

representation is to visually compare curves that exhibit overlaps

in 2D when projected onto a single causal plane (Hq × Cq). This

representation can also be extended to other generalized entropies

such as Tsallis Ribeiro et al. (2017).

Adjusting the parameter q shifts the perspective from treating

all events equally (when q is close to 0) to focusing on individual

probabilities (as in Shannon entropy) or only on the most probable

events (when q is large). It is like adjusting a mathematical lens to

capture different facets of the probability distribution.

The theoretical upper and lower bounds of Rényi complexity

for τ = 1 and embedding dimensions D = 3, 4, 5, and 6 within

the space Hq × Cq × q were calculated. The position of classic

dynamic systems within cuts of these spaces for the values of

q = 0.7, 1.0, 1, 4 and 4.0 were represented. In each case, the

regions of different dynamic behaviors are shown. Correlated noise

separates the regions of chaos (upwards) and stochastic behaviors

downwards. Periodic oscillations are located toward the lower left

extreme and white noise at the lower right extreme.

This space was constructed for two cases, a theoretical case

of simulated correlated noise time series and the application to

experimental data. In the first case, the positions of these emulated

series of k-noise (f−k) with logarithmically spaced values of k from

1 to 5 for τ = 1 and D = 3, 4, 5 and 6 were calculated. In all

dimensions within the space (Hq × Cq × q), the curves separate

completely, while the projections on the planes partially overlap.

The correlated noise curves of the intermediate k’s separate more in

the space for D = 3 while the projection of these curves on the plane

has a greater overlap.

For the experimental data, signals from the MNI Open iEEG

Atlas database (Frauscher et al., 2018a,b; von Ellenrieder et al.,

2020) were analyzed. That is, 12 regions were examined, with 5

males and 5 females selected to minimize the differences in mean

age between the groups and the deviations in quiet wakefulness

with eyes closed (W), non-REM stage N2 (N2), non-REM stage

N3 (N3), and REM sleep (R). In each region and mode, the
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FIGURE 10

Di�erences in mean values by region. Scheme of the analyzed ROIs colored according to the intensity of di�erences in mean values for qmax. The left

column displays Hq, and the right one presents Cq. Each row corresponds to a state: Wakefulness with Closed Eyes, non-REM Sleep Stage N2,

non-REM Sleep Stage N3, and REM Sleep. Each panel shows the regions in descending order, with letters following the nomenclature of the ROIs

from Figure 1. Each letter represents an ROI defined in Figure 1.
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PSDs between (10 − 40Hz) were calculated and a fit was made

to obtain the k coefficients of the power law (f−k), the results

were accumulated in each region and represented with boxplots.

A probability distribution was also associated with each time series

by the BP method for the embedding dimensions τ = 1 and τ = τs

(characteristic time of each mode). In Figures 8, 9, the PSDs, the

boxplot of the k’s and the curves on the space (Hq × Cq × q) are

shown. For a better distinction of the scale, they are shown in the

range of q values from 2 to 7. Also, because it was intended to

explore the general behavior of the system, for large ( q ) values,

Rényi entropy focuses on higher-probability events where common

patterns dominate. These results are shown for D = 6 because this

is the dimension in which the differences are more pronounced,

although they are also examined in dimensions 3, 4, and 5. An

example of how to perform this visual exploration is shown in

Figure 7.

Differences were found between sexes in the k exponents and

in the curves of the space (Hq × Cq × q). The state in which the

most differences were found was REM sleep (R) simultaneously.

The ROI that shows the most differences in the curves at the same

time as in the exponent is B, which corresponds to the region of

the Supramarginal gyrus. Greater coincidences were found with the

differences in the k exponent when exploring the modes with the

classic time delay τ = 1.

The Rényi Entropy-Complexity Causality Space provides a

valuable tool for characterizing scale-free dynamics, such as brain

dynamics, since it has been suggested that changes in the scaling

factor are related to variations in Rényi entropy (Tozzi et al.,

2018). In simulated cases, it effectively separates the different

components of correlated noise and provides a simple tool

to analyze differences between behaviors and characteristics. In

applications to experimental data, it is suggested to implement it

by plotting the mean value with one or two standard deviations in

Hq and Cq, forming ellipses, or by plotting the median and making

the radii of the ellipses the notches of the boxplot.

In the examined case of sex differences in iEEG, it is necessary

to note that the analyzed signals do not only have the scale-free

component but also exhibit periodic components, noise, and even

chaotic behavior since the time series were used without additional

treatment of the atlas. Regarding the limitations, when segmenting

by region and attempting to narrow the age range, the statistics are

low. Additionally, the data come from regions considered healthy

in patients with focal epilepsy, which may introduce another bias.

Thus, further studies are needed to confirm these differences.

However, the study of these differences in brain activity is of great

importance in understanding the differences in unconscious states.

At present, despite marked behavioral differences in anesthetic

sensitivity, sex differences are not distinguishable in clinically

used cortical electroencephalographic recordings (Wasilczuk et al.,

2024). That is, the exploration of alternative methods for the

evaluation of differences is of great importance.

In future work, the intention is to use this tool to analyze

an additional data set that provides us with a segmentation into

classes with a larger number of individuals. During this exploration,

the focus of the forthcoming work is on the development and

application of quantitative methods that can allow us to make

a more rigorous and accurate comparison of the experimental

data curves. In addition, it is hoped that the results will motivate

the development of easy-to-implement tools that facilitate the

detection and understanding of scale-free phenomena in the

clinical setting. These tools could have a significant impact on

the understanding and treatment of various medical conditions,

providing new perspectives for research and clinical practice.
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Appendix: Power spectral densities for all analyzed ROIs and modes

Appendix Figure A1

PSD (power spectral density) in the 0.5–30 Hz range. From top to bottom, the modes displayed are: Wakefulness with Closed Eyes, Non-REM Sleep

Stage N2, Non-REM Sleep Stage N3, and REM Sleep. Each letter represents an ROI defined in Figure 1. The medians for women are represented in

violet and men in light blue. The shaded regions correspond to the IQR (Interquartile Range). Dotted lines mark the boundaries between di�erent

brain rhythms.
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