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Harnessing the remarkable ability of the human brain to recognize and 
process complex data is a significant challenge for researchers, particularly in 
the domain of point cloud classification—a technology that aims to replicate 
the neural structure of the brain for spatial recognition. The initial 3D point 
cloud data often suffers from noise, sparsity, and disorder, making accurate 
classification a formidable task, especially when extracting local information 
features. Therefore, in this study, we propose a novel attention-based end-to-
end point cloud downsampling classification method, termed as PointAS, which 
is an experimental algorithm designed to be adaptable to various downstream 
tasks. PointAS consists of two primary modules: the adaptive sampling module 
and the attention module. Specifically, the attention module aggregates global 
features with the input point cloud data, while the adaptive module extracts local 
features. In the point cloud classification task, our method surpasses existing 
downsampling methods by a significant margin, allowing for more precise 
extraction of edge data points to capture overall contour features accurately. 
The classification accuracy of PointAS consistently exceeds 80% across various 
sampling ratios, with a remarkable accuracy of 75.37% even at ultra-high 
sampling ratios. Moreover, our method exhibits robustness in experiments, 
maintaining classification accuracies of 72.50% or higher under different noise 
disturbances. Both qualitative and quantitative experiments affirm the efficacy 
of our approach in the sampling classification task, providing researchers with 
a more accurate method to identify and classify neurons, synapses, and other 
structures, thereby promoting a deeper understanding of the nervous system.
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1 Introduction

In recent years, the swift progress of 3D sensing technology has made acquiring and 
analyzing 3D data more accessible and garnered increasing attention. The point cloud, which 
serves as a foundational representation of 3D data, encompasses an un-structured collection 
of points delineating the geometry of an object. As the first-hand data captured by LiDAR or 
depth cameras, point clouds find extensive application in diverse fields including robotics, 
scene reconstruction, autonomous navigation in driving, virtual reality (VR) and human brain 
nervous system.

Nevertheless, a point cloud often comprises a substantial volume of data points, which can 
pose challenges for direct processing. The human brain’s unparalleled ability to navigate 
complex sensory data is a result of its intricate neural network, which efficiently encodes, 
processes, and decodes information. As Peter Dayan elucidates in “Theoretical Neuroscience” 
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(Dayan and Abbott, 2005), neurons employ selective attention 
mechanisms to prioritize certain inputs over others, enhancing the 
processing of behaviorally relevant stimuli while filtering out noise or 
less critical information. Similarly, as outlined in “Vision” (Marr, 2010) 
by Marr, David, our visual system uses sophisticated strategies to 
segment and interpret the visual field, focusing on key features that 
aid in object recognition and scene understanding. Hence, 
downsampling operations are typically used to decrease the point 
cloud’s size and enhance computational efficiency. Point cloud 
downsampling is a technique employed in computer vision and 
robotics to reduce the size of a point cloud dataset while retaining its 
crucial features. This is important because large point cloud datasets 
can be computationally expensive to process, making downsampling 
a crucial step in many applications. The objective of downsampling is 
to eliminate redundant points from the dataset while preserving the 
overall shape and structure of the represented object or scene.

Classical sampling methods like random sampling (RS) (Eldar 
et  al., 1997) and farthest point sampling (FPS) (Moenning and 
Dodgson, 2003). The FPS algorithm is recognized as an efficient 
method for point cloud sampling, employing an iterative approach to 
select points furthest from the current selection. This strategy enables 
comprehensive sampling within a shorter timeframe, making FPS 
particularly suitable for large-scale point cloud data. Its efficiency 
allows it to generate relatively uniform sampling outcomes more 
quickly compared to alternative methods. However, while FPS ensures 
spatial distribution and representativeness by selecting the farthest 
point from the existing set, it lacks consideration for the specific 
downstream task. Consequently, it may select non-informative points 
relevant to the task. For instance, while Random Sampling (RS) is 
effective, it may overlook sparse regions due to its random selection 
approach. On the other hand, while FPS provides greater coverage of 
the entire point dataset, it faces a latency bottleneck in parallel 
computation. Thus, these conventional methods fail to consider the 
subsequent processing of the sampled points, potentially resulting in 
the selection of irrelevant data for the down-stream task, thereby 
leading to subpar performance. In contrast to non-learned methods 
like FPS, deep learning has found extensive application in processing 
intricate point cloud data. Consequently, in recent years, researchers 
have introduced various differentiable downsampling techniques 
within deep learning frameworks (Shi et al., 2015; Liu and Kang, 2017; 
Shao et al., 2019; Yang et al., 2019; Lang et al., 2020; Nezhadarya et al., 
2020; Yan et al., 2020; Zong et al., 2021). Within this body of work, one 
category of methods focuses on optimizing sampling outcomes for 
downstream tasks, exemplified by SampleNet (Lang et al., 2020) and 
S-NET (Shao et al., 2019). Another category aims to enhance the 
sampling module in existing methods to mitigate challenges like noise 
and outliers in point cloud applications, as demonstrated by 
PointASNL (Yan et al., 2020) and ASHF-Net.

S-NET and SampleNet highlight the significant advancements 
attainable through task-specific sampling techniques, demonstrating 
how these networks can improve sampling efficiency. These 
approaches leverage limited sampling data to optimize downstream 
task performance, consistently outperforming traditional task-
independent methods across various applications. However, S-NET, 
while excelling in classification and geometric reconstruction, relies 
on sampling algorithms like FPS that do not consider the subsequent 
task, limiting their adaptability during network training. Conversely, 
SampleNet implements a differentiable point cloud sampling method. 

But it may struggle with incorporating meaningful points for severely 
under-sampled structures, failing to account for global 
geometric properties.

To address the need for considering both global and local point 
cloud properties while ensuring a feasible sampling process, 
we introduce PointAS, an end-to-end downsampling neural network. 
Drawing inspiration from the foundational principles of neural 
science and human vision, PointAS capitalizes on the mechanisms of 
selective attention and feature prioritization to effectively tackle the 
challenges posed by point cloud data. The human brain employs 
neurons that enhance certain inputs while filtering out noise or less 
critical information, optimizing the processing of behaviorally 
relevant stimuli. Similarly, our adaptive sampling module reweights 
the surrounding neighbors of initial sampling points obtained through 
farthest point sampling (FPS), allowing for adaptive migration in the 
sampling results, thereby focusing on the most informative features 
and disregarding redundant data.

Moreover, the human visual system provides another layer of 
sophistication to our method. It integrates global context with local 
details, using foveal vision for high-resolution and peripheral vision 
for wide-field recognition. Analogously, the attention module in 
PointAS aggregates global features with the input point cloud data 
while enabling the extraction of local features. This dual focus on 
global and local properties enhances the classification performance, 
much like how the human eye can accurately identify objects within 
a scene by combining central detail with a broader perspective.

PointAS overcomes these limitations by considering both global 
and local properties of the point cloud during the sampling process. 
It achieves sequential sampling similar to FPS but maintains significant 
task-oriented results, even with noisy and density-variable inputs. The 
effectiveness of PointAS hinges on its adaptive sampling module and 
attentional sampling module, which work in tandem to select the most 
informative points while discarding redundant data. To summary, our 
key contributions are as follows:

 1. We present PointAS, an end-to-end point cloud downsampling 
network based on an attention mechanism, drawing from 
principles in neural science and human vision to find key 
points in large datasets, enhancing downstream 
classification tasks.

 2. PointAS can be jointly trained with multiple sample sizes to 
produce a single compact model that can generate samples of 
arbitrary length and is robust to noisy inputs for 
outstanding performance.

 3. Good qualitative and quantitative results are obtained on 
common point cloud benchmarks, demonstrating the 
effectiveness of the proposed sampling method.

2 Related work

2.1 Deep learning on point clouds

With the notable success of Convolutional Neural Networks 
(CNNs) and trans-formers in the domains of computer vision and 
natural language processing, there has been a growing interest among 
researchers in extending these methodologies to process 3D point 
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cloud data. However, it is important to note that some of the 
techniques commonly employed in image processing may not 
be readily applicable to point cloud data due to its irregular and sparse 
nature. Consequently, specialized deep learning methods tailored for 
3D point clouds are imperative. Deep neural networks have found 
widespread application in the analysis of point cloud data, 
encompassing tasks such as point cloud classification, generation, 
alignment, segmentation, geotagging, and automatic coding. In the 
early stages of this research, the focus was on conventional data 
representation in the form of 3D voxels. These approaches involve 
decomposing the point cloud into uniform voxels in three-
dimensional space, utilizing a predetermined resolution, and 
subsequently applying volume convolution techniques.

In recent times, considerable research efforts have been directed 
toward the development of innovative local aggregation operators 
tailored for point clouds. The primary objective is to minimize the loss 
of intricate details while processing point sets efficiently. Notably, 
PointNet (Qi et  al., 2017a) incorporates a multilayer perceptron 
(MLP) that maps each point’s data from its coordinate space to a high-
dimensional feature space. This information is then amalgamated into 
a representative feature vector through global pooling, ultimately 
determining the class of the input point cloud via a fully connected 
layer (FC) mapping. PointNet stands as a pioneering approach in 
directly processing raw point clouds. Building on this foundation, 
PointNet++ (Qi et al., 2017b) extends the framework with a layered 
neural network architecture capable of extracting both global and 
local features. It excels particularly in handling point clouds with 
varying densities. PointCNN (Li et  al., 2018) introduces a deep 
learning framework specialized for point cloud classification and 
segmentation, achieving commendable results in these tasks. Its key 
strength lies in the utilization of a novel convolutional algorithm adept 
at efficiently performing operations on point clouds. Similarly, 
DGCNN (Phan et  al., 2018) provides a tailored deep learning 
framework for point cloud classification and segmentation. It 
efficiently extracts both global and local features from point cloud data 
through the use of a dynamic graph construction method based on 
adjacency graphs. Finally, Point Transformer (Zhao et al., 2021) is 
designed for point cloud classification and segmentation, 
incorporating an attention mechanism in the Transformer model to 
efficiently capture point cloud features. Despite the rapid 
advancements in point cloud technology across various fields, the 
application of downsampling techniques remains relatively limited.

2.2 Point cloud sampling

Given the inherent challenge of processing high-resolution dense 
point clouds, it becomes imperative to engage in point cloud sampling 
or simplification. Consequently, a range of methodologies has been 
explored to streamline dense point cloud data.

Random Sampling (RS) stands as a widely employed method for 
unsupervised sampling. In RS, the fundamental assumption is that 
each point within the original point cloud data carries an equal 
probability of selection. This method randomly selects the desired 
number of points from the initial point cloud data. RS operates with 
re-markable speed, as it does not necessitate point-to-point distance 
computations or any supplementary calculations during the sampling 
process. However, a drawback of RS lies in its indiscriminate selection, 

where all points in the point cloud are chosen with uniform 
probability. This leads to a dearth of object shape information and 
renders it sensitive to the presence of noisy points. It stands out for its 
minimal computational overhead, but it can be susceptible to issues 
of density imbalance.

Farthest Point Sampling (FPS) represents the most prevalent 
downsampling approach in the realm of point cloud analysis. FPS 
achieves broad coverage of the input point cloud by iteratively 
selecting points that are farthest from each other. However, it is 
essential to note that FPS operates solely within the Euclidean space 
and does not factor in any subsequent processing of the sampled 
points. This renders it susceptible to noise and agnostic to specific 
tasks, potentially leading to suboptimal performance.

To mitigate the limitations of Farthest Point Sampling (FPS), 
several deep learning-based methodologies have been put forth. 
Notably, a recent study by Critical Point Net (CP-Net) (Xu et al., 2024) 
endeavors to achieve deterministic sampling outcomes. This approach 
assesses the significance of points based on their contribution to the 
global maximum pool of features. Key points are extracted and 
preserved in subsequent layers, while less influential points are 
discarded. However, it is worth noting that the sampled points 
constitute only a subset of the original input data and may be subject 
to distortion in the presence of noise and outliers.

Much like CP-Net, S-NET considers the contribution of sampled 
points to a specific task by initially selecting data points for subsequent 
tasks. To maintain similarity with the original input, each selected 
point is paired with its nearest neighbor. Nevertheless, due to the 
non-trivial nature of this matching step, the accuracy of the sampled 
points is inevitably compromised. To address this challenge, 
SampleNet introduces a soft projection mechanism based on 
S-NET. Through optimization of the weights in this projection, the 
matching of sample points can be approximated as a nearest-neighbor 
se-lection, thereby rendering the matching step exceedingly precise.

Recent studies conducted by S-NET and SampleNet have 
illustrated that generating a set of simplified points optimized for a 
downstream task leads to more effective sampling outcomes. 
Furthermore, these simplified points correspond to a subset of the 
initial data, thereby reducing training losses. Both methodologies 
approach the sampling process as a generative task, generating all 
points in a single iteration, yet this approach may not adequately 
address sample dependency, potentially leading to suboptimal 
outcomes. In this study, we  amalgamate and implement the FPS 
algorithm within the adaptive downsampling module, while 
incorporating the proximity trans-former module to assimilate local 
data information. Within the Attention module, we leverage PointNet 
as our feature extraction network for capturing global information. 
Finally, an attention-based time series model is integrated to derive 
the ultimate downsampled data.

3 Methodology

Figure 1 provides an overview of our sampling method, PointAS, 
comprising two primary components: (a) The Adaptive Sampling 
Module for dynamic position adjustment, and (b) The Attention 
Sampling Module for sequential point selection.

Initially, the input point cloud data undergoes processing by the 
input time series model, followed by an iterative step within the 
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attention module to compute the downsampled point cloud. Through 
the attention mechanism, this step effectively integrates global feature 
information for subsequent modules, surpassing the capabilities of 
traditional algorithms. Subsequently, the sampling points based on the 
global feature information are inputted into the adaptive sampling 
module to obtain adaptive downsampling points. These points are 
then subjected to feature extraction through the feature extraction 
network to extract local features. The final output sampling points are 
a fusion of both global and local feature information. Unlike 
traditional algorithms that typically focus solely on high-frequency 
edge information or low-frequency planar information, the method 
proposed in this paper excels in extracting and combining multi-level 
high-dimensional features of the point cloud. In this section, 
we provide a detailed explanation of how these components operate 
and their implications for downstream tasks.

Let us assume the input to the PointAS is an unordered point 
cloud P pi
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respectively denote the result of the adaptive sampling module and the 
final downsampling points. m is the number of points obtained by 
adaptive sampling and f  is the number of final results with n m f> > . 
In order to improve the resulting efficiency of downsampling, R 
denotes a generated point cloud of f  points that may not be a subset 
of P. Moreover, let ( )θ ⋅  denote PointAS with the parameters θ , 
which describe the process of turning P to Q. PointAS is trained with 
two loss terms:
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Equation 1 represents the total loss function, which consists of 
two terms: the task-oriented loss L Rtask ( ) and the similarity loss 
L R Psim ,( ). Here, as described in Eq. 2, R represents the output of the 
downsampling network θ P( ), where P is the input point cloud. The 
coefficient α  serves as a moderating term to balance the importance 
of the two optimization objectives and typically takes the value of 1.

The task-oriented loss L Rtask ( ) aims to optimize the sampled set 
R to perform well on the downstream task, typically classification. It 
is computed using the cross-entropy function, as described in Eq. 3. 
In this equation, c represents the total number of classification 
categories, zij denotes the ground truth label value of class i for point 
Rj, and vi denotes the predicted probability of belonging to class i for 
point Rj. The summation is performed over all points j in the sampled 
set R and all classes i.

The second term in Eq. 1, L R Psim ,( ), is designed to encourage the 
simplified point cloud R to be closer to the input point cloud P. This 
term provides a form of regularization to control the range of the 
generated point cloud. The specific formula for L R Psim ,( ) is given in 
Eq. 9, which will be elaborated further below. The coefficient α  serves 
as a moderating term to balance the importance of the two 
optimization objectives and typically takes the value of 1.

Overall, Eq. 1 combines the task-oriented loss and the similarity 
loss to guide the downsampling network to produce compact and 
task-relevant point clouds while ensuring their fidelity to the original 
input. This formulation helps in preserving task performance with the 
sampled point clouds while also maintaining their structural integrity.

3.1 Adaptive sampling module

The concrete implementation process of this module is illustrated 
in Figure  2. Here, the initial step involves the utilization of the 
Farthest Point Sampling (FPS) algorithm. This algorithm is chosen 
for its capacity to generate relatively uniform sampled points. 
Through FPS, the input point cloud data is preliminarily 
downsampled to yield key point data. However, it is important to 

FIGURE 1

An overview of PointAS.
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acknowledge two primary challenges associated with FPS: (1) It 
exhibits high sensitivity to outlier points, rendering it notably 
unstable when confronted with real-world point cloud data. (2) The 
sampled points derived from FPS must necessarily form a subset of 
the original point clouds, which can pose difficulties in reconstructing 
the original geometric information in instances of occlusion and 
missing data errors during acquisition.

Following this, a K-Nearest Neighbors (KNN) operation (Guo 
et  al., 2003) is performed on each keypoint data to acquire the 
keypoint neighborhood of the input data. Since the attention 
mechanism of the neighborhood, based solely on location 
information, exclusively accounts for low-level distance information, 
it falls short of capturing the high-level feature relationships between 
points in the neighborhood. To address this limitation, we extract 
high-level feature information from the neighborhood by employing 
a straightforward mapping operation that takes the location 
information of the point cloud as input. Leveraging these high-level 
details in conjunction with the proximity transformer operation, 
we ultimately obtain subsampled data points with adaptive migration.

For this module, P pi
i

n
= ∈{ }

=
3

1

 is the input of the module. After 
the FPS module, we use five simple MRB modules for its high-level 
feature extraction, Fp n d∈ ×  is its high-level feature representation 
and d  denotes its dimension. In proximity transformer operation, 
We start by finding k neighbors of each feature in the high-level feature 
space which is denoted as Neighbor F F Fi

p
i ik j

k( ) = { } =1 1
, , , then 

feature updating of group member Fi
p  can be written in Eq. 4
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where a pairwise function ( )⋅ computes a high-level 
relationship between group members, its specific expression can be 
described in Eq. 5
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In the above expression, ( )ϕ ⋅  and ( )∅ ⋅  are independent two 
linear transformations. Once we have the updated features based on 
the neighborhood, using Softmax on them gives us the attention 
weight for each neighbor point calculated from the high-level 
features, described in Eq.  6. Therefore, the result of adaptive 
downsampling for each neighborhood is obtained, which can be 
expressed by Eq. 7:

 
W softmax Fi
p

i
p= ( ) (6)

 
Q W Neighbor Pi i

p T
i= ( ) ∗ ( ) (7)

3.2 Attention sampling module

The comprehensive architecture of the Attention Sampling 
Module is outlined in Figure 3. The input data for this module is the 
output produced by the Adaptive Sampling Module. In this context, 
to effectively leverage the global point cloud information, we treat the 
point cloud data as a distinctive sequence, implementing point cloud 
downsampling through a global attention operation. However, due to 
the substantial volume of point cloud data, while advanced sequence 
models may yield superior results, they come at the cost of a 
significantly expanded model parameter count. This inevitably 
hinders the computational efficiency of the overall point cloud 
downsampling process. Hence, in our pursuit of efficiency, we initiate 
the process by utilizing the feature extraction network to acquire high-
level feature information from the input data. Following this, 
we obtain the weight matrix through the integration of the classical 

FIGURE 2

Adaptive sampling module.
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LSTM model with an attention operation. Ultimately, this leads to the 
derivation of the downsampled data, leveraging the comprehensive 
data insights.

The input of this module is Q qi
j

m
= ∈{ }

=
3

1

, which is the output 

of the adaptive sampling module. We use PointNet to extract global 
features Fq m d∈ × , and then obtain the global feature vector Gq d∈  
by the Max pooling operation. As mentioned above, we use a simple 
two-layer LSTM model for the timing calculation. By inputting the 
global feature vector into the time series model to obtain the 
dimension weight, and multiplying it with the feature matrix, the 
global-based downsampling point can be calculated in Eqs. 8 and 9.

 
W softmax LSTM G r Fq q

i
q= ( ) ∗( )−, 1  

(8)

 r W Qi
T= ( ) ∗  (9)

The LSTM model has two inputs, one is the global feature vector, 
and the other is the downsampling point at the last time (initially set 
to 0). Then the downsampling point at the last moment was used as 
one of the inputs of the time series model to iterate and obtain the final 
downsampling point cloud result R ri

k
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3.3 Loss function

Given a point cloud of P pi
i

n
= ∈{ }

=
3

1

, the goal is to generate a 

subset of R ri
k

f
= ∈{ }

=
3

1
 which is optimized for the task T. Suppose 

that the objective function for this task is expressed as ( )µ ⋅ , our final 
ideal downsampling data can be given by Eq. 10:
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R
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In order to encourage the second property in the loss function, a 
simplification loss is utilized in Eq.  11. Denoting average nearest 
neighbor loss (ANNL) and maximal nearest neighbor loss (MNNL) as:
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Where β  acts as a moderating term coefficient usually taken as 
one, which aims to train toward the MNNL constraints while sampling 
the ANNL that is satisfied during training.

4 Experiment

This section conducts an assessment of the performance and 
resource utilization of PointAS in the context of task-specific point 
cloud downsampling. PointAS is designed to serve as a versatile 
module that can seamlessly integrate with any point cloud processing 
framework necessitating downsampling. The primary focus of this 
study is to assess the model’s performance in the realm of point 
cloud classification.

In this experiments, we compare the proposed PointAS against a 
range of downsampling methodologies mentioned in the introduction, 
encompassing: (1) conventional and widely used approaches such as 
Farthest Point Sampling (FPS), random sampling, and voxel-based 
methods; and (2) task-centric techniques including APSNet (Liu et al., 
2022) and S-NET. Additionally, we  incorporate downsampling 
approaches utilizing differentiable relaxation matching processes, such 

FIGURE 3

Attention sampling module.
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as SampleNet. All experiments are executed on an RTX A5000 
(24GB), and during the training of PointAS, we employ the Adam 
optimizer with an initial learning rate of 0.7. It is worth noting that the 
parameters of the downstream task network (PointNet) are held 
constant during the entire training process.

4.1 Dataset

The classification tasks are tested on the ModelNet40 (Van den 
Herrewegen and Tourwé, 2023) dataset. Which offers extensive 
category coverage with 40 different object categories such as airplanes, 
cars, chairs, etc. This dataset provides a diverse range of objects, 
making it suitable for various 3D visualization studies. Additionally, 
it comprises a large number of instances, including approximately 
12,311 clean point cloud models, with 9,843 utilized for training and 
the remaining 2,468 for testing.

In our approach, we employ the coordinates of the point cloud as 
input without incorporating any additional attributes. For the 
classification task, we  utilize PointNet as the designated network, 
trained on point clouds consisting of 1,024 points. Adopting a fixed 
sampling rate aligns more closely with practical requirements, and 
adjusting the sampling rates for different volumes of data can facilitate 
the development of diverse tasks. In this study, we employ a fixed 
sampling rate to examine the model’s performance under various 
rates. The sampling rate is defined as log , /2 1 024 m( ) , where m 
represents the number of sampled points.

4.2 Model evaluation metrics

In deep neural network model training, the evaluation metrics 
commonly used include accuracy (ACC), and ROC, among others. 
These metrics are explained in detail below.

Table 1 illustrates the confusion matrix for a binary classification 
task. In this context, TP stands for true positive (meaning the instance 
is positive and predicted as positive), FP represents false positive 
(indicating the instance is negative but predicted as positive), FN 
denotes false negative (meaning the instance is positive but predicted 
as negative), and TN signifies true negative (indicating the instance is 
negative and predicted as negative). In binary classification, both TP 
and TN represent accurate predictions, allowing ACC to be calculated 
in Eq. 12:

 
ACC

TP TN

TP FP FN TN
=

+
+ + +

.

 
(12)

The ROC curve is a graphical tool used to represent the 
performance of a classification model. It depicts the performance 
of the classifier under different thresholds by taking the True 
Positive Rate (TPR) and False Positive Rate (FPR) as horizontal and 

vertical coordinates, and the formula for calculating the two is 
shown in Eq. 13:

 
TPR

TP

TP FN
FPR

FP

FP TN
=

+
=

+  
(13)

AUC (Area Under the ROC Curve) is the area under the ROC 
curve, which is used to measure the performance of the classifier. The 
closer to 1 the AUC value is, the better the performance of the 
classifier; conversely, the closer to 0 the AUC value is, the worse the 
performance of the classifier is. The closer the value is to 1, the better 
the performance of the classifier is; conversely, the closer the AUC 
value is to 0, the worse the performance of the classifier is. In practice, 
we  often calculate the AUC value to evaluate the performance of 
the classifier.

5 Results

5.1 Model evaluation

The PointAS network undergoes training and evaluation using the 
ModelNet40 dataset. To provide a clearer perspective, we compare the 
training process with SampleNet, as depicted in Figure 4. The figure 
illustrates the classification accuracy over 400 epochs of iterations with 
a sampling ratio set at 5 (m = 128). The final results reveal that PointAS 
achieves an impressive accuracy of 87.02% for the classification task, 
surpassing SampleNet’s 82.75%. Notably, SampleNet demonstrates a 
faster growth in classification accuracy than PointAS in the initial 40 
epochs of training. However, it experiences a decline in accuracy after 
the 8th and 38th epochs, possibly attributable to the optimization 
search of the SampleNet algorithm getting stuck in local optima. Post 
the 55th epoch, the accuracy of the SampleNet model gradually 
improves, but it consistently lags behind PointAS. The training curve 
of PointAS exhibits a smoother trajectory, with accuracy steadily 
increasing over the course of training. This underscores the superior 
robustness of the PointAS network. However, considering the resource 
utilization, the time required for PointAS to iteratively train the target 
dataset once is 132 s, which is slightly higher than SampleNet’s 109 s 
vs. APSNet’s 121.

5.2 Model comparisons

Table  2 provides a comprehensive quantitative comparison of 
various downsampling methods, including our proposed approach 
and the series of methods mentioned earlier. Initially, with a modest 
downsampling rate, conventional techniques like Random Sampling 
(RS) and Farthest Point Sampling (FPS) exhibit commendable 
performance, maintaining high accuracy even without extensive 
training data. Notably, FPS stands out, achieving an impressive 
accuracy of 88.34% at a downsampling rate of 1 (m = 512), surpassing 
both S-Net and SampleNet. The efficiency of the FPS algorithm stems 
from its iterative selection of points furthest from the currently chosen 
point, facilitating comprehensive sampling within a shorter timeframe. 
This attribute renders FPS particularly effective for sampling large-
scale point cloud data, enabling it to generate relatively uniform 
sampling outcomes more rapidly than other sampling methods. 

TABLE 1 Confusion matrix for binary classification.

Positive Negative

True True Positive (TP) False Positive (FP)

False False Negative (FN) False Negative (TN)
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However, as the downsampling rate increases, the limitations of 
traditional methods become evident. These methods can only 
downsample based on the original point cloud data and lack 
adaptability to meet the requirements of downstream tasks. This is 
particularly noticeable when the downsampling rate reaches 5 (m = 32) 
or higher, where the classification accuracy of FPS and RS drops to less 
than 30%.

Downsampling algorithms tailored to specific downstream tasks 
demonstrate notable classification accuracy even in the face of high 
downsampling rates, better aligning with practical needs. Table  2 
highlights that both SampleNet and APSNet consistently achieve 
classification accuracies above 70% across various sampling scenarios. 
At a downsampling rate of 1 (m = 512), the accuracy soars to 88%. 
Remarkably, even at a sampling rate of 4 (m = 64) or higher, accuracy 
remains around 80%, signifying a significant enhancement in 
sampling performance compared to traditional task-independent 
methods (RS, FPS).

In comparison to other downsampling approaches, the PointAS 
method proposed in this paper demonstrates notable accuracy 

improvements at specific downsampling rates. At a downsampling rate 
of 1 (m = 512), it achieves an accuracy of 89.26%, and this accuracy 
remains above 80% as the downsampling rate increases to 4 (m = 64). 
This is attributed to the proposed algorithm’s initial utilization of 
global information to generate downsampling points, followed by a 
local adaptive adjustment process to derive the final downsampling 
points. This approach excels particularly when the downsampling rate 
does not exceed 5 (m = 32). However, when the downsampling rate is 
exceedingly high, and the overall point cloud data becomes limited, 
the local integration of information and the local adaptive adjustment 
module face challenges, resulting in a downstream task performance 
that falls short of APSNet.

Figure  5 shows the ROC curves of different methods on 
ModelNet40 with a sampling rate of m equal to 512 (sample rate = 1), 
and the results show that the method in this paper occupies a larger 
area and is more effective. Figure  6 presents a performance 
comparison among six distinct sampling methods, from which 
qualitative insights emerge. As the sample size m increases (resulting 
in a lower sampling ratio), the accuracy of all sampling methods 

FIGURE 4

Accuracy of PointAS and SampleNet on ModelNet40 datasets.

TABLE 2 Classification accuracy with different downsampling methods.

m RS FPS S-Net APSNet SampleNet PointAS

512 87.52 88.34 87.80 88.78 88.16 89.26

256 77.09 83.64 82.38 88.46 84.27 89.10

128 56.44 70.34 77.53 84.04 82.75 87.02

64 31.69 46.42 70.45 82.11 80.86 82.02

32 16.35 26.58 60.70 81.56 80.31 81.94

16 7.15 13.29 36.16 80.26 79.09 80.07

8 3.27 3.47 20.81 78.37 70.94 75.37
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demonstrates improvement. Task-oriented samplers like SampleNet 
and APSNet consistently outshine their task-independent 
counterparts such as random sampling and FPS. However, the 
magnitude of gains gradually diminishes as m increases, with the 
accuracy curves showing a gradual plateauing effect as the sample 
rate decreases. Additionally, Figure  7 illustrates the statistical 

variances among PointAS, SampleNet, and APSNet. The solid lines 
represent the average performance across multiple experiments, 
while the shaded regions indicate the range of results from individual 
experiments. From the figure, it is evident that PointAS exhibits a 
more consistent and robust performance compared to SampleNet 
and APSNet. This suggests that PointAS is less sensitive to variations 

FIGURE 5

ROC of different methods on ModelNet40 datasets.

FIGURE 6

Evolution of classification accuracy as a function of sample ratio for six sampling methods.
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in experimental conditions and maintains a more stable performance 
across different trials.

When m equals 512 (sample rate = 1), all sampling methods 
approach an accuracy level closely resembling the optimal accuracy 
achieved with 1,024 points. Conversely, as ‘m’ decreases, the accuracy 
of RS, FPS, and S-Net for the classification task significantly 
deteriorates due to their limited adaptability to downstream tasks. In 
contrast, the enhanced SampleNet and APSNet demonstrate a more 
substantial degree of performance improvement for the classification 
task. Notably, PointAS consistently outperforms APSNet and 
SampleNet, particularly at a sampling rate of 3 (m = 128). Here, 
we observe a more substantial accuracy improvement, affirming the 
effectiveness of PointAS. Through Figure 7 we can see that PointAS 
coincides with the other methods in decreasing accuracy as the 
downsampling rate scales up, this is because as the downsampling rate 
becomes higher, the number of sampling points becomes smaller and 
the high-dimensional feature information that can be  utilized 
plummets, which would be unfavorable for the classification task. 
However, PointAS is undoubtedly successful in terms of the magnitude 
of the accuracy reduction, as the magnitude of the reduction is small 
compared to other methods, indicating the effectiveness of the method 
in this paper.

To visually illustrate the effectiveness of our model, Figure  8 
provides downsampled views of cabinet, chair, toilet, and aircraft data 
using FPS, SampleNet, and PointAS. In the visual representation, 
green points denote the original data, while red points signify the 
downsampled data obtained through the respective methods. Upon 
comparison, it is evident that FPS and SampleNet struggle to 
accurately extract the four corners of the cabinet, as well as some other 
corner features. In contrast, PointAS excels in capturing crucial data 

features, particularly corners. Regarding the four feet information of 
the chair, both FPS and SampleNet nearly discard these features 
entirely, resulting in a decline in classification accuracy. As the 
sampling rate increases (and sample size m decreases), the absence of 
these crucial data features leads to a significant drop in classification 
accuracy. This effect is particularly pronounced in datasets like 
airplanes, where distinct features such as the nose, wings, and tail are 
prominent. The limitations of traditional methods become even more 
evident, as even the enhanced SampleNet struggles to extract essential 
sampling points like wings and tails. Conversely, PointAS consistently 
excels in extracting key point data, whether it pertains to cabinets, 
chairs, toilets, or aircraft, courtesy of its attention sampling module. 
Additionally, for diverse types of data, PointAS employs its adaptive 
module to precisely sample essential features. This adaptive approach 
stands as a pivotal factor contributing to a substantial improvement in 
sampling accuracy.

5.3 Noise immunity

To evaluate the resilience of our network in the presence of noisy 
inputs, we conducted two robustness tests. The noise in the experiment 
is added random Gaussian noise, i.e., random noise obeying Gaussian 
distribution is added to the original signal. This kind of noise can 
simulate many random perturbations that exist in real-world 
scenarios, such as sensor measurement errors, communication 
channel interference, etc. In these assessments, a predetermined level 
of noise was introduced to the original inputs. In the initial experiment 
pertaining to noise immunity, random noise within the range of [−1, 
1] was added to all input point cloud data. To emphasize the 

FIGURE 7

Demonstration of variance bands for the three methods PointAS, SampleNet and APSNet.
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FIGURE 8

Visualization of downsampling data from different methods.

TABLE 3 Classification accuracy with different noise disturbances.

σ RS FPS S-Net APSNet SampleNet PointAS

0.03 60.52 65.32 66.48 68.73 68.84 72.50

0.01 74.29 76.25 78.82 79.54 80.51 82.74

0.005 83.42 84.32 85.24 85.27 84.11 87.54

0 87.52 88.34 87.80 88.78 88.16 89.26
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FIGURE 9

Comparison of point cloud downsampling results based on different noise disturbances.

significance of the experimental outcomes, we incorporated a tunable 
hyperparameter (denoted as σ ) into the noise input. By regulating the 
magnitude of σ , we could observe the algorithm’s robustness under 

varying levels of noise influence. Throughout all approaches, the input 
point count remained fixed at 1,024, while assumed values of 0.005, 
0.01, and 0.03, respectively, for the comparative testing.
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The quantitative results of the first robustness test are presented in 
Table 3, which unequivocally demonstrate the network’s proficiency 
in generating more condensed sampling results. Specifically, other 
sampling methodologies were markedly affected by the ambient noise, 
resulting in significant deviations in the positions of the sampled 
points. In contrast, PointAS model demonstrates remarkable 
classification accuracy even when subjected to varying levels of noise. 
This outcome affirms that our network effectively mitigates the impact 
of noise, ensuring that the sampled points retain the core 
characteristics of the objects.

The visualization of the first robustness test is depicted in 
Figure 9, showcasing the network’s proficiency in generating more 
streamlined sampling outcomes. Upon exposure to varying degrees 
of noise, APSNet exhibits a tendency to cause the disappearance of 
sharp features within the point cloud during the final sampling 
process. This is attributed to the neglect of local feature information, 
with the network primarily focusing on global information in its 
composition. As a result, the sampled point cloud exhibits defective 
corners, which is detrimental to subsequent classification tasks. 
SampleNet, on the other hand, effectively retains sharp features 
owing to its soft projection module. However, it encounters 
challenges in maintaining uniformity across the entire point cloud. 
This limitation arises from the consideration of only local factors in 
the overall sampling process, without incorporating global features 
for downstream tasks into the network computation. In contrast, the 
proposed method in this paper adeptly aggregates local feature 
points through the adaptive sampling module, enabling the retention 
of points with sharp features, such as those along the contour. 
Additionally, the integration of a global attention module ensures a 
certain degree of homogeneity across the entire point cloud, thereby 
yielding superior results.

Notably, noise has a negligible effect on the performance of 
PointAS, showcasing strong resistance to interference in point cloud 
downsampling. This characteristic is highly beneficial in object 
recognition and classification tasks. It allows for the discrimination of 
pertinent information from spurious data points, ultimately enhancing 
the performance of computer vision and machine learning algorithms 
in various domains, including robotics and security systems.

Another noteworthy advantage lies in the preservation of crucial 
geometric features. Competent downsampling methods ensure that 
significant details are retained, facilitating accurate measurements and 
precise 3D reconstructions. This is of paramount importance in fields 
such as architecture, archaeology, and civil engineering, where 
meticulous modeling and analysis are essential.

In our second series of anti-noise experiments, our primary goal 
is to assess the model’s responsiveness to noise. The process of 
identifying noise in point cloud downsampling employs advanced 
algorithms to analyze data point characteristics. These methods 
effectively identify and filter out noisy points by evaluating attributes 
like point density, outlier behavior, and statistical anomalies. This is 
especially crucial in fields such as lidar-based environmental sensing, 
where sensor noise, reflections, and moving objects can introduce 
inaccuracies. Additionally, downsampling methods that identify noise 
play a pivotal role in improving the precision of 3D object recognition 
and classification. Through the removal of spurious data points, these 
techniques guarantee that only meaningful information is preserved, 
thus enhancing the performance of computer vision and machine 
learning algorithms. This is particularly relevant in domains like 

autonomous navigation, where reliable data is paramount for safe and 
efficient operation.

We randomly select a specific percentage of points from the input, 
determined by ω, and subsequently introduce random noise within 
the range of [−1.0, 1.0]. In all approaches, the input point count 
remains constant at 1,024, with a downsample size of 64. To 
quantitatively illustrate the model’s sensitivity to noise, we compare 
the illustrations by computing the rate of noise in the final 
downsampling, which can be calculated in Eq. 14:

 
Rate Numnoise=

1 024,  
(14)

A lower Rate value indicates a higher sensitivity of the model to 
noise. The specific experimental results are presented in Table 4.

From the quantitative analysis of Table 4, it is evident that PointAS 
exhibits a notable sensitivity to noisy inputs. Across different levels of 
noise intrusion, PointAS consistently ranks highest in sensitivity, with 
its highest rate value not exceeding 0.14. Even in cases of low 
perturbation, it can reach as low as 0.05, underscoring PointAS 
effective noise recognition capabilities. In contrast, the performance 
of other algorithms is comparatively weaker. They show varying 
degrees of sensitivity to different noisy inputs, which can 
be detrimental to downstream classification tasks and may adversely 
affect the outcomes of such tasks.

The specific visualization results are depicted in Figure 10. Upon 
observation of Figure 9, it is apparent that the results obtained through 
PointAS downsampling exhibit a uniformly textured density, with 
noise exerting a negligible impact. Preserving geometric details is 
another key advantage of PointAS. It ensures that crucial information, 
such as object shapes and surface characteristics, is not lost during the 
downsampling process. This is indispensable for tasks like object 
recognition and precise measurements, where even minor details can 
be of great significance.

5.4 Ablation experiment

In this experiment, we  primarily examine the impact of the 
adaptive sampling module and attention module on overall 
classification performance. To maintain simplicity, we  set the 
downsampling rate m to 128 (sample rate = 1) and focus on assessing 
the improvement in accuracy achieved by each module individually.

The results, depicted in Figure 11, indicate that employing the 
adaptive sampling module alone yields better results compared to 
utilizing the attention module alone. As previously mentioned, the 
adaptive sampling module excels in aggregating neighborhood 
features to integrate local information effectively. On the other hand, 
the attention module focuses on integrating global information. 
However, relying solely on global information without local 

TABLE 4 Classification accuracy with different proportions of noise 
addition.

ω RS FPS S-Net APSNet SampleNet PointAS

0.1 0.25 0.11 0.21 0.09 0.19 0.05

0.2 0.32 0.16 0.31 0.16 0.29 0.09

0.3 0.42 0.21 0.37 0.24 0.36 0.14
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FIGURE 10

Comparison of point cloud downsampling results based on different proportions of noise addition: (A) Noise results with a scale of 0.1 added to the 
raw data; (B) Noise results with a scale of 0.2 added to the raw data. (C) Noise results with a scale of 0.3 added to the raw data.
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aggregation may result in minimal improvement in overall sampling 
accuracy. Conversely, combining both modules enables the 
aggregation of neighborhood information for integration with global 
information, leading to significant overall improvement. As illustrated 
in Figure  11, this combination results in a notable  6% increase 
in accuracy.

6 Conclusion

This paper introduces PointAS, comprising two primary modules: 
Attention Sampling and Adaptive Sampling. The input point cloud 
data is aggregated with global features through the attention module. 
Subsequently, the adaptive module extracts local features directly from 
these points. This combination of global and local sampling helps to 
improve the performance of the whole model. In the Adaptive 
Sampling module, an adaptive offset is generated for each 
neighborhood. Meanwhile, the Attention Sampling module utilizes a 
sequential autoregressive generation model to incorporate global 
information from the input data, allowing for the generation of 
downsampling points tailored for downstream tasks. In comparison 
to other downsampling algorithms used in point cloud classification 
tasks, PointAS may experience some reduction in accuracy, especially 
at high downsampling rates due to the adaptive sampling module. 
Nevertheless, PointAS exhibits distinct advantages in sample quality 
and inference speed, rendering it widely applicable across various 
practical scenarios. Furthermore, when applied to large-scale datasets, 
PointAS consistently demonstrates excellent performance. However, 
the supervised training of PointAS requires a large amount of data, 

and future developments may explore semi-supervised approaches. 
Additionally, further research could explore the application of PointAS 
to additional point cloud tasks such as reconstruction, detection, and 
segmentation, and enhance PointAS using advanced 
attention techniques.
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