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A compact description of the frequency structure and topography of human

alpha-band rhythms is obtained by use of the first four brain activity

eigenmodes previously derived from corticothalamic neural field theory. Just

two eigenmodes that overlap in frequency are found to reproduce the

observed topography of the classical alpha rhythm for subjects with a

single, occipitally concentrated alpha peak in their electroencephalograms.

Alpha frequency splitting and relative amplitudes of double alpha peaks are

explored analytically and numerically within this four-mode framework using

eigenfunction expansion and perturbation methods. These e�ects are found

to result primarily from the di�erent eigenvalues and corticothalamic gains

corresponding to the eigenmodes. Three modes with two non-overlapping

frequencies su�ce to reproduce the observed topography for subjects with

a double alpha peak, where the appearance of a distinct second alpha peak

requires an increase of the corticothalamic gain of higher eigenmodes relative

to the first. Conversely, alpha blocking is inferred to be linked to a relatively

small attention-dependent reduction of the gain of the relevant eigenmodes,

whose e�ect is enhanced by the near-critical state of the brain and whose

sign is consistent with inferences from neural field theory. The topographies

and blocking of the mu and tau rhythms within the alpha-band are explained

analogously via eigenmodes. Moreover, the observation of three rhythms in

the alpha band is due to there being exactly three members of the first

family of spatially nonuniform modes. These results thus provide a simple,

unified description of alpha band rhythms and enable experimental observations

of spectral structure and topography to be linked directly to theory and

underlying physiology.

KEYWORDS

EEG, eigenmodes, brain resonances, alpha rhythm, mu rhythm, tau rhythm, neural field
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1 Introduction

The first measurement of human brain activity by electroencephalographic (EEG) was

made by Berger on 6 July 1924; he observed that the classical ∼ 10 Hz alpha rhythm is the

most prominent component of the EEG in healthy awake adults (Berger, 1929). However,

the mechanisms behind its spectral structure and spatial topography have yet to be fully

explained, despite a century having passed.

The classical alpha rhythm is observed across the whole scalp, but usually has its

greatest amplitude over posterior regions (Adrian and Matthews, 1934; Niedermeyer

and Lopes da Silva, 1999; Shaw, 2003). Berger (1929) and others found that the alpha

rhythm is blocked by mental effort and visual stimuli; however, this response habituates,

which means that the alpha rhythm returns when the conditions remain constant.
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Accordingly, Berger argued that the alpha rhythm is correlated with

attention via a mechanism in which a sensory stimulus generates

a localized increase in oscillations in the corresponding sensory

center, which then exerts a generalized inhibitory effect upon the

remainder of the cortex (Berger, 1929; Gloor, 1969). In contrast,

Adrian and Yamagiwa (1935) argued that the alpha rhythm is not a

property of the whole cortex, but arises from certain parts of the

occipital lobes. However, Jasper (1936) discovered that an alpha

rhythm could be recorded from central regions, independently of

occipital areas; ∼ 10 Hz rhythms have since been recorded across

the whole scalp (Niedermeyer and Lopes da Silva, 1999; Chiang

et al., 2008, 2011).

The International Federation of Societies for

Electroencephalography and Clinical Neurophysiology (IFSECN,

1974) has given an official definition of the human alpha rhythm

in adults as a rhythm (i.e., a spectral peak) at frequencies of 8–13

Hz that occurs during wakefulness over the posterior regions

of the brain, and is concentrated in the occipital regions. It is

strongest when the subject is relaxed with eyes closed, and tends to

decrease in amplitude when the eyes are open. The alpha rhythm

is also suppressed, or blocked, by attention, especially visual or

mental effort (Berger, 1929; Nunez et al., 1978; Niedermeyer and

Lopes da Silva, 1999; Shaw, 2003). This suppression by stimuli is

often termed alpha “desynchronization,” because high-amplitude

alpha rhythms involve some synchronization of neuronal activity

(Kropotov, 2009).

The alpha rhythm in normal individuals varies in frequency,

amplitude, morphology, and topography. In any individual, the

amplitude of the alpha rhythm varies over time, but is mostly <50

µV at the scalp for adults (Berger, 1929; Cobb, 1963; Niedermeyer

and Lopes da Silva, 1999; Shaw, 2003). Furthermore, the EEG power

spectrum of a small minority of healthy individuals does not show

any distinct peak within the alpha band (Davis and Davis, 1936;

Golla et al., 1943; Niedermeyer and Lopes da Silva, 1999; Chiang

et al., 2008). An alpha rhythm with a frequency of 4 Hz develops

in babies at the age of 4 months, it increases to 6 Hz at the age

of 12 months, 8 Hz at 3 years, and reaches about 10 Hz at the

age of 20, before decreasing slightly in older individuals (Dustman

et al., 1999; Stroganova et al., 1999; Chiang et al., 2011). Notably,

studies of the variation of the alpha rhythm during adulthood

show that alpha frequencies decrease slightly with age in healthy

adults (Duffy et al., 1984; Aurlien et al., 2004; Valdés-Hernández

et al., 2010; Chiang et al., 2011). Moreover, the amplitudes of

posterior alpha rhythms observed in children are significantly

higher than those for adults, which may be due to the lesser effects

of volume conduction in their thinner skulls (Nunez et al., 2001),

because volume conduction tends to attenuate the transmission of

neural electric fields as they pass through conductive brain tissue,

cerebrospinal fluid, skull, and scalp to EEG electrodes (Nunez and

Srinivasan, 2006). Since the alpha frequency varies with age (Smith,

1941; Chiang et al., 2011), it is likely linked to myelination or neural

maturation, which is consistent with the above observations and the

observation that a decrease in the alpha frequency is an indicator of

dementia (Samson-Dollfus et al., 1997). Other studies presented an

anticorrelation between the alpha frequency and the size of the head

(Nunez et al., 1978), but Valdés-Hernández et al. (2010) presented

evidence that they are independent.

Within the alpha frequency range, there are other activities

that differ from the predominant occipital alpha rhythm by

their topography and reactivity (Deuschl and Eisen, 1999), such

as the rolandic (or central) mu rhythm. The mu rhythm was

originally named by Gastaut et al. (1952) who observed it in

scalp EEG over the motor cortex at around 10 Hz. Furthermore,

magnetoencephalography (MEG) recordings have shown that the

mu rhythm is strongest in areas near the primary sensorimotor

cortex (Tiihonen et al., 1991) in the rolandic area of the cortex

near the central sulcus. It was also found that during voluntary

body movements the mu rhythm is suppressed, analogously to

suppression of alpha by mental activity; again, this links mu to the

sensorimotor cortex (Hari and Puce, 2017).

Another rhythm within the alpha band is the tau rhythm,

which was discovered after showing that maximal reactivity to an

auditory tone was found in the temporal part of the head at EEG

or MEG frequencies of 8–10 Hz (Tiihonen et al., 1991; Yokosawa

et al., 2020). The tau rhythm was captured in MEG recordings

with neural sources inferred to be localized in the supratemporal

auditory cortex (Tiihonen et al., 1991; Lehtelä et al., 1997; Weisz

et al., 2011). The tau rhythm is best observed during drowsiness,

unlike the occipital alpha rhythm. It is unaffected by eye opening

or closing, but is suppressed by auditory stimuli, further linking it

to auditory cortex (Niedermeyer and Lopes da Silva, 1999; Shaw,

2003; Nunez and Srinivasan, 2006).

Overall, the presence of several rhythms within the alpha band

with partially overlapping frequencies and different topographies

highlights the importance of characterizing and explaining each

rhythm’s frequency, topography, and reactivity, where the reactivity

can be quantified via its change in power in response to external

stimuli or mental activity relating to the relevant sensory modality

(Hari and Puce, 2017). Studying the blocking of those rhythms

is also important to understand their corresponding mechanisms,

because it was observed by Skinner (1984) that during attention

for a particular sensory stimulus, there is a “desynchronization”

of 10 Hz rhythmic activity over the corresponding sensory cortex,

corresponding to a reduction in amplitude and decrease in the

sharpness of the spectral peak. Such features are exactly what is seen

in resonant phenomena in multiple branches of physics when the

damping rate increases.

As noted above, multiple spectral peaks exist in the

conventional alpha band, each associated with a particular

area of the brain and differently affected by experimental

conditions (Samson-Dollfus et al., 1997). It has been found in

healthy individuals that the alpha peak can be split into two

sub-peaks separated by up to 1–2 Hz (Nunez et al., 1978; Robinson

et al., 2003; Nunez and Srinivasan, 2006; Chiang et al., 2008). In

a study of the EEGs of 100 healthy adult subjects, Chiang et al.

(2008) found that about 48% of them had a single alpha peak;

however, another 48% had two distinguishable subpeaks, which

often overlapped. This so-called “split-alpha” spectral structure is

thus a common feature of the alpha rhythm in healthy individuals

(Nunez and Srinivasan, 2006; Chiang et al., 2008, 2011). Chiang

et al. (2008) argued that individuals with a single alpha peak may

actually have overlapping peaks whose frequencies are too similar

to be distinguished. In most individuals, the alpha-peak frequency

is higher at the back of the head than the front–typically by 0.5–1
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Hz (Klimesch, 1999; Shaw, 2003; Chiang et al., 2008). Chiang

et al. (2008) showed examples (in their Figure 7) of the alpha

resonance at various scalp electrodes for a set of individuals, who

were classified according to whether their spectra displayed: (i) no

distinct alpha peak; (ii) a single alpha peak; or (iii) two alpha peaks.

Proposed mechanisms for the generation of alpha peaks have

included: (i) Spatially localized cellular generators, or “pacemakers,”

each producing activity with a specific frequency. This theory has

been strongly criticized for its lack of explanatory power because

it is an ad hoc description that requires a new pacemaker for every

spectral peak and every spatial concentration of activity (Nunez and

Srinivasan, 2006). Furthermore, the pacemaker theory can neither

explain the concurrent activation and deactivation of peaks during

the transition from wake to sleep (Robinson et al., 2001), nor the

frequency relationships between alpha and beta peaks, for example

(Valdés-Hernández et al., 2010; van Albada and Robinson, 2013).

(ii) Cortical or corticothalamic eigenmodes, where the breaking

of degeneracy between modes caused by cortical asymmetry can

result in the splitting of the alpha peak (Nunez, 1996; Nunez et al.,

2001; Robinson et al., 2001, 2003; Nunez and Srinivasan, 2006).

(iii) Non-uniformities in the corticothalamic time delay, which

is the time taken by a signal to travel a round trip between the

cortex and the thalamus provokes the generation of peaks through a

resulting resonance in reciprocal interaction between the thalamus

and cortex, thereby potentially leading to the splitting of the alpha

peak (Robinson et al., 2003) even in the case of continuously

changing local delay.

Neural field theory (NFT) averages neural quantities over scales

of a few tenths of a millimeter, and various versions have been

widely used to interpret and describe key features of medium-

to-large scale brain activity, with local dynamics coupled across

regions by corticocortical white matter axons (Wilson and Cowan,

1973; Lopes da Silva et al., 1974; Freeman, 1975; Amari, 1977;

Nunez et al., 1978, 2001; Jirsa and Haken, 1996; Nunez, 1996;

Wright and Liley, 1996; Robinson et al., 1997, 2002; Ermentrout,

1998; Coombes, 2005; Robinson, 2005; Nunez and Srinivasan, 2006;

Deco et al., 2008; Pinotsis et al., 2013). Of particular relevance here

has been application of NFT to the corticothalamic system, which is

found to be responsible for the production of EEG and fMRI signals

as well as many other observable linear and nonlinear phenomena

of the brain (Robinson et al., 2002, 2016; Robinson, 2005, 2012;

Deco et al., 2008). Corticothalamic NFT predicts the existence

of eigenmodes of activity on the cortical surface at length scales

detectable by EEG or MEG. Those brain eigenmodes and their

dynamics can be described in terms of physiological parameters

such as corticocortical, intrathalamic, corticothalamic gains, and

inverse synaptodendritic decay and rise times (Robinson et al.,

1997, 2002, 2016). As for the eigenmodes of a vast variety of physical

systems, the eigenmodes of neural activity on the convoluted

cortical surface derived from NFT form a complete basis set such

that any brain activity or other quantity can be decomposed in

terms of a weighted sum of those eigenmodes (Zwillinger, 1997;

Robinson et al., 2001, 2016; Pang et al., 2023). Previous work has

also shown that eigenmodes of the convoluted cortex are closely

related to spherical harmonics by considering cortical folding as

a first-order perturbation from spherical geometry (Gabay and

Robinson, 2017).

Eigenmodes represent the building blocks of normal brain

dynamics and have also yielded fruitful results regarding brain

connectivity via spectral analysis (Robinson et al., 2014, 2016,

2021b; Gao and Robinson, 2020; Henderson et al., 2020; Robinson,

2021). For example, recent work employed just two eigenmodes

to reproduce the observed spatiotemporal structure of “echo

correlations” between visual stimuli and resulting evoked alpha

activity (VanRullen and Macdonald, 2012; Robinson et al.,

2018). Another recent study estimated the alpha frequencies

corresponding to the first nine brain eigenmodes by approximating

the transfer function in corticothalamic NFT (Gabay et al., 2018).

However, those frequencies were estimated for corticothalamic

loop delay (τ ) without any spatial nonuniformity, whereas a

previous study argued that a variation of −10 to +10 ms in the

corticothalamic time delay between the back and the front of the

head relative to its mean value of ∼80 ms could result in a ∼1 Hz

splitting of the alpha frequency (Robinson et al., 2003).

In the present work we apply eigenmode analysis systematically

to explore the frequency range and topography of the classical

alpha, mu, and tau rhythms. This framework estimates the alpha

frequency of brain activity in each NFT spatial eigenmode, and

when these modes are superposed. Because each spatial mode

has a different eigenvalue and characteristic wave number k, its

corresponding frequency peak is shifted from that of the lowest

mode by a different amount (we term this the k-effect), and

we derive an expression for the resulting frequency splitting in

terms of physiological parameters of NFT. The present work also

incorporates different values of the corticothalamic time delay τ

for the other eigenmodes (termed the τ -effect here), by treating

τ as having a mean value plus a perturbation whose effects are

expressed in terms of the expectation value of τ for each mode.

This framework is also used to consider the effect of the variation

of corticothalamic feedback loop gain (termed the G-effect here)

on the splitting of the alpha peak and on the variation of the alpha

power between the back and the front of the head, where eachmode

has a corresponding expectation value of loop gain. This paper also

explores the topography of the mu and tau rhythms using the same

eigenmode approach.

The structure of the paper is as follows, Section 2 provides an

overview of the corticothalamic NFT and the modal expansion.

Section 3 analyzes the alpha frequency shift and spectral structure

due to the k-, τ -, and G-effects. It describes a possible mechanism

of alpha blocking and analyzes cortical alpha topography for both

single and double alpha peaks. Results for mu and tau rhythms

are also provided. Finally, in Section 4 we summarize and discuss

the results.

2 Materials and methods

In this section, we first summarize the relevant corticothalamic

NFT from prior work (Wright and Liley, 1996; Robinson

et al., 1997, 2002, 2004; Robinson, 2005; Abeysuriya

et al., 2014), explain its main parameters, and outline the

derivation of the corticothalamic transfer function. We then

analyze the spatiotemporal dynamics of the brain in terms

of eigenmodes.
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FIGURE 1

Schematic diagram of the corticothalamic model that incorporates

key anatomic connectivities between spatially extended neural

populations, where φab is the activity reaching population a due to

signals from population b (Gabay and Robinson, 2017).

2.1 Corticothalamic neural field theory

Neural field theory has been widely used to interpret and

reproduce key features of experimental findings in EEG, fMRI,

seizure dynamics, coherence and correlations, and evoked response

potentials (Robinson et al., 1997, 2002; Rennie et al., 2002;

Robinson, 2003; Deco et al., 2008). It averages neural quantities

over scales of a few tenths of a millimeter. Here, we focus on

the key aspects of NFT relevant to our framework. The neural

field model consists of cortical excitatory (e) and inhibitory

(i) populations, thalamic specific relay populations (s), thalamic

reticular populations (r), and external sensory inputs (n). This

model incorporates key anatomic connectivities between those

populations, as shown in Figure 1, where φab is the mean activity

field reaching population a due to signals from population b. The

strength of connection to population a from population b is

νab = sabNab, (1)

where sab is the mean time-integrated strength of the response in

neurons a per incoming signal from neurons b, andNab is the mean

number of synapses to neurons a from b. Population a’s average

firing rateQa can be approximated as a nonlinear sigmoid function

of its corresponding average membrane potential Va relative to

resting, such that

Qa = S(Va) =
Qmax

1+ exp[−(Va − θ)/σ ′]
, (2)

where Qmax is the maximum firing rate, θ is the mean threshold

voltage, and σ ′π/
√
3 is the standard deviation of the threshold

distribution.

Due to synaptodendritic dynamics and soma capacitance,

presynaptic inputs to neurons a from various types of neurons b are

summed after being filtered and smeared out in time, giving rise to

the potential Va such that

Va(r, t) =
∑

b

Vab(r, t). (3)

Inputs drive contributions to the local population response via

the following equation:

Dαβ (t)Vab(r, t) = νabφab(r, t − τab), (4)

where Dαβ is the operator

Dαβ (t) =
1

αβ

d2

dt2
+
(

1

α
+

1

β

)

d

dt
+ 1, (5)

r is the position vector on the 2D cortical sheet, 1/β and 1/α are

the rise and decay times, respectively, of the potential at the cell

body elicited by an impulse response at the dendritic synapse, and

τab is the time delay due to anatomical separations between neural

populations a and b. The only nonzero time delays correspond

to propagation from cortex to thalamus and vice versa, with

τab ≈ 0 in the case of intrathalamic and intracortical connections;

propagation across the cortex via white matter connections is

discussed in the next paragraph.

Propagation between various spatial points r across the cortex

are due to white matter connections/fibers from excitatory cortical

pyramidal neurons (Robinson et al., 2002, 2004; Robinson, 2005).

The cortex is approximated as a two-dimensional sheet, while

the coordinates in the thalamus are linked one-to-one to those

in the cortex via the primary topographic mapping, such that,

in the thalamus, the dimensional map coordinate denotes a

rescaled physical dimension. The rescaled thalamic coordinate is

determined by multiplying the physical coordinate by the ratio of

the cortical scale to the thalamic scale (Robinson, 2005).

The following equations show the conversion of the source

firing rates Qb(r, t) into the axonal signal, such that

Dab(r, t)φab(r, t) = Qb(r, t), (6)

Dab(r, t) =
1

γ 2
ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2ab∇

2, (7)

where the propagation of a mean activity field φab(r, t) obeys

a damped wave equation with γab = vab/rab is the temporal

damping rate, rab is the mean characteristic range of axons to

population a from population b, and vab is the propagation velocity

in axons to population a from population b. We can write rab ≈
0 for b = i, r, s, yielding Dab = 1 because the mean axonal

ranges for all populations except for excitatory cortical neurons

are very short. The Laplacian operator in Equation 7 incorporates

the dominant, short-range (few cm), approximately isotropic

connectivity (Robinson et al., 1997, 2016; Braitenberg and Schüz,

1998; Henderson and Robinson, 2014; Pang et al., 2023), and the
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effects of cortical curvature; it does not embody inhomogeneities

in long-range connectivity, but these have been shown to be

perturbations on the dominant contribution (Henderson and

Robinson, 2014).

It has been found experimentally that the number of

intracortical synapses to different types of cortical neurons is closely

proportional to the numbers of neurons involved of each type

(Braitenberg and Schüz, 1998), which implies then Nib = Neb for

all b in the present case. If we assume that the mean input stimulus

φsn is not too large, the system has a fixed point with low firing

rates (Robinson et al., 1997, 2002). If perturbations around this

point are not too large, we can make a linear approximation where

we henceforth treat each dynamic quantity (φab,Qa,Va) as a linear

perturbation from its steady state value, which is denoted by the

superscript (0). So

Qa(r, t) = ρaVa(r, t), (8)

and

ρa =
dS(Va)

dVa

∣

∣

∣

∣

Va=V
(0)
a

, (9)

is the derivative with respect to voltage of the sigmoid function,

evaluated at the steady state.

Fourier transforming Equations 4–6 yields

Vab(k,ω) = L(ω)νabφab(k,ω)e
iωτab , (10)

L(ω) =
(

1−
iω

α

)−1 (

1−
iω

β

)−1

, (11)

Dab(k,ω)φab(k,ω) = Qb(k,ω), (12)

where k is the wave vector, ω is the angular frequency, and L(ω)

embodies a low-pass filter response function. Activity Qb generates

fields of activity φab that propagate to affect populations a.

2.1.1 Corticothalamic transfer function
Equations 3, 8, 10, 12 represent a set of linear equations for the

Vab, φab, and Qab. Equation 8 can be used to eliminate the Vab in

favor of the Qa. Then Equation 12 can be used to eliminate the Qb

in favor of the φab. This yields a single set of linear equations in

the φab, driven by the source φsn in the system shown in Figure 1.

In the corticothalamic system, observable EEG and MEG signals

are primarily generated by the e population and are approximately

proportional to φee at the cortex (Robinson et al., 2001). Solution

of the linear equations for the φab enables all of these quantities to

be eliminated in favor of φee via linear algebra [see Abeysuriya et al.

(2014), for example, for further details of the derivation]. Hence, we

focus on φee and express it in terms of the external stimulus φsn via

the transfer function, which is given by

T(k,ω) =
φee(k,ω)

φsn(k,ω)
, (13)

=
B(ω)

k2r2ee + q2(ω)r2ee
, (14)

TABLE 1 Model parameters.

Symbol Quantity Value Units

α Synaptodendritic decay rate 50 s−1

β Synaptodendritic rise rate 200 s−1

τes Thalamocortical axonal delay 0.02 s

τse Corticothalamic relay axonal delay 0.06 s

γee Cortical damping rate 116 s−1

ree Excitatory axon range 60 mm

Gee ee gain 2.07 -

−Gei ei gain 4.11 -

Ges es gain 0.77 -

Gse se gain 7.77 -

−Gsr sr gain 3.30 -

Gsn sn gain 8.10 -

Gre re gain 0.66 -

Grs rs gain 0.20 -

The first six lines show nominal parameters of corticothalamic neural field theory based on

previous work (Henderson and Robinson, 2014; Gabay et al., 2018). The remaining lines show

nominal gain parameters of the corticothalamic transfer function for the eyes-closed waking

state based on previous work (Abeysuriya et al., 2014).

where Equation 13 is the definition of T(k,ω)

q2(ω)r2ee =
(

1− iω
γee

)2

− 1
1−GeiL

[

LGee + L2Ges(Gse+LGsrGre) exp[iω(τes+τse)]
1−L2GsrGrs

]

,

(15)

B(ω) = L2GesGsne
iωτes

(1−L2GsrGrs)(1−GeiL)
, (16)

and Gab is the gain of responses in population a due to signals from

population b such that Gab = ρaνab. Table 1 shows the parameters

used to evaluate the corticothalamic transfer function numerically.

2.1.2 Eigenmodes
If we write D′(ω) = q2(ω)r2ee, then in the absence of external

stimulus the natural modes of the system obey the dispersion

equation given by the zeros of the term k2r2ee + q2(ω)r2ee in the

denominator in Equation 14. If we spatially transform the term

involving k, this yields

q2(ω)φee(r,ω) = −∇2φee(r,ω), (17)

where ∇2 is the Laplace-Beltrami operator. This equation is then

in a form that can be solved in the finite system corresponding

to a brain hemisphere, with appropriate boundary conditions.

We analyze the spatiotemporal dynamics of the brain in terms

of discrete modes labeled η, with eigenvalues kη that replace the

continuous k above.

To solve Equation 17 for the eigenmodes, we introduce the

ansatz

φee(r, t) = uη(r)e
−iωηt , (18)
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FIGURE 2

Coordinates and modes. (A) Location of the north pole and nodal lines of the first three nonuniform modes on the cortical surface in the left

hemisphere. Alternating colors are used to highlight the nodal lines, shown white. (B) Parameterization of cortical surface via the Freesurfer mapping

to a sphere using the Freesurfer coordinates. (C) Our rotated coordinate system, based on the location of our north pole at the intersection of two

nodal lines shown in (A). (D–L) First nine eigenmodes, labeled with mode number η = lm with red and blue indicating positive and negative regions,

respectively; the color bar is shown at the foot of the figure.

where uη(r) is a spatial eigenmode on the cortical surface

oscillating at an eigenfrequency ωη ; η labels the mode. Substituting

Equation 18 into Equation 17 then yields

∇2uη(r)

uη(r)
= q2(ω).

In this equation, the left hand side is independent of ω, while

the right hand one is independent of r; hence, they must both be

equal to a common constant, which we write as −k2η . The left side

then yields the Helmholtz equation for uη(r):

∇2uη(r) = −k2ηuη(r), (19)

where uη(r) are the eigenmode solutions of the equation and k2η
are the corresponding eigenvalues. The right side gives q2(ω) +
k2η = 0, which is the dispersion relation of the mode, as

noted earlier.

The Helmholtz (Equation 19) is solved numerically on the
surface of an average cortical hemisphere, shown in Figure 2A,
with this surface provided by the Freesurfer package (Fischl et al.,

1999). The Freesurfer software also enables us to establish a
coordinate system in which to parameterize these calculations by
performing a one-to-one mapping of each point r of a cortical
hemisphere onto a sphere at a point (ϑ ,ϕ), where ϑ and ϕ are
the spherical polar angle and azimuthal angle, respectively (Fischl
et al., 1999; Robinson et al., 2016) as shown in Figure 2B. (In

essence, the brain hemisphere is computationally inflated into a
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sphere to establish the mapping). Figure 2C shows the coordinates

used in the present work, which have been rotated so as to place

their north pole at the intersection of two nodal lines, as for

spherical harmonics.

The human cerebral cortex can be approximated as a

highly convoluted two-dimensional sheet, a geometry that makes

computational analysis and visualization difficult. Consequently,

a useful first step is to computationally inflate each cortical

hemisphere into a geometric sphere in order to establish

a coordinate system while preserving the topology (Fischl

et al., 1999). The standard spherical coordinate system on

the inflated sphere is then used to label corresponding points

on the convoluted surface for the purposes of calculation

and visualization. Using this grid of spatial points on the

convoluted cortical surface, parameterized by the associated

spherical coordinates, the corresponding spatial eigenmodes and

their eigenvalues kη are calculated by solving the Helmholtz

(Equation 19) on the convoluted cortex using standard finite-

differencing methods (Seo and Chung, 2011; Robinson et al.,

2016; Pang et al., 2023). Figures 2D–L show the first nine

eigenmodes on the cortex, where we label each mode by writing

η = lm where Ylm is the spherical harmonic limit of the

mode in the limit that the convolutions are removed (Robinson

et al., 2016). In this limit, the labels have the values l =
0, 1, 2, . . . and m = −l,−l + 1, . . . , l − 1, l. Focusing on just

the first four eigenmodes; the first eigenmode (η = 00 in

Figure 2D) is uniform across the cortex, the second eigenmode

(η = 1-1, Figure 2E) varies primarily front-to-back, the third

eigenmode (η = 10, Figure 2F) varies mainly top-to-bottom,

and the fourth eigenmode (η = 11, Figure 2G) varies chiefly

left-to-right.

2.2 Modal expansion

In this section we first summarize and apply the modal

expansion discussed in Gabay et al. (2018), Babaie-Janvier

and Robinson (2018), and El Zghir et al. (2021) to the

power spectrum, we then show our predictions for the

alpha power spectrum between the front and back of

the brain.

The corticothalamic transfer function expressed in

Equations 13, 14 represents the cortical response to an input

stimulus, and encodes all the information of the linear system.

However, that form of the transfer function is transcendental,

not easy to work with, and does not link clearly to experimental

observations (e.g., resonances in EEG spectrum). Modal-polar

expansion simplifies that complicated form of the transfer function

by decomposing Equations 13, 14 into two separate parts: the

modal part (spatial), and the temporal part as in Equation 18

(El Zghir et al., 2021).

Assuming that the transfer function is spatially symmetric,

the set of eigenmodes uη is complete and orthonormal. Hence,

any activity or connectivity can be expressed in terms of

those eigenmodes (Robinson et al., 2016; Gao and Robinson,

2020; Robinson, 2021), which means the corticothalamic transfer

function in Equation 13 can be expanded in terms of the brain

eigenmodes such that

T(r, r′,ω) =
∑

η

uη(r)u
∗
η(r

′)T(kη ,ω), (20)

where uη(r) are the eigenmodes, and T(kη ,ω) is the temporal part

of the transfer function for mode η.

2.2.1 Power spectrum
Using the above modal-polar representation of NFT, we can

express the spatially dependent power spectrum in terms of the

modes, with

P(r,ω) = 〈
∣

∣φee(r,ω)
∣

∣

2〉, (21)

=

〈
∣

∣

∣

∣

∣

∑

η

φee(kη ,ω)uη(r)

∣

∣

∣

∣

∣

2〉

, (22)

=

〈∣

∣

∣

∣

∣

∑

η

T(kη ,ω)φsn(kη ,ω)uη(r)

∣

∣

∣

∣

∣

2〉

, (23)

where the angle brackets indicate averaging over random inputs

where relevant. We can rewrite Equation 23 as

P(r,ω) =

〈

∑

η

T(kη ,ω)φsn(kη ,ω)uη(r)

×
∑

µ

T∗(kµ,ω)φ
∗
sn(kµ,ω)u

∗
µ(r)

〉

, (24)

=
∑

ηµ

T(kη ,ω)T
∗(kµ,ω)uη(r)u

∗
µ(r)

×〈φsn(kη ,ω)φ∗sn(kµ,ω)〉, (25)

with

φsn(kη ,ω) =
∫

φsn(r,ω)uη(r)dr, (26)

where the integral extends over the cortical surface.

In the case of random-phase inputs, which have been

widely used to reproduce experimental spectra (Robinson et al.,

1998, 2018; Gabay et al., 2018), the final average satisfies

〈φsn(kη ,ω)φ∗sn(kµ,ω)〉 = |φsn(kη ,ω)|2δηµ, so

P(r,ω) =
∑

η

∣

∣T(kη ,ω)
∣

∣

2 |uη(r)|2|φsn(kη ,ω)|2, (27)

in the random-phase case. When integrated over r to get the total

power spectrum, the orthonormality of the eigenfunctions implies

P(ω) =
∫

P(r,ω)dr =
∑

η

∣

∣T(kη ,ω)
∣

∣

2 ||φsn(kη ,ω)|2. (28)

3 Results

In this section we first use our NFT to derive expressions for the

modal alpha frequencies, including the effects of nonuniform loop

delays and gains, and then derive the topographical distribution

of alpha power from the NFT equations. These results rely on
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expansions of time delays and gains in terms of the eigenfunctions

discussed in Section 2. The details of the derivations are not

required in order to follow the accompanying comparisons with

experimentally observed features of the rhythms.

3.1 Modal eigenvalue e�ect on alpha
frequencies (k-e�ect)

In this section, we use NFT described in the previous section

to estimate the offset of each mode’s alpha frequency from that

of the lowest mode. Starting from Equation 15, and based on the

assumption that the corticothalamic loop delay is uniform over the

brain, we can write τ0 = τes + τse, whence

q2(ω)r2ee =
(

1−
iω

γee

)2

−
LGee

1− LGei
−

(Gese + GesreL)L2eiωτ0

(1− LGei)(1− GsrsL2)
,

(29)

= 1−
ω2

γ 2
ee

−
2iω

γee
− X(ω)− Y(ω)eiωτ0 , (30)

X(ω) =
LGee

1− LGei
, (31)

Y(ω) =
(Gese + GesreL)L2

(1− LGei)(1− GsrsL2)
, (32)

where both X(ω) and Y(ω) decrease in magnitude at large ω. The

leading quadratic term on the right of Equation 29 describes a

parabola in the complex q2(ω)r2ee plane, and the cyclic term in

Equation 29 causes the loops shown in Figure 3A; the points C0,

C1, C2, and C3 lie at q2(ω)r2ee = −k2ηr
2
ee for η = 00, 1-1, 10, and 11,

respectively. Figure 3B shows a part of locus of q2(ω)r2ee near the

alpha frequency of the k2η = 0 mode, which is the spatially uniform

global mode with eigenfrequency ω0. The points A0 and A1 on the

parabola are the centers of arcs of radii shown by the line segments

|A0B0| and |A1B1|, at the spectral peaks of the eigenmodes η = 00

and η = 1-1, respectively. The length of the segment |CηBη| is
the shortest distance from point Cη to the arc of radius |AηBη|
centered at Aη , while θη is the angle formed between |AηCη| and
the imaginary axis. The angles at Bη in Figure 3B are right angles

because it lies on the arc of radius |AηBη| centered at Aη such that

the points A0, B0, and C0 are collinear.

We estimate modal frequencies in two stages, on the

assumption that the system is driven by random-phase inputs

so Equation 28 applies, with the transfer function given by

Equation 14. First we calculate the uniform-mode frequency ω00

and then estimate the offsets from it to other modes’ alpha-peak

frequencies. Referring to Figure 3B, ω00 corresponds to the point at

which |q2(ω)r2ee| is closest to the pole at C0 = 0, which corresponds

to the point A0 on the parabola.

The appearance of peaks in the power spectrum is mainly

governed by the factor L2eiωτ0 in Equation 29, which causes

the final denominator in Equation 14 to alternately increase and

decrease in magnitude, with a period in ω of ∼2π/τ0. Aside from

the peak at ω = 0, the next peak thus occurs when iωτ0 ≈ 2π . For

ω≪ α,β , γ , this gives the cyclic frequency (Robinson et al., 2002).

f0 ≈
[

τ0 +
2

α
+

2

β

]−1

, (33)

where τ0 ≈ 80 ms is the mean corticothalamic time delay.

Our next step is to find the frequency offset ωη − ω00

with the aim of being able to combine these estimates with

experimentally observed ω00 to avoid the approximations in the

previous paragraph and obtain more accurate results. If we again

refer to Figure 3B, ωη is the frequency at which the points Aη ,

Bη , and Cη are collinear. If we neglect the small offset between A0

and Aη relative to the distance between C0 and Cη , the extra angle

rotated by the vector |AηBη| relative to |A0B0| is

θη − θ00 ≈ (ωη − ω00)τ0. (34)

The point Aη has coordinates

xη = 1−
ω2
η

γ 2
ee

− X(ωη), (35)

yη = −
2ωη
γee

. (36)

So, we find

tan θ0 =
x0

|y0|
, (37)

tan θη =
xη + k2ηr

2
ee

|yη|
. (38)

Then, using Equations 34–38, we find

ωη−ω00 =
1

τ0

[

tan−1

(

xη + k2ηr
2
ee

|yη|

)

− tan−1
(

x0

|y0|

)

]

≈
2γeer2ee
AS

.

(39)

Here, the rightmost expression is obtained by approximating

the inverse tangent functions by their arguments, setting xη = x0
and yη = y0, and noting that in the limit of a spherical cortex

of radius RS and area AS one has k2ηR
2
S = 2 for the three lowest

nonuniform modes. From this approximation, we see that splitting

is greatest for small brains with fast, long-range axons (i.e.,AS small,

γee and ree large). These results can be further refined by noting

that Robinson et al. (2016) found k21−1R
2
S = 1.2, k210R

2
S = 2.2,

k211R
2
S = 2.6, and AS = 0.070 m2 for the Freesurfer group-

average hemispheric surface used in their work and the present

analysis. These parameters, together with those in Table 1, imply

typical alpha splittings of∼ 1 Hz, which accords with observations

(Chiang et al., 2008, 2011).

Now, Equation 39 is transcendental because xη and yη are

functions of ωη via Equations 35, 36. But it can be solved iteratively

as follows: (i) On the right hand side, set ωη = ω00 = ω
(0)
η ,

yη = y0 = y
(0)
η , and xη = x0 = x

(0)
η , where the superscript indicates

the iteration step. (ii) Solve to obtain new estimates for ω(1)
η and

the corresponding x(1)η and y
(1)
η . (iii) Set ωη = ω

(1)
η , xη = x

(1)
η , and

yη = y
(1)
η on the right hand side. (iv) Repeat steps (ii) and (iii) to

obtain successive estimates ofω
(j)
η for j = 2, 3, . . . until convergence

is achieved. Noting that ω00τ0 ≈ 2π places the upper bound

ωη < ω00

[

5

4
−

1

2π
tan−1

(

x0

|y0|

)]

, (40)
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FIGURE 3

Analysis of modal alpha frequencies and power spectra for a convoluted brain hemisphere based on the parameters of Table 1 with ree = 60 mm. (A)

The locus of q2(ω)r2ee is shown as a blue curve in the complex plane according to Equation 29, with ω = 0 on the real axis and increasing in the

direction of the arrow. The red parabola corresponds to the leading quadratic term in parentheses on the right of Equation 29 and C0, C1, C2, and C3

show −k2η r
2
ee for η = 00, 1-1, 10, and 11, respectively. (B) Expanded view of q2(ω)r2ee at low frequencies. (C) Individual modal spectra for the first four

eigenmodes, η = 00, 1-1, 10, and 11, for the gain parameters in Table 1. A logarithmic scale is used to show the latter three spectra more clearly. (D)

Geometry used to determine half-power points in Equation 75; the angle ξ approaches 45◦ at the half-power points when |R− Y| ≪ Y.

on ωη , so ωη < 3ω00/2, with ωη < 5ω00/4 if x0 > 0. This means

starting with f0 = 8.1 Hz (Gabay et al., 2018) the modal alpha

frequency for the l = 1 and l = 2 modes should not exceed 10.1

Hz, which agrees with the results of Gabay et al. (2018).

Equation 33 yields f0 = 7.7 Hz, which has a significant offset

from the numerical value of 8.1 Hz obtained by Gabay et al. (2018)

for the relevant values of α, β , and γ ; this is the result of the

approximations made in obtaining Equation 33. Thus, we focus on

the offsets obtained from Equation 39 on the basis that these are

independent of the baseline estimate from Equation 33, which can

be replaced by an experimental value of ω00 if desired. We find

that the frequency offsets obtained from Equation 39 are 1.4, 1.8,

and 1.9 Hz for the 1-1, 10, and 11 modes, respectively, which are

within ∼ 0.1 Hz of those obtained from the full numerical analysis

of Gabay et al. (2018), which were 1.5, 1.7, and 1.8 Hz. Notably, the

differences between the frequencies of the l = 1 modes are much

smaller than their offsets from the 00 mode for these parameters.

Figure 3C shows the individual modal spectra of the first four

eigenmodes for the parameters shown in Table 1, which differ

somewhat from those used by Gabay et al. (2018). The l = 0

eigenmode has a greater overall power than the l = 1 modes. The

alpha frequency of the u1−1 mode is shifted upward by around 0.7

Hz from that of the uniform mode, and the frequency offsets for

the u10 and u11 modes by around 0.9 and 1 Hz, respectively. This

figure illustrates the k-effect on the alpha frequency shift. The next

section presents another effect on the alpha frequency, which is the

non-uniformity in the corticothalamic loop delay (τ -effect).

3.2 Nonuniform corticothalamic loop
delay (τ-e�ect)

We must still estimate the effects of non-uniformities in loop

delays onmodal alpha frequencies. In this section, we do this on the

assumption that changes in frequency are small relative to the alpha

frequency in the l = 0 mode and treat them as additive. Moreover,

we approximate the loop delay for each mode by the expectation

value of the local delay τ (r) in that mode when we generalize τ

to have an r dependence. This corresponds to neglecting mode

coupling (O’Connor and Robinson, 2004) by non-uniformities in
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τ (r), which is self-consistent so long as these non-uniformities are

not too large.

3.2.1 General analysis
To first order in perturbations relative to the mean value, we

can generalize τ0 in Equations 29, 30 to the form

τ (r) ≈ τ0 + τ1(r), (41)

where τ0 is the mean time delay, and τ1(r) is the perturbed

time delay. If we then consider the term containing the τ (r) in

Equation 30, then its expectation value for the corresponding mode

η is

〈η|eiωτ (r)|η〉 ≈ 〈η|eiωτ0 [1+ iωτ1(r)]|η〉, (42)

= eiωτ0 [1+ iω〈η|τ1(r)|η〉], (43)

≈ exp[iω(τ0 + 〈η|τ1(r)|η〉], (44)

= exp[iω〈η|τ (r)|η〉]. (45)

Here we have ignored second-order terms and have used the

Dirac notation

〈η|g(r)|η〉 =
∫

|uη(r)|2g(r)d2r,

to represent the expectation value of an arbitrary square-integrable

function g(r) in the mode η.

Assuming that other terms in Equation 30 are little changed

from their values in the uniform mode, the phase of the cyclic term

in Equation 30 at the modal alpha peak will be very nearly the same

as in the uniform mode. Therefore, if we write the alpha frequency

of mode η as ωη = ω00 +1ωη , to first order it will satisfy

(ω0 +1ωη)〈η|τ (r)|η〉 = ω0τ0, (46)

whence

ω0τ0 +1ωητ0 + ω0〈η|τ1(r)|η〉 = ω0τ0, (47)

again to first order. Hence,

1ωη = −ω0
〈η|τ1(r)|η〉

τ0
. (48)

This shift must be added to the corresponding frequency found

in Section 3.1, since we are working only to first order.

3.2.2 Spherical cortex
To estimate the τ -effect on the alpha frequency we need

to calculate the expectation values in Equation 45. To illustrate

the ideas, we start with the approximation of a spherical cortex;

while the following subsection treats the general case of a

convoluted cortex.

Assuming a spherical cortex, the spatial eigenmodes will be the

spherical harmonics (Maximon, 2010), hence, we can expand the

time delay for a spherical brain surface in terms of the spherical

harmonics, giving

τ (r) =
∑

lm

almYlm, (49)

= a00Y00 +
1
∑

m=−1

a1mY1m +
2
∑

m=−2

a2mY2m + . . . , (50)

where we have omitted arguments of the Ylm for compactness and

the alm are the real-valued expansion coefficients

alm =
∫

τ (r)Ylm d�, (51)

where d� = sinϑdϑ dϕ in spherical coordinates.

If we consider only the first nine eigenmodes (l ≤ 2), we get

τ (r) =
2
∑

l=0

l
∑

m=−l

almYlm = a00Y00 + τ1(r), (52)

where

τ1(r) ≈
1
∑

m=−1

a1mY1m +
2
∑

m=−2

a2mY2m. (53)

We then have

〈τ1〉η = 〈η|τ1(r)|η〉. (54)

If we now let η denote a mode labeled LM, we can then write

〈τ1〉LM = 〈LM|τ1(r)|LM〉, (55)

=
∫

Y∗
LMτ1(r)YLMd�, (56)

=
∫

Y∗
LM





2
∑

l=0

l
∑

m=−l

almYlm



YLMd�, (57)

=
2
∑

l=0

l
∑

m=−l

ILMlm alm, (58)

where the individual contribution to the delay is

ILMlm =
∫

Y∗
LMYlmYLMd�. (59)

Hence,

〈τ1〉η = a1−1I
η
1−1 + a10I

η
10 + a11I

η
11 + a2−2I

η
2−2

+a2−1I
η
2−1 + a20I

η
20 + a21I

η
21 + a22I

η
22. (60)

Note that there is no 00 term in Equation 60 because this is

already included in the mean value of τ .

The above integrals can be evaluated analytically in terms of

the Wigner 3j symbols, which also arise in treating coupled angular

momenta in quantum systems, such that in spherical coordinates

∫ 2π

0

∫ π

0
YL1M1 (ϑ ,ϕ)Ylm(ϑ ,ϕ)YL2M2 (ϑ ,ϕ) sinϑdϑdϕ

=
[

(2L1 + 1)(2l+ 1)(2L2 + 1)

4π

]1/2
(

L1 l L2
0 0 0

)(

L1 l L2
M1 m M2

)

,

(61)
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where

(

L1 l L2
0 0 0

)

and

(

L1 l L2
M1 m M2

)

are 3j symbols (Maximon,

2010). Therefore, we can find 〈τ1〉η for all the eigenmodes in

terms of the coefficients alm. Table 2 shows the values of the

integrals ILM
lm

in Equation 59 for the first nine spherical harmonics.

Because the Y∗
LMYLM part of the integrand in Equation 59 is

always even in ϑ and ϕ, only an even middle part Ylm can give

a nonzero result for the sphere. Note that the l = 0 mode is

not affected by the perturbations from the other eigenmodes, and

its corresponding integral gives zero by definition; hence, all the

integrals in Equation 60 vanish except the I
η
20, as seen in Table 2.

Those integrals are identically zero because they involve integration

of an antisymmetric function over a symmetric domain in ϑ and/or

ϕ. Therefore, in the spherical case, Equation 60 can be simplified to

〈τ1〉η = a20I
η
20. (62)

3.2.3 Convoluted cortex
As noted in Section 2.1.2, the human cerebral cortex can be

approximated as a highly convoluted sheet, albeit with a geometry

that makes computational analysis and visualization difficult.

However, the methods described there enable a mapping to a

spherical surface that allows a coordinate system to be established

for use in calculation and visualization.

On a sphere, the Y10 and Y11 modes have nodal lines that

intersect at the north and south poles (i.e., ϑ = 0, 180◦,

respectively). In our framework, we define the north pole on

the inflated sphere to be the intersection of the corresponding

nodal lines; however, these points do not occur at the north

and south poles of the Freesurfer coordinate system seen in

Figure 2B. Accordingly, we define a new coordinate system by

rotating the Freesurfer coordinate system on the inflated cortex

to place the north pole at the appropriate intersection, as seen

in Figure 2C. The rotated coordinate system is more efficient

because (i) in the limiting case that the cortex is actually a

sphere (i.e., no inflation required), the cortical eigenmodes will

correspond exactly to the spherical harmonics, rather than linear

combinations thereof, which greatly simplifies calculations; and

(ii) the low-order convoluted modes are closely related to the

spherical harmonics (Robinson et al., 2016; Gabay and Robinson,

2017), so corresponding simplifications are also attained in this

case. In contrast, if we were to use the Freesurfer coordinate

system, the eigenmodes even of a spherical cortex would no longer

be the spherical harmonics, but a rotated version of them, such

that each spherical eigenmode Y ′
lm

is a linear combination of

the spherical harmonics Ylm′ where m′ varies between −l and

l. Consequently, evaluating the integrals of Equation 59 for the

corresponding first nine spherical eigenmodes yields (Table 3) in

Freesurfer coordinates, which has many more nonzero entries

than Table 2. Interestingly, similarly to the spherical cortex case in

Section 3.2.2, the perturbation components from the l = 1 modes

have no effect on these nine eigenmodes. This is due the fact that

coordinate rotation preserves antisymmetry for each l = 1 mode,

but not for individual l = 2 modes, which yields many nonzero

entries in the table.

Returning to the general case of real eigenmodes ulm, these

modes reproduce the real spherical harmonics as the amount

of cortical convolution is artificially reduced via a continuous

mapping from convoluted cortex to sphere via intermediate shapes

(Robinson et al., 2016; Gabay et al., 2018). We can express τ (r) in

terms of the eigenmodes such that

τ (r) =
∑

lm

almulm, (63)

= a00u00 +
1
∑

m=−1

a1mu1m +
2
∑

m=−2

a2mu2m + . . . , (64)

where the coefficients alm are real. Hence,

〈τ1(r)〉LM =
∫

u∗LM

(

∑

lm

almulm

)

uLM d�, (65)

=
∑

lm

almJ
LM
lm , (66)

where

JLMlm =
∫

|uLM|2ulm d�, (67)

since the eigenmodes here are real. We can evaluate these integrals

numerically, and have checked the accuracy of our code in the

spherical case. Table 4 shows the JLM
lm

from Equation 67 for the first

nine modes, corresponding to those in Tables 2, 3 in the spherical

limit. Notably, Table 4 is full except for its 00 row, unlike Tables 2,

3, because of symmetry breaking by the convoluted cortical surface,

except that the uniform mode is unaffected because the relevant

integrals vanish identically. Some integrals are much smaller than

others, the larger ones being of order 0.1, as in Table 2, whereas the

smaller are of order 0.001. Those integrands with approximately

odd front-back parity tend to give near-zero integrals, as for a

sphere where this antisymmetry is exact. Indeed, our numerical

analysis reproduces the analytic spherical result in the relevant

limit. The effects on the first four eigenmodes caused by the first

four perturbation components are represented by bold entries in

Tables 2–4. Hence, focusing only on this section of each table,

we notice that the integrals vanish in the spherical limit for both

unrotated and rotated cases; however, this part of the table is full

for the convoluted cortex as a result of symmetry breaking.

It has been argued that the main variation of the

corticothalamic time delay within a hemisphere will be from

front to back, with a lower value in the occipital region (Robinson

et al., 2003; Chiang et al., 2008). Looking at Figure 2, the two

modes that vary mainly front-to-back, as opposed to left-to-right,

are u1−1 and u10 modes, whence we can approximate τ1 as a linear

combination of these modes such that

τ1(r) = B
[

u1−1(r) cosχ + u10(r) sinχ
]

, (68)

where χ is a mixing angle. We can then rewrite Equation 65 as

〈τ1(r)〉LM = −B

[

JLM1−1 cosχ + JLM10 sinχ

]

, (69)

where χ ≈ 30◦ in this case, and B is a positive coefficient.

We choose B in Equation 69 to give illustrative extremal values

of +8 and −8 ms for τ1(r) at front and back of the head,
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TABLE 2 Integrals used in expansions of quantities on a spherical cortical surface in standard spherical coordinates.

Mode a�ected (YLM) Perturbation component (Ylm)

Y1−1 Y10 Y11 Y2−2 Y2−1 Y20 Y21 Y22

Y00 0 0 0 0 0 0 0 0

Y1−1 0 0 0 0 0 −0.126 0 0

Y10 0 0 0 0 0 0.252 0 0

Y11 0 0 0 0 0 −0.126 0 0

Y2−2 0 0 0 0 0 −0.180 0 0

Y2−1 0 0 0 0 0 0.090 0 0

Y20 0 0 0 0 0 0.180 0 0

Y21 0 0 0 0 0 0.090 0 0

Y22 0 0 0 0 0 −0.180 0 0

Values of integrals ILM
lm

in Equation 59 for the first nine spherical harmonics. The rows in the body of the table correspond to the spherical eigenmodes YLM (leftmost column) affected by the

perturbation components from the eigenmodes Ylm (top row). The bold numbers correspond to the effect of the perturbations from each of the l = 1 modes on each of the L = 1 modes.

TABLE 3 Integrals used in expansions of quantities on a spherical cortical surface using Freesurfer coordinates.

Mode a�ected (Y ′
LM) Perturbation component (Ylm)

Y ′
1−1 Y ′

10 Y ′
11 Y ′

2−2 Y ′
2−1 Y ′

20 Y ′
21 Y ′

22

Y ′
00 0 0 0 0 0 0 0 0

Y ′
1−1 0 0 0 0.160 −0.180 −0.033 0.040 −0.078

Y ′
10 0 0 0 −0.150 0.065 0.033 −0.140 −0.130

Y ′
11 0 0 0 −0.004 0.110 0.0004 0.100 0.200

Y ′
2−2 0 0 0 0.010 −0.095 0.0002 −0.120 −0.100

Y ′
2−1 0 0 0 −0.0003 −0.180 −0.002 0.014 0.011

Y ′
20 0 0 0 0.002 0.180 0.002 −0.012 0.006

Y ′
21 0 0 0 −0.006 0.085 −0.004 0.130 −0.095

Y ′
22 0 0 0 −0.005 0.009 0.004 −0.014 0.180

Values of integrals ILM
lm

in Equation 59 in Freesurfer coordinates for the first nine spherical eigenmodes, such that the rows in the body of the table correspond to the spherical eigenmodes Y ′
LM

(leftmost column) affected by the perturbation components from the eigenmodes Y ′
lm

(top row). The bold numbers correspond to the effect of the perturbations from each of the l = 1 modes

on each of the L = 1 modes.

respectively, (i.e., τ1max = 0.1τ0). The numerical alpha frequency

offset for each eigenmode is then estimated numerically by plotting

the individual power spectra for each of the l = 1 and l = 2

eigenmodes when each eigenmode has its respective time delay, as

seen in Figure 4. These numerical values are compared with their

corresponding approximated values from Equation 48, as shown in

Table 5. We find that u11 and u2−2 are the modes least affected by

the variation of the time delay; u1−1 has a small alpha frequency

shift of around 0.05 Hz from the original mode and a slightly

higher power, while u10 has an alpha frequency shift of around

−0.05 Hz from the original mode and a slightly lower power. The

l = 2 modes are the most affected, such that u20 has the highest

alpha frequency shift of about 0.1 Hz. The average percentage

difference between the numerical calculation of the alpha frequency

shift shown in Figure 4 and the the corresponding approximated

values in Table 6 is about 16%, with a smaller difference for the

l = 1 modes than that for the l = 2 modes. The residual

differences result from the omission of second order perturbation

terms in going from Equation 42 to the approximation given

by Equation 45.

For the above parameters, the largest shift in frequency caused

by the variation in the time delay does not exceed 0.12 Hz;

hence, to get the typically observed 1–2 Hz alpha frequency shift

(Chiang et al., 2008, 2011) we would need to increase the assumed

perturbation in the time delay to about 100% of its value in the

uniform case, which is unrealistic. Hence, the k-effect is dominant

over the τ -effect, causing shifts of about ∼ 1 Hz between the

uniform and the other brain modes. This implies that the τ -effect

mechanism proposed by Robinson et al. (2003) and Chiang et al.

(2008) is unlikely to account for the observed shifts. They argued

that the largest effective values of τ would be of the same order

as its maximal value, whereas we find here that cancelation of

positive and negative contributions typically reduces it by an order

of magnitude, as seen in the second column of Figure 5.
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TABLE 4 Integrals used in expansions of quantities on the nominal Freesurfer convoluted cortical surface using Freesurfer coordinates.

Mode a�ected Perturbation component (ulm)

uLM u1−1 u10 u11 u2−2 u2−1 u20 u21 u22

u00 0 0 0 0 0 0 0 0

u1−1 0.008 0.050 −0.110 −0.220 0.160 0.084 −0.025 0.0004

u10 −0.045 −0.025 0.089 0.170 −0.022 0.011 −0.210 0.160

u11 −0.018 −0.002 0.082 0.020 −0.130 −0.056 0.160 −0.120

u2−2 −0.027 −0.001 −0.180 0.009 0.020 −0.082 −0.022 0.050

u2−1 0.075 −0.022 0.052 −0.011 0.130 0.034 −0.012 −0.044

u20 0.058 0.092 0.015 −0.076 −0.003 0.008 0.095 −0.090

u21 0.072 0.030 0.109 0.086 −0.094 0.075 −0.057 0.030

u22 −0.088 −0.030 −0.045 0.111 −0.098 −0.065 −0.019 0.044

Values of integrals JLM
lm

in Equation 67 for the first nine eigenmodes on a convoluted cortex, such that the rows in the body of the table correspond to the eigenmodes uLM (leftmost column)

affected by the perturbation components from the eigenmodes ulm (top row). The bold numbers correspond to the effect of the perturbations from each of the l = 1 modes on each of the L = 1

modes.

TABLE 5 Values of the expected variation in corticothalamic time delay

〈LM|τ1(r)|LM〉 in mode LM a�ected by the perturbation frommode lm

from Equation 65, and the corresponding approximated alpha frequency

shift 1fapp from Equation 48 as well as the numerical alpha frequency shift

1fnum for each of the first nine eigenmodes when τ1max = 8 ms.

LM 〈LM|τ1(r)|LM〉
(ms)

1fapp (Hz) 1fnum
(Hz)

00 0 0 0

1− 1 −0.4 0.04 0.05

10 0.6 −0.06 −0.05

11 0.2 −0.02 −0.02

2− 2 0.3 −0.03 −0.03

2− 1 −0.7 0.07 0.05

20 −1.2 0.12 0.08

21 −1.0 0.10 0.07

22 1.1 −0.11 −0.08

3.3 Sharpness of the alpha peak

The observability of a clear alpha rhythm is largely determined

by the sharpness of the alpha spectral peak. From Equations 14, 25

the power spectrum of mode η can be expressed as

Pη(r,ω) =
|uη(r)|2|A(ω)|2

|k2ηr2ee + q2(ω)r2ee|2
(70)

where A(ω) is a function of ω resulted after substituting

Equation 14 into Equation 25. The denominator in Equation 70 is

equal to the square of the distance |AηCη| in Figure 3B.

If we let |AηCη| = Rη and |AηBη| = Y (here, Y is assumed to

be mode-independent, so it only depends on the frequency), then

at maximum alpha power

Pη(r,ωα) ≈
|uη(r)|2|A(ωα)|2

|Rη − Y|2
. (71)

Likewise, the minimum alpha power is reached∼180◦ away on

the q2(ω)r2ee loop such that

Pη(r,ωα) ≈
|uη(r)|2|A(ωα)|2

|Rη + Y|2
. (72)

Hence, we can define the quality factor ρ as the ratio between

the maximum alpha power to the minimum alpha power at the

opposite side of the loop; i.e.,

ρη ≈
∣

∣

∣

∣

Rη + Y

Rη − Y

∣

∣

∣

∣

2

(73)

The quality factor reflects the sharpness of the alpha peak.

Hence, for sharp peaks where Y ≈ Rη

ρη ≈
4R2η

(Rη − Y)2
. (74)

We can also estimate the half width of the peak at half

maximum by noting that the power is dominated by a factor

proportional to |k2η+q2(ω)|−2, when this factor doubles, the power

halves. Reference to Figure 3D shows that this occurs when the

distance from the relevant pole increases to ∼
√
2 of its minimum

value, so ξ ≈ 45◦ when |Rη − Y| ≪ Y . The cyclic phase ωτ0 thus

differs from its value at the peak by an amount ψ , with

Y sinψ ≈ |Rη − Y|. (75)

If δω is the half width at half maximum, then ψ ≈ τ0δω. If ψ is

small, then

δωη ≈
1

τ0

|Rη − Y|
Y

, (76)

Our numerical results imply that a better approximation is

obtained in the present case by multiplying Equation 76 by around

0.5, to give

δωη ≈
0.5

τ0

|Rη − Y|
Y

. (77)
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FIGURE 4

Individual modal spectra for the l = 1 and l = 2 eigenmodes, as labeled, including (red curves) and omitting (blue curves) the variation in the

corticothalamic time delay τ for the parameters given in Table 1 and τ1max = 8 ms (there is no e�ect on the l = 0 mode). The top leftmost figure

shows the variation in the assumed corticothalamic time delay over the cortical surface.

This difference is due to the assumed inequality |Rη−Y|≪Y not

being well-satisfied, as in the case shown in Figure 3D, for example.

A sharp peak occurs when Rη ≈ Y , and a broader peak is obtained

when Y decreases.

3.4 Mode-dependent gains (G-e�ect)

In previous analyzes, the loop gains X and Y in Equation 30

have been assumed to be mode-independent (Robinson et al., 2004;
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Abeysuriya et al., 2014). However, this need not be the case, so long

as the following modal version of the relevant stability criterion is

satisfied (Robinson et al., 1997; Abeysuriya et al., 2014):

Xη(0)+ Yη(0) < 1+ k2ηr
2
ee. (78)

These gains can change relatively slowly between states of

arousal (Robinson et al., 2004; Abeysuriya et al., 2014, 2015;

Assadzadeh et al., 2023), or rapidly due to adaptation during

cognitive processes (Babaie-Janvier and Robinson, 2018, 2019,

2020; Robinson et al., 2021a; Babaie-Janvier et al., 2024), the latter

case being of most relevance here.

Because Y(ω) involves the spatially-dependent corticothalamic

gains, it varies spatially itself. Hence, we can expand Y(ω) in terms

of eigenmodes and use its expectation value for eachmode as we did

for τ (r) in Section 3.2, again neglecting mode-coupling induced by

these nonuniform perturbations. Then we find

Y(r) =
n
∑

lm

ylmulm (79)

and

〈η|Y(r)|η〉 =
n
∑

lm

ylmJ
LM
lm , (80)

where the JLM
lm

are the integrals given in Table 4, and the ylm are the

corresponding expansion coefficients.

Chiang et al. (2008) showed that the EEGs of a significant

number of individuals exhibit double alpha peaks that vary in

power between the back and front of the head. Replacing Y(ω)

in Equation 32 by the expectation value 〈η|Y(r)|η〉, we can then

estimate consistent expectation values of Ges and Gse that result in

the expected double alpha peak over the head without affecting the

stability of the system.

The variation of alpha power over the scalp tends to imply

that at least two modes are involved, because the 00 mode is

uniform. The main variation is fronto-occipital, with higher power

at electrodes of the International 10-20 system (Nunez, 1996;

Niedermeyer and Lopes da Silva, 1999) such as O1 than at Cz or

Fp1, whose locations are shown in Figure 5A. The approximate

coordinates (ϑ ,ϕ) of these electrodes in our coordinate system are

(81◦, 109◦) for O1, (48◦, 327◦) for Cz, (164◦, 329◦) for T3, and

(110◦, 264◦) for Fp1, and in the FreeSurfer coordinate system they

become (117◦, 82◦) for O1, (0◦, 180◦) for Cz, (112◦, 311◦) for T3,

and (79◦, 245◦) for Fp1.

Figure 5B shows the individual power spectra of the uniform

eigenmode (η = 00, blue curve) and second eigenmode (η = 1-

1, green curve), respectively, where both have default parameters

similar to those in previous studies, as listed in Table 1 and the

Default row in Table 6. We see clear frequency splitting of 0.9 Hz,

due to the k-effect discussed in Section 3.1 and consistent with

Equation 39, which gives 1.0 Hz for a brain hemisphere with area

AS = 0.07 m2 if k21−1R
2
S = 1.2 is used (Robinson et al., 2016). If we

integrate over space, as in Equation 28, the individual power spectra

must be summed to obtain the total spectrum P(ω). However, in

the Default case, the power in the 00 mode is so dominant that

only a single alpha peak results if the two are summed (not shown).

This implies that a second alpha peak can only be seen if the gain

of the 1-1 mode is increased relative to its default value. Indeed,

using the parameters from the Increased Gain case in Table 6, the

1-1 spectrum is enhanced (red curve) to the point that two peaks

are seen in the total spectrum (dashed curve). Notably, the new

corticothalamic gain parameters Ges and Gse for the 1-1 eigenmode

are increased by ∼ 14% and ∼ 35%, respectively, relative to their

default values. This can be explained via Equation 71, because a

small increase in the corticothalamic loop strength Y results in a

significant increase in the maximum alpha power (∝ |Rη − Y|−2

in the near-critical state when Rη ≈ Y and mode η is on the

verge of instability) and a corresponding decrease in the alpha

peak half width (Equation 77), both favoring the appearance of

a distinct second alpha peak. Changes of similar magnitude have

been inferred to occur between eyes-open and eyes-closed states

(Robinson et al., 2002; Abeysuriya et al., 2014), so they are realistic

in magnitude. A secondary effect of the enhanced 1-1 gain is that

the 1-1 peak frequency increases by ∼ 0.3 Hz relative to the

default case.

In Figure 5C we show the spectra P(r,ω) at positions r

corresponding to the O1, Cz, and Fp1 electrodes on the assumption

that the modes are driven in an uncorrelated manner so their

individual spectra simply add to give the total. This shows that there

is little variation between O1 and Fp1, but a decreased spectrum

around Cz, near where the 1-1 mode has a zero, as seen in Figure 2.

This topography does not correspond to experiment; as will be seen

below, the reason for the discrepancy proves to be the assumption

of completely uncorrelated excitation of the modes, which we relax

in later sections.

In order to illustrate how single and double alpha peaks depend

on parameters other than gains, we next use the parameters from

the Small Splitting parameters in Table 6. Specifically, we decrease

ree to 50mm, which decreases the frequency separation between the

00 and 1-1 peaks, in accord with Equation 39. Gains are also slightly

decreased in this example, with the result that P(ω) displays only a

single peak with a slight shoulder, as seen in Figure 5D. In Figure 5E

we see this shoulder in P(r,ω) at front and back of the scalp, but not

near Cz, where the 1-1 modal power is small. The shoulder is on the

low-frequency side in frontal regions, and the high-frequency side

in occipital ones, in line with the relative dominance of lower and

upper peaks, respectively. Figures 5F, G are in the same format as

5b and 5c, but with increased ree = 70 mm and slightly increased

gains (Large Splitting parameters in Table 6). In this case, two sharp

peaks separated by 1.1 Hz are clearly seen in P(ω) and in P(r,ω)

at all locations. In Figures 5C, E, G, the 00 peak’s contribution to

P(r,ω) is close to being spatially uniform, as expected, aside from

weak non-uniformities due to varying overlap with the tail of the

1-1 modal contribution. However, the spatial variation of the 1-

1 contribution is not consistent with experiment; we resolve this

point below.

Overall, we conclude from Figure 5 that (i) the first (η = 00,
uniform) eigenmode corresponds to the lower frequency alpha
peak when there are two peaks, while the second eigenmode

(η = 1-1) is involved in the higher frequency alpha peak or
contributes to the single-peak power if the frequency offset is

small; (ii) moderately enhanced 1-1 gain is required for this

mode to have a significant contribution; and (iii) the assumption

of the excitation of modes being completely uncorrelated

is incorrect.
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TABLE 6 Parameters used in Figures.

Case Figures Modes ree (mm) Ges Gse a1−1 a10 a11

All 5–8 00 * 0.77 7.77 — — —

Default 5B 1-1 60 0.77 7.77 1 0 0

Small Splitting 5D, E 1-1 50 0.82 9.8 1 0 0

Large Splitting 5F, G 1-1 70 0.98 11.3 1 0 0

Increased Gain 5B, C 1-1 60 0.88 10.5 1 0 0

Single Alpha 6 1-1 50 0.82 9.8 −0.08 0 0

Double Alpha 7 1-1,11 70 0.98 11.3 0.69 0 1.10

Mu 8B–D 10 50 0.82 9.8 0 −0.09 0

Tau 8F–H 11 50 0.82 9.8 0 0 0.32

The 00 mode has the parameters listed in the row labeled All in every case, except that the asterisk indicates that the same value of ree is to be used as for the other modes in each case listed in

subsequent rows. In other instances, the listed l = 1 modes have the parameters given. Parameters not shown are as in Table 1 and modes not listed are omitted from the case in question.

The need for the 1-1 gain to be increased moderately to see

a substantial contribution from this mode immediately suggests

a mechanism for alpha blocking: a similarly modest reduction in

the gain of a near-critical mode can produce a disproportionately

large reduction in its power by increasing the size of the resonant

denominator in Equation 71 and thus detuning the resonance. This

goes equally well for the 00 mode, a point that was previously noted

in connection with the blocking of alpha by eye-opening (Robinson

et al., 2002). Figure 5 implies that a∼ 10% decrease in the gains Ges

and Gse can result in a ∼70% reduction in the alpha power, which

is of the correct order to account for the ∼ 80% alpha suppression

observed by Hari and Puce (2017), for example.

Based on the definition of posterior alpha blocking that is

a suppression in the alpha rhythm that occurs with attention,

especially visual stimuli or mental effort (Nunez et al., 1978;

Niedermeyer and Lopes da Silva, 1999; Shaw, 2003), we thus argue

that these triggers of blocking can be linked to reduction in the gain.

This is also consistent with Babaie-Janvier and Robinson (2020),

who found that attention to stimuli during evoked responses is

associated with corticothalamic gain reductions that tend to reduce

alpha, but only considered the 00 mode.

3.5 Alpha topography

Having demonstrated that we can model the alpha frequency

offsets and blocking observed in EEGs, we now consider the

topography of the alpha rhythm in detail. We note that this is the

topography of φee at the cortical surface, which approximates the

source of EEG and MEG. Before reaching the scalp, the resulting

fields are distorted by the effects of cortical folding and electric

fields are smoothed by volume conduction. However, the effects of

volume condition are least for the lowest modes considered here,

and do not affect MEG.

It has long been known that the alpha peak is concentrated in

occipital regions, but is observable across the whole scalp (Nunez

et al., 1978; Niedermeyer and Lopes da Silva, 1999; Shaw, 2003).

Based on the work of Chiang et al. (2008), a single alpha peak is

observed in a significant number of people, such that its power

usually decreases from the back to the front of the head, with a

typical ratio of about 1.6:1. However, when split alpha peaks are

observed, a number of other key features are seen (Chiang et al.,

2011): (i) The frequency of each peak is constant across the scalp;

(ii) the sharpness of both peaks can be similar; (iii) the lower

frequency peak varies with a typical ratio of about 1.4:1 between

the back and front of the head; and (iv) the power in the higher

frequency peak is highest in the occipital regions, but falls toward

the front with a typical ratio of about 1.8:1 (e.g., see Figure 9 of

Chiang et al., 2008).

3.5.1 Alpha power topography via eigenmode
expansion

Equations 14, 25 show that the frequency variation of the

alpha power is dominated by resonant denominators in the

transfer functions T(kη ,ω) of the form k2η + q2(ω). We

can write

P(r,ω) =
∑

η

∑

µ

uη(r)T(kη ,ω)Cηµ(ω)T
∗(kµ,ω)uµ(r), (81)

Cηµ(ω) = 〈φsn(kη ,ω)φ∗sn(kµ,ω)〉. (82)

In what follows, we restrict η and µ to the first four modes 00,

1-1, 10, and 11, which are the easiest to excite and thus dominate

brain activity (Nunez et al., 2001; Robinson et al., 2001, 2016). In

the case of excitation of single modes, these spectra correspond to

the four curves shown in Figure 3C, where η = 00 corresponds to

the uniform mode, η = 1-1 mainly corresponds to the frontal-to-

occipital variation of activity, η = 10 predominantly corresponds

to the dorsal-to-ventral (top-to-bottom) variation of activity, and

η = 11 mainly corresponds to the lateral-to-medial (left-to-right

in left hemisphere) variation. Note that in Figure 3C all the modes

had the same gains as the 00 mode (Table 1), whereas for each

case below we use the corresponding new gain parameters for the

relevant l=1 mode(s) according to Table 6 (lines 2–8), so the peaks

are larger.

3.5.2 Single alpha peak
In the case in which there is a single alpha peak, we now

investigate several possibilities for how it is generated. The first
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FIGURE 5

Single and double alpha spectral peaks. (A) Approximate locations of the O1, Fp1, Cz, and T3 electrodes; the locations of primary visual cortex (V1),

primary auditory cortex (A), and primary motor cortex (M); and the nodal lines of the 1-1, 10, and 11 modes, which follow the boundaries between

the colored regions. (B) Individual modal spectra for η = 00 (blue) and η = 1-1 (green) for the Default parameters in Table 6. The red curve shows the

1-1 spectrum for the Increased Gain case and the dashed curve is the resulting total spectrum P(ω). (C) The corresponding power spectra P(r,ω) at

O1 (blue), Fp1 (red), and Cz (green) electrodes for the Increased Gain case. (D) Same as (B) but for the Small Splitting parameters in Table 6. (E) Same

as (C) but for the Small Splitting parameters. (F) Same as (B) but for the Large Splitting parameters in Table 6. (G) Same as (C) but for the Large

Splitting parameters.

such possibility is that only the uniform mode (η = 00) is

significantly excited, with the others suppressed by the relatively

large denominators of their T(kη ,ω) in Equations 70, 71 if Y(ω)

does not depend on η. In this case, the power would be spatially

uniform, which is contrary to the observation of substantial front-

to-back variation of alpha power that is commonly observed when
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there is a single peak, as in the example in Figure 7B of Chiang et al.

(2008), who found a typical power ratio of about 1.6:1. However, the

possibility that volume conduction attenuates alpha more strongly

in frontal regions cannot be ruled out at this point, an issue we

discuss further below.

The next possibility is that some or all of the next three non-

uniform modes are also excited while overlapping in frequency,

so that only a single peak is seen. If the excitation of these modes

were random-phase, the resulting power distribution would be

almost symmetric between front and back of the head, as seen in

Figures 6A–C for the Single Alpha parameters in Table 6, because

the power spectrum then depends on the squares of the eigenmodes

via Equation 70. Thus, uncorrelated excitation cannot account for

the observed concentration of alpha in the occipital regions.

For the alpha power to be strongest in occipital regions, at

least one of the first three non-uniform modes together with the

uniform eigenmode must be excited such that they are in phase at

the back of the head and out of phase at the front. This is consistent

with the fact that variations in gains and other quantities break

any residual fronto-occipital symmetry and favor modes whose

excitations have the same sign in the relevant sensory region, in

this case V1. (This is analogous to the situation when a violin string

is plucked: modes are excited with the same sign at the point of

plucking.) We analytically approximate this in-phase dynamics of

the eigenmodes by setting T(kη ,ω) = aηT(0,ω) in the vicinity

of their common peak, which approximates the spectral shape of

each transfer function as being the same, with aη allowing for their

amplitudes relative to the uniform mode. Hence, Cην = aµaη in

Equation 81 for these modes and Equation 81 yields

P(r,ω) ≈ |T(0,ω)|2[u00(r)+a1−1u1−1(r)+a10u10(r)+a11u11(r)]
2.

(83)

We can obtain useful insight into Equation 83 by considering

the idealized case of a truly spherical cortex such that the

modes align spatially as closely as possible with those of the

convoluted cortex, as discussed in Section 3.2. In this case, the

spherical harmonics are the eigenmodes, and Equation 83 can be

simplified to

P(r,ω) ≈ |T(0,ω)|2
4π

[

1+ a1−1
√
3 sinϑ sinϕ + a10

√
3 cosϑ + a11

√
3 sinϑ cosϕ

]2 ;
(84)

this form provides valuable guidance in the convoluted-cortex case

because of the similarity of the eigenmodes discussed in Section 3.2.

In obtaining Equation 84 we have used

u00 =
√

1

4π
, (85)

u1−1 =
√

3

4π
sinϑ sinϕ, (86)

u10 =
√

3

4π
cosϑ , (87)

u11 =
√

3

4π
sinϑ cosϕ. (88)

Themodesmost strongly driven by visual stimuli are 00 and 1-1

because neither has a zero in or near V1. In this case, a10 = a11 = 0

in Equations 83, 84, as noted in Table 6, and the observed ratio of

power at frontal and occipital electrodes can be used to estimate

a1−1. For a convoluted cortex, the power ratio can be expressed by

P(rO1,ω)

P(rFp1,ω)
≈
[

u00(rO1)+ a1−1u1−1(rO1)

u00(rFp1)+ a1−1u1−1(rFp1)

]2

; (89)

for a spherical cortex, this result simplifies to

P(rO1,ω)

P(rFp1,ω)
≈

[

1+ a1−1
√
3 sinϑO1 sinϕO1

1+ a1−1
√
3 sinϑFp1 sinϕFp1

]2

. (90)

Thus, the power ratio depends on the locations of the electrodes

and the amplitudes of the eigenmodes at those points.

Upon substituting a typical power ratio of 1.6:1 into

Equation 90, using the electrode coordinates listed in Section 3.4,

and solving for a1−1, we find a1−1 = −0.08 in this case, which

is small compared to the unit amplitude of the 00 mode. The

negative sign of a1−1 is expected because Figure 2 shows that the

1-1 eigenmode has a front to back variation with the positive

region at the front, but this is only determined to within an overall

sign change. Hence, if superposed with the first eigenmode in

Equation 83 without a sign reversal, the resultant alpha power

would be stronger in front, which is contrary to experiment.

Thus, the negative sign in a1−1 reverses the polarity of the 1-1

eigenmode resulting in the expected concentration of power in

occipital regions as it places the modes in-phase at the back of the

head and out of phase at the front when driven together by the same

external inputs. Figures 6D–F demonstrate that this combination

of the first two eigenmodes (00 and 1-1) for a convoluted cortical

surface yields power spectra with a single alpha peak such that the

alpha power is higher at O1 than Fp1, with a ratio consistent with

the experimental power spectra in Figure 7B of Chiang et al. (2008).

The corresponding cortical topography of the alpha power is shown

in Figures 6D, E, which clearly show the decrease of the alpha power

from the back to the front of the head. The O1 and Fp1 spectra in

Figure 6F show that the peak power differs by a factor of ∼ 1.6 in

this example, consistent with typical values from experiment.

3.5.3 Two alpha peaks
There are several possibilities for how two alpha peaks might

be generated, but in all cases the uniform 00 mode must be excited

to account for the low frequency peak. In addition to this, the first

possibility is that one of the l = 1 modes (i.e., a mode with η = lm

and l = 1) is significantly excited, resulting in a second peak with

higher alpha frequency (based chiefly on the k-effect as discussed

earlier in Section 3.1). A third possibility is that two or all of the

l = 1 modes, overlapping in frequency, are excited to produce the

higher frequency peak.

To see two distinct alpha peaks, the widths of their peaks must

be less than about half their separation. Hence, for peaks that are

non-overlapping in frequency, if ω00 < ω1−1 ≈ ω10 ≈ ω11, then

P(r,ω) ≈ |T(0,ω)|2

[u0(r)]2 + |T(k1−1,ω)|2[a1−1u1−1(r)+ a10u10(r)+ a11u11(r)]2,

(91)
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FIGURE 6

Overall single-peak power topography and spectra for uncorrelated and correlated eigenmodes, using the Single Alpha parameters in Table 6. (A)

Lateral view of the cortical topography of power at the alpha peak for uncorrelated eigenmodes, from Equation 91. (B) Medial view corresponding to

(A). (C) Power spectra corresponding to (A) at the Fp1 (red curve) and O1 (blue curve) electrodes. (D) Lateral view of the cortical topography of

power at the alpha peak for correlated eigenmodes, from Equation 83. (E) Medial view corresponding to (D). (F) Power spectra corresponding to (D)

at the Fp1 (red curve) and O1 (blue curve) electrodes.

where we have approximated the frequency dependence of the

transfer functions of the second to fourth modes as being the same

because of the small frequency differences between l = 1 modes

obtained from Equation 39; amplitude differences are absorbed

into the alm. In essence, the non-overlapping 00 and l = 1 peaks

can be treated as being mutually uncorrelated, so long as the

observation time is long enough to distinguish their frequencies.

In the spherical approximation, Equation 91 simplifies to

P(r,ω) ≈ |T(0,ω)|2
4π + 3|T(k1−1 ,ω)|2

4π

[a1−1 sinϑ sinϕ + a10 cosϑ + a11 sinϑ cosϕ]2. (92)

We start with the simplest case in which only the first two
modes are excited, and we set a10 = a11 = 0 in Equations 87, 88.
Increasing the gains for the 1-1 eigenmode to the values for the
Double Alpha case in Table 6 yields a power spectrum with two

alpha peaks as in Section 3.6.3. However, the upper peak’s alpha

power at points O1 and Fp1 is roughly the same in this case, so

the combination of just the first two eigenmodes is not sufficient to

reproduce the observed front-to-back variation of the alpha power

in the upper peak.

Next, by analogy with the mechanism that produced fronto-

occipital variation in the power for a single alpha peak, we consider

the case when two modes contribute to the upper alpha peak.

Figure 5A shows that V1 does not lie on the nodal line of the 11

mode, so we add a contribution from the 11 mode using the Double

Alpha parameters in Table 6. Figure 7A shows that the resulting

power spectrum has two peaks with frequencies of around 8.4 and

9.1 Hz. The upper peak has a power ratio of about 1.85:1 between

the O1 and Fp1 electrodes, which reproduces the typical value

in Figure 9 of Chiang et al. (2008). Figures 7B, C show that the

lower-frequency peak also has a front-to-back variation of alpha
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power but with a smaller ratio of about 1.15:1, which less than the

typical 1.4:1 ratio from Figure 7C of Chiang et al. (2008) and is

reflected in the relatively uniform topography seen in Figures 7B,

C here; however, we note that our parameters can be adjusted to

give somewhat larger or smaller non-uniformities, so it is only the

order of magnitude of the deviation from uniformity that is at issue

here. There is a weak spatial variation that arises from the tail of the

upper peak having a small and variable overlap with the lower peak,

leading to a slight occipital power enhancement.

The higher experimental front-to-back variation of power seen

by Chiang et al. (2008) at the lower alpha peak may be due to the

variation of the skull and scalp thicknesses between the back and

the front of the head (Mahinda and Murty, 2009; Thulung et al.,

2019), which in turn affect the measured EEG signal because of

attenuation by volume conduction; alternatively, neurons may be

less efficient at generating EEG signals at the front of the head

because of differences in size or alignment (Nunez and Srinivasan,

2006). If the lower peak is assumed to be due to the 00 mode, its

power variation provides a measure of these combined effects. This

would imply that the power variation at the cortex would be only

1.15/1.4 ≈ 0.82 as large as that at the scalp. So typical single-peak

power variations in the previous section would be reduced from 1.6

to around 1.3 at the cortex and the upper-peak variation would be

only around 1.5 rather than 1.85. This would reduce the required

amplitudes a1m of the l = 1 modes accordingly, but we do not

recalculate these values here because such refinements would add

complexity without affecting the main conclusions.

The power topography at the upper alpha peak is shown in

Figures 7D, E, which demonstrate strong occipital localization of

the power, with a slight frontal enhancement and very little power

near the temporal and central electrodes, which lie outside V1 (dark

blue area). The latter feature was not seen in the example shown in

Figure 7 of Chiang et al. (2008), which implies some involvement

of the 10 mode, which peaks in that region.

3.6 Mu rhythm

The rolandic (or central) mu rhythm is a rhythm that lies within

the alpha band. The mu rhythm is classically defined as an 8–12 Hz

rhythm that is strongest over the central sensorimotor regions of

the head, labeled M in Figure 8A, and is suppressed or blocked by

movement (Gastaut et al., 1952; Pfurtscheller and Aranibar, 1979;

McFarland et al., 2000; Garakh et al., 2020).

The single-peak alpha rhythm results in Section 3.5.2 showed

that the uniform eigenmode together with a mode that has a front-

to-back variation are sufficient to reproduce the corresponding

occipito-frontal alpha topography if the two modes are in phase in

the relevant sensory region. Hence, we use an analogous eigenmode

superposition to reproduce the concentration of mu power in

central regions near the sensorimotor cortex.

If the uniform eigenmode (η = 00) is excited together with

an l = 1 eigenmode, the latter must have η = 10 in order

to account for the variation in mu power because this mode

has primarily a dorso-ventral variation, as shown in Figure 2F.

Hence, setting a1−1 = a11 = 0 in Equation 83 with a10 =
−0.09, as for the Mu parameters in Table 6, yields the topography

shown in Figures 8B, C in lateral and medial views, respectively.

These figures show a dorso-ventral variation that reproduces the

experimentally observed concentration of mu power in regions

near the sensorimotor cortex (Garakh et al., 2020). Note that the

negative sign in a10 reverses the polarity of the 10 eigenmode,

resulting in the expected concentration of power in dorsal regions

because it places the modes in-phase at the top of the head and out

of phase at the bottom when driven together in the somatosensory

region, adjacent to the primary motor cortex. Figure 8D shows

a power ratio of circa 1.6:1 between the Cz and T3 electrodes.

Reduction of modal gains Ges and Gse by∼ 10% results in a∼ 70%

reduction in mu power near Cz, consistent with the ∼ 60% mu

suppression observed in the experiment by Van Leeuwen et al.

(1978).

3.7 Tau rhythm

Another rhythmwithin the alpha band is the tau rhythm, which

is typically an 8–10 Hz rhythm detected by EEG and MEG over the

temporal regions of the head, and which is suppressed or blocked

by auditory stimuli, which are received at the auditory cortex,

marked A in Figure 8E (Tiihonen et al., 1991; Yokosawa et al.,

2020). As in previous sections, we can superpose two eigenmodes

to reproduce the concentration of tau power in temporal regions

near the auditory cortex.

We again argue that the uniform eigenmode (η = 00) is excited

together with an l = 1 eigenmode. Knowing that the l = 1

eigenmode should contribute to the medio-lateral variation in tau

power implies that we should choose this mode to be η = 11, which

has a predominantly left-to-right variation as shown in Figure 2G.

Setting a1−1 = a10 = 0 in Equation 83 with a11 = 0.32, as

for the Tau parameters in Table 6, yields the topography shown

in Figures 8F, G in lateral and medial views, respectively. These

figures show amedio-lateral variation that reproduces the observed

concentration of tau power in temporal regions near the auditory

cortex and the T3 electrode, consistent with experiment (Tiihonen

et al., 1991; Yokosawa et al., 2020).

Tau blocking can be reproduced by decreasing the gain of the

corresponding eigenmodes, as in the analyzes in earlier sections.

The power spectra formed by the superposition of the 00 and 11

modes for the gain parameters in Table 1 for both eigenmodes and

for the case of a 10% drop in their corresponding gain parameters

(Ges and Gse) by ∼ 10% results in ∼70% suppression of the

tau power near temporal regions, consistent with experiments by

Tiihonen et al. (1991), who found an 80% reduction.

4 Summary and discussion

A century after the first human EEG observations and discovery

of the alpha rhythm, we have used just the first four cortical

eigenmodes to formulate the first compact unified description of

how the alpha, mu, and tau rhythms of healthy awake individuals

are generated and distributed over the cortical surface. Eigenmode

analysis provides a parsimonious explanation of the spectral

structure of these rhythms, including peak splitting, cortical

power topography, and the relationships to underlying physiology,
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FIGURE 7

Overall power spectrum and alpha topography when exciting the 00, 1-1, and 11 modes with the Double Alpha parameters in Table 6. (A) Overall

power spectrum at O1 and Fp1 electrodes, from Equation 91. (B) Lower-frequency peak’s cortical topography, lateral view. (C) Medial view

corresponding to (B). (D) Higher-frequency peak’s cortical topography, lateral view. (E) Medial view corresponding to (D).

including a plausible mechanism for blocking. Our main results are

as follows:

(i) The alpha power variation over the scalp and the alpha

frequency offset observed in EEGs with a split alpha peak are found

to be consequences of three effects:

• Each eigenmode has a different eigenvalue and characteristic

wave number k. Hence, its corresponding alpha frequency

peak is shifted relative to that of the uniform 00 mode,

whose frequency arises from time delays in corticothalamic

loops, as in prior work (Robinson et al., 2002, 2016). The

relative shifts in the alpha frequencies of other modes are

approximated in terms of the physiological parameters of NFT

and found to be ∼1 Hz, which is consistent with numerical

NFT values, and agrees with the observed ∼1–2 Hz alpha

frequency offset in subjects characterized by a double alpha

peak (Nunez, 1996; Niedermeyer and Lopes da Silva, 1999;

Nunez et al., 2001; Chiang et al., 2008, 2011); hence, there

is a secondary role for cortical modes in determining alpha

frequencies, rather than the primary one originally suggested

by Nunez et al. (1978). Large frequency splittings are predicted

to be favored for small brains with relatively long and fast

corticocortical white matter axons. Notably, the fact that all

brains should exhibit higher frequencies for l = 1 modes than

for the 00 mode is consistent with the observations by Chiang

et al. (2008) and Chiang et al. (2011) that such splittings are

ubiquitous, but sometimes too small to be resolved in short

EEG recordings.
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FIGURE 8

Mu and tau rhythm topography and power spectra obtained for the Mu and Tau parameters, respectively, in Table 6. (A) Left hemisphere lateral view,

showing key electrode locations, with sensorimotor cortex highlighted. (B) Mu cortical power topography, lateral view. (C) Medial view

corresponding to (B). (D) Mu power spectra at Cz (red curve) and T3 (blue curve) sites. (E) Left hemisphere lateral view, showing key electrode

locations, with auditory cortex highlighted. (F) Tau cortical power topography, lateral view. (G) Medial view corresponding to (F). (H) Tau power

spectra at O1 (red curve) and T3 (blue curve) sites.

• Non-uniformities in the corticothalamic loop delay (τ )

that were incorporated via the expectation value of τ for

each spatial eigenmode by treating the dependence of the

eigenmodes on τ as a perturbation from its mean value.

However, because of partial cancelation of positive and

negative contributions, this effect is found to be too small to

account for the alpha frequency shift unless the perturbation

is unrealistically large, thus arguing against this being the

primary mechanism for alpha splitting, contrary to the

proposal by Robinson et al. (2003) and Chiang et al. (2008,

2011).

• Introducing mode dependence to physiological gains, we

found that higher corticothalamic gains for l = 1 modes

(here the second and fourth eigenmodes η = 1-1 and

η = 11 were considered) is essential for the appearance

of a distinct second alpha peak in the overall power

with a topography consistent with experiment [see also

point (iii) below].
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(ii) The necessity of increasing the gain of the higher

eigenmodes to obtain a second distinct alpha peak suggested a

potential mechanism of alpha blocking, in which reducing the

corticothalamic gain of modes results in the suppression of the

associated alpha peak. Because the brain is close to criticality

when the alpha peak is strong, even a ∼ 10% reduction in

corticothalamic loop gains suffices to reduce the alpha power by

∼ 70% in the cases considered. Such a reduction is also consistent

with the work of Babaie-Janvier and Robinson (2020), who found

that rapid reductions in corticothalamic gain occur in response to

stimuli in evoked-response experiments but who considered only

the 00 mode.

(iii) We found that just the 00, 1-1, and 11 eigenmodes suffice

to reproduce the observed topography of the classical alpha rhythm

in both cases of subjects exhibiting a single alpha peak or a double

alpha peak, such that:

• For the single alpha peak case, the 00 and 1-1 eigenmodes,

overlapping in frequency, were found to be necessary

and sufficient to reproduce the observed alpha topography

between the front and back of the head with a fronto-occipital

ratio consistent with the one obtained in previous experiment

by Chiang et al. (2008). These are the first two eigenmodes,

where the first (η = 00) eigenmode is uniform across the

cortex and the second eigenmode (η = 1-1) contributes

to the front-to-back variation through interference with the

00 mode. We also found that these modes are excited in-

phase in the visual sensory region at the back of the head,

so they are out of phase at the front; this phase relationship

is required in order to obtain the alpha topography observed

in experiments. Significantly, the mode amplitudes sum,

not their powers, and modal interference is essential to

reproducing the observed topography. This removes any need

for there to be a localized “generator” or “pacemaker” for the

alpha (or mu or tau) rhythm—delocalized modes interfere

constructively in occipital regions, and destructively in frontal

regions, to produce the observed topography.

• For the double alpha peak case, three eigenmodes were found

to be necessary and sufficient to reproduce the observed

topography in experiments (Chiang et al., 2008). The required

eigenmodes are the first (00), second (1-1), and the fourth

(11), with the latter two overlapping in frequency at a higher

frequency than the 00 mode; a contribution from the 10

mode is also possible. Since the first eigenmode has a lower

frequency than the 1-1 and 11 eigenmodes (due to the k-

effect), we have argued that it contributes to the lower alpha

frequency peak, which is approximately uniform across the

cortex; whereas, the other two eigenmodes contribute to

the upper alpha peak. A third eigenmode was essential to

reproduce the front-to-back variation of the upper peak after

the superposition of modes, because the 1-1 eigenmode alone

yields a power spectrum that is nearly symmetric between the

back and front of the head. Again, the observed topography is

accounted for by modal superposition.

(iv) In the case of split-alpha spectra, the lower peak provides

a way of estimating front-to-back differences in the ratio of EEG

signal to mode amplitude due to effects such as volume conduction

or differences in the efficiency of generation. Initial results imply

that a given cortical activity level produces a scalp signal about 15%

weaker at the front of the head than at the back, which could be used

to refine estimates of the amplitudes of the l = 1 modes required to

obtain the observed alpha topography. However, overlap with the

tails of the l = 1 modes means that detailed numerical fitting will

be necessary to analyze such effects.

(v) We found that superposition of two eigenmodes

overlapping in frequency is sufficient to reproduce the observed

topography of the rolandic mu rhythm; these are the first (η = 00)

eigenmode and the third (η = 10) eigenmode that has a top-

to-bottom variation. Accordingly, we inferred that the 10 mode

contributes to the dorso-ventral variation such that the mu power

is concentrated in regions near the Cz electrode, and falls toward

ventral regions, which is consistent with observations (Gastaut

et al., 1952; Pfurtscheller and Aranibar, 1979; Garakh et al., 2020).

We also applied our proposed mechanism of blocking on mu

rhythm by reducing the gain of the two involved eigenmodes, and

reproduced the typical observed suppression of the mu peak, with

only a∼10% reduction of corticothalamic gain.

(vi) Two eigenmodes overlapping in frequency also suffice to

reproduce the observed topography of the tau rhythm (Tiihonen

et al., 1991; Yokosawa et al., 2020). These are the first (00)

eigenmode and the fourth (11) eigenmode that has a left-to-right

variation. Accordingly, we inferred that superposition of the 00

and 11 modes can account for the tau power being concentrated

in temporal regions, which is consistent with what is observed

experimentally. We also applied our proposed mechanism of

blocking on tau rhythm by reducing the gains of the two involved

eigenmodes, and reproduced the observed ∼70% suppression of

the tau peak, via∼10% corticothalamic gain reductions.

(vii) The above points imply that the existence of three

distinct alpha-band rhythms is closely linked to the existence

of exactly three members of the lowest (l = 1) family of

nonuniform eigenmodes. Most importantly, in the single-peak

case, superposition of each one of these modes with the 00 mode

gives rise to the localized enhancement of activity near V1 (alpha, 1-

1 mode); sensorimotor cortex (mu, 10 mode), and auditory cortex

(tau, 11 mode).

(viii) A spherical approximation of the cortical surface provides

a useful guide when evaluating surface integrals of eigenmodes

used to calculate the expectation values for the corticothalamic

loop delays for each eigenmode, and when finding the amplitudes

coefficients necessary for investigating the alpha topography over

the cortex; however, exact symmetries of the sphere are broken

in the convoluted cortex. By approximating the NFT predictions

for power near each modal alpha frequency, we also derived

expressions for the width of the alpha peak at half maximum for

each mode and dependence of peak power on gain.

Overall, this paper provides a compact, unified analysis of

the frequencies and topographies of human brain alpha, mu,

and tau rhythms using just the first four eigenmodes of brain

activity. It underlines the value of modal analysis via neural field

theory and of the importance of eigenvalue effects, interference

between superposed modes, and proximity to criticality. Moreover,

its success reinforces arguments against the use of a new ad hoc
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“pacemaker” or “generator” for each enhancement of alpha in

frequency and/or space (Nunez and Srinivasan, 2006; van Albada

and Robinson, 2013); nor is there any need for general inhibition of

the rest of the cortex by regions in which alpha is strong, contrary

to early suggestions (Berger, 1929; Gloor, 1969). The results support

the role of corticothalamic loops in producing alpha, mu, and tau

rhythms, and the role of the cortex in determining the splitting of

spectral peaks.

The present work could be extended by exploring the mu

and tau rhythms in more detail; for instance, we have found no

reports of split mu and/or tau peaks, whereas our results imply

that increasing the gain of the relevant l = 1 mode can result

in a second distinct peak. Hence, we predict the possibility of

split mu and/or tau peaks that might be detected in the EEGs of

a sufficiently large set of subjects. Another extension could be a

deeper analysis of EEGs on an individual level by fitting the present

theory to spectra and topography to estimate relative amplitudes

of modes, and hence constrain parameter values and their changes

during blocking. Similarly, individual modal amplitudes could be

projected out, using the analog of Equation 26 with φee in place

of φsn, to assist in identifying the presence of particular rhythms.

Also, by considering differing effects of volume conduction and

skull thickness between the back and front of the head we

could refine our predictions of the alpha power ratios. Another

future avenue could be to relate alpha blocking to attention using

eigenmodes by linking our results more closely to those of Babaie-

Janvier and Robinson (2020) on the dynamic downregulation

of corticothalamic alpha gains associated with attention and by

extending their results to multiple modes.

Other directions of interest are to explore the relative

topographies of alpha- and beta-band rhythms under conditions of

both spontaneous activity and blocking due to stimuli or imagery

[so-called event-related desynchronization and synchronization

effects (Niedermeyer and Lopes da Silva, 1999)], as well as

generalizing recent control-theory analyzes of the 00 resonances

and their contributions to evoked responses (Babaie-Janvier and

Robinson, 2018, 2019, 2020) to examine the simultaneous dynamics

of multiple modal contributions, their interactions, and their effects

on prediction and attention.
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