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The question of how consciousness and behavior arise from neural activity is 
fundamental to understanding the brain, and to improving the diagnosis and 
treatment of neurological and psychiatric disorders. There is significant murine 
and primate literature on how behavior is related to the electrophysiological 
activity of the medial prefrontal cortex and its role in working memory processes 
such as planning and decision-making. Existing experimental designs, specifically 
the rodent spike train and local field potential recordings during the T-maze 
alternation task, have insufficient statistical power to unravel the complex 
processes of the prefrontal cortex. We  therefore examined the theoretical 
limitations of such experiments, providing concrete guidelines for robust and 
reproducible science. To approach these theoretical limits, we applied dynamic 
time warping and associated statistical tests to data from neuron spike trains and 
local field potentials. The goal was to quantify neural network synchronicity and 
the correlation of neuroelectrophysiology with rat behavior. The results show 
the statistical limitations of existing data, and the fact that making meaningful 
comparison between dynamic time warping with traditional Fourier and wavelet 
analysis is impossible until larger and cleaner datasets are available.
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Introduction

Background

Hodgkin and Huxley’s model of neuron action potentials using the squid giant axon 
(Hodgkin and Huxley, 1952) was the seminal event in neurophysiology (Coull, 1998; Citron, 
2012; Kucyi and Davis, 2017). The central dogma of modern neuroscience is that neuron 
electrochemical activity and connectivity at the microscopic level can provide a clear 
understanding of complex behaviors. Thus, measuring electrical signals should be sufficient 
to integrate the chemical signaling and activity of neural networks.

The visual cortex is one of the better-understood neural networks because there are significant 
spatial correlations in signals that result from local connections between neurons. These spatial 
autocorrelations result in a high signal-to-noise ratio due to the strong intensity of the electric 
field produced by local synchronized neuron firing. Additionally, the neuroelectrophysiology of 
individual cells in the visual pathway has allowed mathematical modeling of the performance of 
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specific neurons (Hartline, 1969; Gilbert and Wiesel, 1992). The spatial 
autocorrelations of visual neural activity are sufficiently high such that 
low-resolution, indirect measurements of neuron activity, such as local 
blood flow (Miyawaki et al., 2008; Shen et al., 2019; Ren et al., 2021) and 
extracranial electrodes (Wakita et al., 2021) that record neuron activities 
in a large scale, are useful to reconstruct perceived images. The 
organization of the visual cortex may be explained by the fact that images 
projected on the retina are spatially correlated, and therefore biological 
neural networks have adapted to take advantage of these correlations.

From an evolutionary perspective, the visual cortex is an ancient 
structure, and therefore the neural networks involved in visual 
processing have optimized over time. In contrast, the prefrontal cortex 
as part of the neocortex is one of the least developed brain regions, 
especially through evolutionary analysis of its size in mammals (Teffer 
and Semendeferi, 2012; Preuss and Wise, 2022). Unlike the visual 
cortex, the prefrontal cortex does not seem to possess highly local and 
regular spatial organization (O’Reilly, 2010). Because of the lack of 
regular spatial organization of the prefrontal cortex and the 
consequent low intensity of electrical signals, electrophysiology is one 
of the only methods with adequate sensitivity to probe the fine 
structure of the prefrontal neural network. Unfortunately, such 
measurements have relatively small scale, are highly invasive, and 
experiments are only feasible on laboratory animals such as rats (Ito 
et al., 2018; Stout and Griffin, 2020; Yang et al., 2022).

Identification of the problem

We first hypothesized that there might be  theoretical limits of 
existing experimental methodology regarding the prefrontal neuron 
firing. We used a simple model of neural circuits to estimate those limits 
and outlined the statistical considerations for experiment planning in 
rat neuroelectrophysiology. We then sought to elucidate the relationship 
between prefrontal neuron firing and behavior based on the currently 
available resource and tools. To capture key network characteristics 
from recorded spike trains and local field potentials (LFPs), a myriad of 
tools has been tried. For example, the dimensionality reduction has 
been used to unveil the multidimensional dynamic encoding in the 
prefrontal cortex (Aoi et al., 2020). On the other hand, we believe that 
the prefrontal network characteristics are fundamentally embodied by 
the level of synchronicity of neuron firing: two neurons that work in 
concert will have spike trains and/or LFPs that are highly correlated or 
anti-correlated in time, whereas two neurons that process independent 
data or function in separate circuits will not be correlated. Although it 
also is quite possible for variables to be dependent but uncorrelated. The 
question is which mathematic and statistic tools should be used to 
evaluate the neural synchronicity on the data collected through the 
current existing experimental methodology that has potential limits as 
mentioned above and in the first part of the discussion section below.

When analyzing complex data such as neuroelectrophysiology 
tracings, the major statistical concern is bias and overfitting (Cawley 
and Talbot, 2010). Although large amounts of data are collected in 
these experiments, the degrees of freedom are severely restricted by 

the number of animals and recordings collected (Marek et al., 2022). 
When researchers choose a statistical model for their data, certain 
assumptions are made about the structure of the data. Commonly, a 
class of statistical models is chosen with hyperparameters tuned to 
best fit the data. The more hyperparameters that must be tuned, the 
fewer degrees of freedom remain for the subsequent goodness-of-fit 
tests. Some examples of the tuning of various hyperparameters by 
some classical modeling are described in the following section. In this 
work, we sought to maximize the degrees of freedom remaining after 
modeling to address our scientific questions. Schematically, we must 
allocate the degrees of freedom in the data to the modeling we perform 
and the scientific questions we seek to answer:

 dof dof dofdata model science= +  (1)

The more degrees of freedom we  can devote to the scientific 
question, the more confident we can be in our statistical tests.

A potential solution

We chose to investigate neuron synchronicity using the dynamic 
time warping (DTW) method (Vintsyuk, 1972). DTW is an efficient, 
non-parametric approach to determine the best alignment of two time 
series, such that the overall shapes of the time series are matched. 
Compared to classical Fourier and wavelet analysis (Ito et al., 2018; 
Stout and Griffin, 2020), DTW gives a global alignment of the data 
that is robust to local variations in timing. We predicted that DTW 
could discern if two neurons fire synchronously or asynchronously. In 
contrast, local timing variations in low frequency signals such as firing 
rate and voltage lead to destructive interference when performing the 
Fourier or wavelet transform, decreasing the signal-to-noise ratio. In 
practice, these techniques require the tuning of various 
hyperparameters to smooth and denoise the data. Examples include a 
window size for the spike-triggered LFP average (Ito et al., 2018), 
cutoff frequencies for band-pass filters (Ito et  al., 2018), various 
bootstrapping techniques (Ito et al., 2018), and choice of kernel for 
support vector machines (Stout and Griffin, 2020). In contrast, 
traditional DTW uses no additional parameters to yield a dissimilarity 
index for each pair of spike trains or LFP tracings, therefore retaining 
more degrees of freedom for answering statistical questions. Though 
nonparametric techniques (model free) in general will have lower 
power comparing to parametric techniques (model based), the penalty 
in the latter is model misspecification.

Thus, we  analyzed electrophysiology data collected from rats 
performing the T-maze task, a task that evaluates working memory. 
We use previously published spike train and LFP recordings taken 
from the rat medial prefrontal cortex (mPFC) (Ito et al., 2018; Stout 
and Griffin, 2020; Yang et al., 2022), along with previously unpublished 
data from three additional rats (rats A, B, and C) recorded using 
published methods (Yang et al., 2022). We investigated if DTW would 
be useful in elucidating the connection between neural activity and 
behavior (Results), and we examined the underlying assumptions of 
neuroelectrophysiology experiments (Discussion). This study, by 
using DTW as a representative technique and the rat spike train and 
LFP recordings during the T-maze alternation task as a representative 
protocol, provided a concrete and substantial, technical discussion on 
the scientific and reproducibility issues faced by all rat PFC researchers.

Abbreviations: NEP, Neuroelectrophysiology; DTW, Dynamic time warping; mPFC, 

Medial prefrontal cortex; KS-test, Kolmogorov–Smirnov test; ROC, Receiver 

operating characteristic; AUC, Area under the curve.
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Results

Our theoretical arguments for the low statistical power of existing 
experimental designs are presented in the Discussion and Methods 
(Reproducibility of electrode recordings). The data from the three 
published studies (Table 1) had rat neuron spike trains and/or LFPs 
recorded as the rats performed in T-maze (Figure 1A). The exact 
experimental details for the three studies differed slightly (Ito et al., 
2018; Stout and Griffin, 2020; Yang et al., 2022), but their combined 
scientific goal was to analyze the link between neuron recordings and 
working memory performance in the T-maze task. We focused on the 
four-second window of time centered on the moment at which the rat 
leaves the T-intersection (decision box in Figure 1A), presumably 
making its choice. This window contained 2 s of pre-decision neural 
activity (e.g., cognition and decision-making process) and 2 s of post-
decision neural activity (e.g., evaluation of reward or lack of reward). 
Since the experimental designs differed among the studies [e.g., the 
rat either traversed the T-maze continuously (Ito et al., 2018; Stout and 
Griffin, 2020) or was picked up by the researcher in between traversals 
(Yang et  al., 2022)], we used this limited window of time for our 
analysis to limit the effects of the design, constituting one of the only 
hyperparameters chosen in our analysis. Our hypothesis was that 
neural activity was affected significantly by the independent variables 
of (1) timing of the recording relative to the choice, (2) correctness of 
the choice, and (3) sampled neurons (Table 2). Null and alternative 
hypotheses for each statistical test we performed are included in the 
Supplemental Tables S1–S3.

We used the DTW method on the neuron spike trains from all 
three studies and from the local field potentials for Ito et al. (2018) and 
Yang et al. (2022) (Figures 1B,C). Since DTW provides a numerical 
measurement of dissimilarity between firing of neurons, we converted 
the resulting DTW matrices into undirected, unweighted graphs 
(Supplemental methods). For each set of neuron spike trains and/or 
LFPs, we quantified the connectivity of the resulting DTW graph by a 
single number, dcrit (Methods). To evaluate for the presence of 
differences among sets of experiments, we  used non-parametric 
statistical tests (Kruskal-Wallis, Kolmogorov–Smirnov, Mantel, and 
Boschloo exact tests) to mitigate both our lack of knowledge of the 
true underlying probability distributions and the small sample sizes. 
These statistical tests are described in detail in the 
Supplemental methods. We  visualized dcrit  as a function of our 

independent variables in Figure  2 (spike trains) and 
Supplementary Figure S1 (LFPs).

We defined a trial as a single traversal of the T-maze by a rat. 
We defined a session as all trials recorded on a single day for a single 
rat. In the Ito et  al. (2018) and Stout and Griffin (2020) studies, 
electrodes were adjusted between sessions, and, therefore, a different 
set of neurons were recorded between sessions. We set the level of 
statistical significance (false positive rate) to α = 0.05.

Neural network firing is consistent across a 
single session

Our first question was whether we could pool trials from a single 
session in analyzing dcrit? The null hypothesis was that during a single 
session, we  may assume that the rat basal activity is unchanged 
between recordings in the same session, as measured by dcrit, The 
alternative hypothesis is that specific factors affect dcrit between trials 
in the same session, such as the categorical variables in Table 2.

First, we analyzed the normality of dcrit with the Shapiro–Wilk test 
(Supplementary Tables S1, S2). For neuron spike trains, we found that 
in 96.7% (60 out of 62) of sessions, the samples were not normally-
distributed (p < 0.05). For LFPs, we found that 80.0% (20 out of 25) 
were not normally-distributed. Thus, parametric tests are 
inappropriate. Comparing spike trains to LFP with Boschloo’s exact 
test, these fractions were not significantly different (p = 0.615). 
We  performed subgroup analysis on the categorical variables (1) 
correctness and (2) timing and found that this proportion was 
unaffected by further stratification by these variables. Therefore, 
we concluded that the Kruskal-Wallis non-parametric test was more 
appropriate than classical one-way analysis of variance (ANOVA), due 
to violation of the assumption of normally-distributed data and due 
to the limited number of trials per session.

Only 4.8% (3 out of 62) of the spike train sessions displayed 
significant (Kruskal-Wallis p < 0.05) trial-to-trial variance of dcrit, 
regardless of stratification by correctness and/or timing; the 
corresponding proportion for LFPs was 12% (3 out of 25). For 
completeness, we also performed ANOVA and found that 11.2% (7 
out of 62) of the spike train sessions displayed significant trial-to-trial 
variance, regardless of stratification; the corresponding proportion for 
LFPs was 20% (5 out of 25). We tested if Kruskal-Wallis gave different 

TABLE 1 Characteristics of the three studies analyzed in this work.

Ito et al. 
(2018)

Stout and Griffin 
(2020)

Yang et al. 
(2022)

Year of publication 2018 2020 2022

Number of rats 3 5 9

Total number of sessions (including sessions in which only one neuron was recorded) 13 45 13

Sessions excluded (sessions in which only a single neuron was recorded) 0 9 0

Number of trials (excluding single-neuron recordings) 790 1,508 472

Mean neurons recorded (s.d.) 17.56 (4.24) 3.31 (2.21) 31.8 (28.55)

Range of neurons recorded [10, 26] [1, 10] [5, 76]

Total neurons recorded 232 89 314

Fixed electrode No No Yes

Spatial metadata Yes Yes Yes
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results as compared to ANOVA using Boschloo’s exact test, and found 
that neither the spike train data (p = 0.238), nor the LFPs (p = 0.378), 
were significantly different.

Since few of the sessions (within our 5% margin of error for false 
positives from α = 0.05) had a significant trial-to-trial variance in the 
spike trains, we concluded that we may perform pooled analysis of dcrit 
for the spike trains of trials across a single session. Boschloo’s exact test 
on the LFPs also demonstrated a non-significant deviation from the 5% 
margin of error (p = 0.413 for Kruskal-Wallis, p = 0.140 for ANOVA).

Neural network differences exist across 
multiple sessions for a single rat

Our second question was: when analyzing dcrit, can we pool all the 
trials for a single rat, regardless of the day the recordings were taken? 

Using the Kruskal-Wallis test, we  found that 70% (7 of 10) rats 
displayed significant (p < 0.05) day-to-day variance of dcrit in their 
spike trains, regardless of additional stratification by (1) correctness 
and (2) timing (Supplementary Table S1). The caveat was that 
we excluded six rats from the Yang study (Yang et al., 2022) in this 
analysis, because we were unable to apply the Kruskal-Wallis test since 
recordings for those rats were only performed on a single day (dof = 0). 
Additionally, the three rats that did not display significant differences 
across sessions were 17,914 and 18,471 from the Ito study (Ito et al., 
2018) and rat A from Yang et  al. (2022). The same analysis was 
performed for LFPs, in which 80% (4 out of 5) rats (all rats except rat 
A from Yang et  al., 2022) displayed significant variance 
(Supplementary Table S2). For the LFPs, the five rats from Stout and 
Griffin (2020) were excluded since the LFPs were not recorded for 
those rats. Boschloo’s exact test showed no difference between spike 
trains and LFPs (p = 0.922). We conclude that the resting cognitive 

FIGURE 1

Outline of experiments, our working model, and data analysis. (A) Rats complete the T-maze task, in which the reward switches locations after each 
completion of the task. This task tests the working memory and decision-making capacity of the rat. (B) Neurons in the medial prefrontal cortex are 
recorded using intracranial electrodes, resulting in the measurement of specific clusters of neurons. (C) Dynamic time warping computes an optimal 
alignment of neuron spike trains (frequency 𝝂) and local field potentials (voltage V), producing a single number characterizing the synchronicity of the 
neurons. (D) Depending on the number of distinct neuron clusters in the region of interest, a certain number of neurons must be sampled to produce 
a representative sample of all the clusters; in combinatorics, this is known as the coupon collector problem. We plot the number of clusters that the 
maximum number of neurons recorded in each of the three studies can theoretically discern.
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state for each rat may be subject to change depending on the day that 
the recording is performed.

Significant neural network heterogeneity 
exists between rats and studies

Our third question was: does dcrit depend on the specific rat? 
Using the Kruskal-Wallis test, we found that the Stout and Griffin 
(2020) and Yang et al. (2022) studies displayed significant (p < 0.001) 
rat-to-rat differences in their spike trains, whereas Ito et al. (2018) 
was non-significant (p = 0.206). Ito et al. (2018), however also had the 
fewest rats (n = 3) potentially leading to the insufficient statistical 
power of the Kruskal-Wallis test. The LFPs showed significant 
(p < 0.001) rat-to-rat variation in both Ito et al. (2018) and Yang et al. 
(2022). Pooling all rats, we confirmed (p < 0.001) that the specific 
study under consideration affects the value of dcrit for both spike 
trains and LFPs. We conclude that significant heterogeneities exist 
among studies, animals, and sessions. The statistical tests supporting 

this conclusion are summarized in Supplementary Table S1 (spike 
trains) and Supplementary Table S2 (LFPs).

TABLE 2 Listing of categorical variables used for stratification/grouping 
in our analyses.

Categorical 
variable

Values Interpretation

Timing Before, after Data from before vs. after the 

rat left the T-intersection

Correctness True, false True if rat chose the correct 

(i.e., alternate) branch of the 

T-maze during the task

Study Ito, Stout, Yang The study to which the rat 

belongs

Rat 17 total animals The rat identity

Session 62 total sessions (with more 

than 1 neuron recorded)

The rat identity and the date 

of recording

Thanos X

Meusli Q R S T

BabyGroot C Capn_Session Groot K

17913 17914 18471 A B

be
for
e

aft
er

be
for
e

aft
er

be
for
e

aft
er

be
for
e

aft
er

be
for
e

aft
er

incorrect

correct

incorrect

correct

incorrect

correct

incorrect

correct

0.25

0.50

0.75

value

value

0.75

0.50

0.25

FIGURE 2

Balloon plot of neuron spike train dcrit , grouped by rat, correctness of T-arm choice, and timing with respect to T-arm choice. Each box represents a 
single rat. The x-axis represents timing (before vs. after the rat visits the T-maze intersection) and the y-axis represents correctness of T-arm taking 
(True vs. False). The size and color of each marker represents log10 dcrit. For rats with multiple trials, we took the mean of log10 dcrit. Rats 17,913, 17,914, 
and 18,471 are from Ito et al. (2018); single letter rats are from Yang et al. (2022); the remaining five rats are from Stout and Griffin (2020). The most 
visually striking difference is in Ito et al. (2018) rats, in which there is a stark contrast for spike trains recorded before vs. after making a choice.
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DTW distance is inconsistently correlated 
with physical electrode distance

Do correlations in firing among neurons reflect the underlying 
spatial distance between the neurons? We used both Welch’s t-test for 
unequal variances and the non-parametric Kolmogorov–Smirnov test 
(KS-test) to test for differences in the distribution of the DTW 
distance when grouped by the spatial distance of the 
associated electrodes.

In all three studies, the dcrit between neurons recorded from the 
same electrode versus from different electrodes were statistically 
significantly different (p < 0.001) by both the t-test and KS-test 
(Figures 3–6), however, this classification was useless as a predictor or 
regressor (Lo et al., 2015). For example, using dcutoff as a classifier of dcrit 
for determining if two neurons were recorded from the same electrode 
vs. from different electrodes, the receiver operator characteristic 
(ROC) curve is essentially no different from random guessing 
(Supplementary Figure S4), with area under the curve (AUC) of 0.51. 
If we stratify data by session (Figures 4–6), however, the ROC curve 
and AUC vary for specific rats/sessions (Supplementary Figure S5), 
and in some cases demonstrate high predictive value (AUC).

For the Yang study (Yang et al., 2022), we were able to obtain the 
exact geometry of the electrode. Therefore, we were able to stratify 
DTW distances by the physical distance of the neurons measured 
(Figure  7). For this stratification, we  were unable to determine a 
consistent trend. Rats B and C demonstrate decreased DTW distance 
(increased synchronicity) in both neural spike trains and LFPs, 
whereas the remaining rats demonstrated slightly increasing DTW 
distance (decreased synchronicity) in both, except for rat S. For rat S, 
however, the large decrease in DTW distance seen in the spike trains 
may not be captured in the LFPs, because there was no zero-distance 
comparison for LFPs, whereas multiple spike trains recorded from the 
same electrode could be thought of as having zero distance.

Use the DTW matrix to correlate neural 
network firing with behavior

Finally, in an effort to identify potential correlations between 
neural network firing (i.e., as assessed by DTW matrix) and behavior, 
we used all the information available in the DTW matrix instead of 

characterizing network connectivity with a single number (dcrit). 
We performed all pairwise comparisons for trials in the same rat to 
ask the question: given a single session, is there a difference in Pearson 
correlation coefficient of before vs. after depending on if we compare 
(1) before vs. after of the same trial to (2) before vs. after of different 
trials? We performed pairwise Mantel test comparisons among trials 
in the same session. We performed Kruskal-Wallis and Kolmogorov–
Smirnov tests to determine if these distributions of the correlation 
coefficient and p-value were different (Supplementary Figures S2, S3; 
Supplementary Table S3). Note that the Pearson correlation coefficient 
is used as the overall signal from the data for use in the non-parametric 
tests, rather than as a standalone parametric test; similar 
non-parametric procedures relying on the Pearson correlation are 
used in protein fluorescence colocalization (Costes et  al., 2004). 
Overall, we found that there was no significant difference trial-to-trial 
for the before vs. after DTW matrix correlation.

When we  stratified by correctness (Supplementary Table S3), 
we  did observe an effect for Kolmogorov–Smirnov tests on the 
Pearson correlation coefficient in 35.7% (5 out of 14) sessions. When 
we used dcrit alone, this proportion was 7.1% (1 out of 14). To evaluate 
if the KS-test/Mantel test combination was more powerful than the 
Kruskal-Wallis test on dcrit, we performed a Boschloo exact test on the 
contingency table; it did not reach statistical significance (p = 0.159). 
We concluded that there was mixed evidence for the efficacy of Mantel 
tests for before vs. after DTW matrices in determining if a rat made 
the correct or incorrect choice at the T-intersection.

Discussion

We demonstrated that the DTW distance and the computed 
parameter dcrit  captured some of the mPFC neural network firing 
dynamics for both the spike trains and LFPs that were associated with 
T-maze task performance. We  found weak evidence that the 
correctness of rat choice influences the firing dynamics 
(Supplementary Table S3). More importantly, we  also found that 
significant heterogeneities exist among studies, animals, and sessions, 
as measured by DTW distance and dcrit . To demonstrate meaningful 
associations between behavior (e.g., T-maze task performance) and 
neural network activities (in the mPFC), the data and computed 
results must be consistent. We first address the question of statistical 

FIGURE 3

Comparing distributions for DTW matrix entries for neuron spike trains, depending on if the neurons compared were from the same vs. different 
electrode. Left: (Ito et al., 2018) (n  =  25,542 same, n  =  173,368 diff), middle: (Stout and Griffin, 2020) (n  =  8,462 same, n  =  10,186 diff), right: (Yang et al., 
2022) (n  =  125,580 same, n  =  763,588 diff). For each study, Kolmogorov–Smirnov tests demonstrated significant (p  <  0.001) differences between same 
vs. different electrode data.
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consistency through a theoretical discussion of the experiments and 
the assumptions made in neuroelectrophysiology.

Theoretical limitations of current 
experiments in neuroelectrophysiology

There are two major issues with attempting to measure a specific 
population of neurons. First, precise surgical implantation of 
electrodes is required; second, enough neurons must be sampled to 
capture overall neural network dynamics that can be  consistently 
associated with certain behaviors. These two issues synergize at our 
current level of intracranial electrode technology, complicating fine 
measurements of neurons. Although the rat brain is far smaller than 
a human brain [ca. 1 cm (Citron, 2012)], it still contains an estimated 
21 million neurons (Korbo et  al., 1990). Reproducible surgical 
implantation in a specific area of the rat brain such as the medial 
prefrontal cortex is therefore highly dependent on the fine-motor skill 
of the researcher, and there is no guarantee that the same neurons or 
circuits will be sampled.

In fact, in Ito et  al. (2018) and Stout and Griffin (2020) the 
electrodes were purposefully adjusted after each session so that a 
different set of neurons would be sampled. Due to the lack of spatial 
organization of the prefrontal cortex, we postulate that the surgical 
sampling of neurons and circuits in the prefrontal cortex is essentially 

FIGURE 4

Stratified comparison of distributions for DTW matrix entries for 
neuron spike trains, for Ito et al. (2018), depending on if the neurons 
compared were from the same vs. different electrode. For all 13 runs, 
Kolmogorov–Smirnov tests demonstrated significant (p  <  0.001) 
differences between the two populations.

FIGURE 5

Stratified comparison of distributions for DTW matrix entries for neuron spike trains, for Stout and Griffin (2020), depending on if the neurons 
compared were from the same vs. different electrode. For all 34 runs with non-empty groups of same vs. diff, Kolmogorov–Smirnov tests 
demonstrated significant (p  <  0.001, with the exception of run Thanos121618, for which p  =  0.007) differences between the two populations.
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random, and that electrode adjustment similarly resamples the neurons 
and circuits being recorded. The only way to counteract the statistical 
effects of random sampling is through the measurement of a sufficiently 

large fraction of the neurons in the brain area under consideration. In 
the Methods, we illustrate these issues with a simple mathematical 
illustration (Reproducibility of electrode recordings, Figure 1D).

FIGURE 6

Stratified comparison of distributions for DTW matrix entries for neuron spike trains, for Yang et al. (2022), depending on if the neurons compared were 
from the same vs. different electrode. For all 13 runs, Kolmogorov–Smirnov tests demonstrated significant (p <  0.001) differences between the two 
populations.

FIGURE 7

DTW distance for neuron spike trains (left, A) and LFPs (right, B) as a function of electrode distance (from Yang et al., 2022). The median DTW distance 
is plotted for each electrode distance, across all sessions for the indicated rat (rat A had 4 sessions, rat C had 3 sessions, and the remaining rats had a 
single session). 95% confidence intervals were estimated using 1,000 bootstrap samples. There is no consistent correlation between the DTW and 
electrode distance for either dataset, supporting the idea that there is no discernible spatial organization of neurons in the mPFC. Note that the DTW 
metric is different for the two datasets, with the distance for neuron spike trains reported as a time (ms) and the distance for LFPs reported as a voltage 
(V). Physical distance is reported in multiples of 0.25  mm.
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To provide a guide for researchers investigating the connection 
between neuroelectrophysiology and behavior, we asked what did 
each of the three studies do right and what could be improved? There 
are three experimental parameters we considered: nneurons (the number 
of neurons recorded); nnetwork repeat (the number of times the same 
neural network is recorded); and nrats (the number of biological 
replicates). We  contend that all three of these parameters must 
be relatively high to make meaningful conclusions, especially if one 
wishes to use more powerful parametric statistical tests over the 
non-parametric tests we used in this study.

To have any hope of identifying the specific neural network firing 
patterns which lead to decision-making in the T-maze, we  must 
consistently identify the neurons responsible (nneurons), the circuits 
responsible (nnetwork repeat), and demonstrate that the conclusions 
generalize across organisms (nrats). By this simple reasoning, 
we contend that the three recent studies we have examined here do 
not allow us to draw conclusions, regardless of data analysis method 
(DTW or otherwise). Stout and Griffin (2020) recorded too few 
neurons (nneurons ~ 1), and changed the neurons recorded across 
sessions (nnetwork repeat = 1) for nrats = 5. Ito et  al. (2018) recorded a 
moderate number of neurons (nneurons ~ 20), but still changed the 
neurons recorded across sessions (nnetwork repeat = 1), with nrats = 3. Yang 
et al. (2022) recorded a moderate number of neurons (nneurons ~ 20), 
and kept the same neurons recorded across sessions (nnetwork repeat = 5), 
but only performed these replicates for nrats = 2; the other nrats = 7 had 
(nnetwork repeat = 1). In short, larger electrodes (nneurons), more sessions per 
experimental condition (nnetwork repeat), and more animals (nrats) are 
needed to achieve a robust and reproducible conclusion.

Recommendations for reproducible 
neuroelectrophysiology

Our recommendation for electrode size (nneurons) depends on the 
number of neural clusters or circuits one wishes to investigate 
(Figure 1D), whereas nnetwork repeat and nrats should be chosen according 
to traditional recommendations such that parametric statistical tests 
can be performed (de Winter, 2013; Curtis et al., 2015). For example, 
to estimate error bars for technical replicates or biological replicates, 
there should be at least n = 5 independent technical trials or animals, 
respectively (Curtis et al., 2015). A useful control group would contain 
at least five animals, and each animal should be  recorded on five 
separate occasions. Furthermore, if we wish to compare neural firing 
between experiments, then roughly the same neurons should 
be  recorded, and any difference should be  adjusted for in 
statistical tests.

Efficacy of dynamic time warping in 
analyzing neuroelectrophysiology data

We now turn to the efficacy of DTW in potentially uncovering 
connections between neuron electrical activity and behavior. In our 
analysis, we  demonstrated that the DTW distance and the 
computed parameter dcrit  captured some of the mPFC neural 
network firing dynamics for both the spike trains and LFPs. 
We  found weak evidence that the correctness of rat choice 
influences the firing dynamics (Supplementary Table S3). 

We expect, however, that many more experiments are needed to 
confirm the classification of the correctness of a decision based on 
mPFC activity. Our results indicated that whereas firing trials could 
be pooled across the same session, they could not be pooled across 
different sessions or studies (Supplementary Tables S1, S2). In 
terms of spatial dependence of firing synchronicity, we found that 
for specific rats and sessions, the classification of DTW distances 
for recordings taken from the same vs. different electrodes was both 
statistically significant (Figures 3, 4; Supplementary Figures S3, S4) 
and useful as a regressor (Supplementary Figure S5). For the Yang 
study (Yang et al., 2022), the spatial dependence of DTW distances 
was highly dependent on the specific rat sampled (Figure  7), 
providing evidence of the lack of spatial organization of the 
prefrontal cortex.

The difficulties we encountered in analyzing spike trains and LFPs 
can be addressed through changes to the experimental design. The 
number of neurons sampled is an important characteristic to consider, 
especially if only a few neurons were recorded and some recordings 
represented only a single neuron (e.g., Stout and Griffin, 2020). If the 
mPFC is composed of separate neural networks that perform specific, 
modular tasks, it is unlikely that recording a low number of neurons 
will provide meaningful, interpretable results. Since firing dynamics 
were consistent across a single session, we  posit that multiple 
recordings of a single neuron population are the best approach to 
characterizing network firing behavior. The DTW spatial dependence 
remained consistent across multiple sessions for rats A and C 
(Figure 3), therefore we are reasonably confident that we recorded the 
same population of neurons across the sessions. The additional 
variation across sessions in Yang et al. (2022) might due to changes in 
the resting cognitive state of the rats. It was, however, not possible for 
us to distinguish consistently between variance due to noisy 
measurements and variance due to rat behavioral changes. It may 
be  necessary to perform many control sessions to characterize in 
adequate detail all of the resting cognitive states of a specific rat. 
Crucially, recording a single control session as Yang et al. (2022) did 
for the seven other rats (B, K, Q, R, S, T, X) likely fails to detect 
variations in the resting state for a single rat. To complement the 
recording of many control sessions, recording additional rat behaviors 
may yield insight as to how the rat resting cognitive state influences 
the network firing dynamics. Because the electrodes were adjusted 
after each session in the Ito et al. (2018) and Stout and Griffin (2020) 
studies, the recording of only a single session per neuron population 
complicates the modeling that must be performed.

Recent advances in imaging and brain modeling provide hope 
that we may one day understand the relationship between neuron 
firing and consciousness. Whole brain connectomes have been 
mapped for simple organisms [C. elegans (Cook et al., 2019), Ciona 
intestinalis larvae (Ryan et  al., 2016), and Platynereis dumerilii 
(Verasztó et al., 2020)], and recently all 3,000 neurons and 548,000 
synapses of a fruit fly larva (Drosophila melanogaster) were mapped 
(Winding et al., 2023). Although mammalian brains are orders of 
magnitude larger than insect brains, whole-brain connectomes for rats 
may not be out of reach in the coming decades. These connectomes 
are essential for understanding cognition, but they provide only a 
static, anatomic reference upon which neural physiology and 
pathophysiology must be built. Our study highlights the limitation of 
the data analyses on spike trains and LFPs, implying that combining 
different modalities of data, such as connectome or imaging 
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information, may be the next steps in investigating the function and 
dynamics of biological neural networks.

Materials and methods

Data set selection and the acquisition of 
additional rat recordings

Three published data sets were used for this study (Ito et al., 2018; 
Stout and Griffin, 2020; Yang et al., 2022). The correlation between the 
neural synchronicity and the choice behavior in the T-maze was not 
the focus of any of these datasets. These datasets, however, represent 
our best efforts in acquiring standardized data with homogeneous 
experimental conditions, i.e., (1) recent (2) rat (3) PFC recordings in 
the (4) T-maze task, and (5) providing both spike trains and LFPs. 
We set these five requirements to make the statistical tests as unbiased 
as possible so that the data can be assumed to be drawn from the same 
underlying distribution.

Besides the data we used from the three published studies, new 
data were collected from three additional male Sprague–Dawley rats 
(Charles River Laboratories). They weighed 300–350 g when received 
and were named as rats A, B, and C. The experimental procedure of 
T-maze alternation and neural recording followed published protocol 
(Yang et al., 2022). All animal care and surgical procedures were in 
accordance with the National Institutes of Health Guide for the Care 
and Use of Laboratory Animals and Penn State Hershey Animal 
Resources Program, and were reviewed and approved by the 
local IACUC.

Dynamic time warping and statistical tests

Mathematical details on dynamic time warping, the Mantel test, 
and the Kolmogorov–Smirnov test are included in the 
Supplemental methods.

Computation of dcrit

Based on a DTW matrix D, we formed a graph G with nodes 
representing neurons and edges between nodes i and j with weight 
equal to the DTW distance between those neurons Dij. There is a 
certain value dcrit at which removing the edges from the graph with 
weight greater than dcrit results in the graph becoming disconnected. 
This value can be found by performing a binary search on dcrit between 
the minimum and maximum value in D such that depth-first search 
on the graph with removed edges no longer spans all the nodes 
(Cormen et al., 2009).

Estimated number of neurons in the rat 
medial prefrontal cortex

Our goal here is to provide a reasonable estimate for the number of 
neurons that one must record to reconstruct the dynamics of the entire 
mPFC. We used existing estimates of neuron and synaptic density in 
the rat prefrontal cortex as starting points for our modeling. We set the 

total number of neurons in the rat brain (Korbo et  al., 1990) to 
Nbrain = 2.1 × 10 (Miyawaki et al., 2008) with volume (Hamezah et al., 
2017) Vbrain = 2,500 mm (Citron, 2012). We set the volume of the mPFC 
(Hamezah et al., 2017) to VmPFC = 20 mm (Citron, 2012). Assuming a 
uniform distribution of neuron count throughout the brain, the 
estimated number of neurons in the mPFC was 

N N V
VmPFC brain
mPFC

brain

= × = ×1 7 10
5

. . The assumption of a uniform 

distribution of neurons throughout the brain may not be  entirely 
accurate. Neuron density can vary significantly across different regions 
of the brain due to functional specialization. The prefrontal cortex may 
have a different neuron density compared to other areas such as the 
sensory or motor cortices. This non-uniformity could lead to an over-or 
under-estimation of the actual number of neurons in the mPFC.

Reproducibility of electrode recordings

Here, we  discuss the problem of reproducibility in 
neuroelectrophysiology, specifically, the rodent spike train and local 
field potential recordings in the PFC during the T-maze alternation 
task. Because of the apparent lack of spatial organization in the mPFC, 
when electrodes are implanted, they uniformly sample the estimated 
NmPFC = 10 (Hartline, 1969) neurons in the mPFC. Depending on how 
cooperative and synchronized neuron firing is, we assume that there 
is a certain number of neural clusters ncluster for which the 
measurement of a single neuron sufficiently captures the behavior of 
the entire cluster, and that measurement of these clusters correlates 
with rat behavior. We  also assumed that sampling is done with 
replacement, i.e., ncluster < < NmPFC. For reproducibility, one must (1) 
record the same neural clusters across biological replicates and (2) 
identify or classify the neural clusters to show that findings in one 
animal generalize to other animals.

 (1) The first issue of capturing a certain percentage of the neural 
clusters in the rat brain corresponds to a classical problem in 
combinatorial probability known as the coupon collection 
problem. The mathematical question is: given c = ncluster 
categories, what is the expected number of samples S which 
needs to be drawn from those categories so that all categories 
are represented at least once? In the case of equal probabilities 
for drawing each category,

 
S c

i
cH

i

c
c= =

=
∑· ,

1

1

 
(2)

where Hc is the cth harmonic number. Alternatively, we  may 
require that a certain number 1 < k < c out of all the categories is 
represented (Ferrante and Frigo, 2012), so that Equation 2 is a 
special case of
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In both cases, S ~ c log c asymptotically. We  have plotted the 
expected number of clusters we  may identify depending on the 
maximum number of neurons recorded from each of the studies 
(Figure 1D). In practice, it is necessary to first determine the number 
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of neural clusters that exist and to choose neuron sample size that can 
adequately sample all the clusters with high probability.

 (2) The second issue of identifying neural clusters across different 
animals relies on the researcher’s ability to determine which of 
the ncluster! possible matchings is the correct matching between 
any two rats. To reduce the number of possibilities, one must 
rely either on prior information (such as typical firing rates or 
patterns of certain clusters) or on other measurements of 
network behavior that are invariant under permutations of 
nodes in the graph.

Computational analysis and plotting

All computational analysis was carried out in Python 3.10 and R 
4.1, on an M1 Max MacBook Pro with 64 GB RAM. For statistical 
tests: Shapiro–Wilk, Kruskal-Wallis, and ANOVA were carried out 
using pingouin 0.5.3 (Vallat, 2018), Mantel tests (The Scikit-Bio 
Development Team, 2023; Mantel, 1967) were carried out using 
scikit-bio 0.5.7 (The Scikit-Bio Development Team, 2023), and 
Kolmogorov–Smirnov and Boschloo exact tests were carried out using 
SciPy 1.8.1 (Virtanen et al., 2020). We implemented dynamic time 
warping (Vintsyuk, 1972) using Cython 0.29.32 (Behnel et al., 2011). 
We used the DataFrame structure from Pandas 1.5.1 (The Pandas 
Development Team, 2022) to organize our data, and we used seaborn 
0.12.1 (Waskom, 2021) and Matplotlib 3.5.2 (Hunter, 2007) for 
plotting. We used NumPy 1.23.3 (Van Der Walt et al., 2011; Harris 
et al., 2020) for numerical array operations. We used ggpubr 0.6.0 
(Kassambara, n.d.) for the balloon plots.

Significance statement

The prefrontal cortex is important in decision-making, yet no 
robust method currently exists to correlate neuron firing in the PFC to 
behavior. We argue that existing experimental designs are ill-suited to 
addressing these scientific questions. To optimize the usage of existing 
data, we propose the use of dynamic time warping to analyze PFC 
neural electrical activity. We  conclude that careful curation of 
experimental controls is needed to separate accurately true neural 
signals from noise.
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