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Introduction: Recent work on bats flying over long distances has revealed that

single hippocampal cells have multiple place fields of di�erent sizes. At the

network level, a multi-scale, multi-field place cell code outperforms classical

single-scale, single-field place codes, yet the performance boundaries of such a

code remain an open question. In particular, it is unknown how general multi-

field codes compare to a highly regular grid code, in which cells form distinct

modules with di�erent scales.

Methods: In this work, we address the coding properties of theoretical spatial

coding models with rigorous analyses of comprehensive simulations. Starting

from amulti-scale,multi-field network, we performed evolutionary optimization.

The resulting multi-field networks sometimes retained the multi-scale property

at the single-cell level but most often converged to a single scale, with all place

fields in a given cell having the same size. We compared the results against a

single-scale single-field code and a one-dimensional grid code, focusing on two

main characteristics: the performance of the code itself and the dynamics of the

network generating it.

Results: Our simulation experiments revealed that, under normal conditions, a

regular grid code outperforms all other codeswith respect to decoding accuracy,

achieving a given precision with fewer neurons and fields. In contrast, multi-

field codes are more robust against noise and lesions, such as random drop-

out of neurons, given that the significantly higher number of fields provides

redundancy. Contrary to our expectations, the network dynamics of all models,

from the original multi-scale models before optimization to the multi-field

models that resulted from optimization, did not maintain activity bumps at their

original locations when a position-specific external input was removed.

Discussion: Optimizedmulti-field codes appear to strike a compromise between

a place code and a grid code that reflects a trade-o� between accurate positional

encoding and robustness. Surprisingly, the recurrent neural network models we

implemented and optimized for either multi- or single-scale, multi-field codes

did not intrinsically produce a persistent “memory” of attractor states. These

models, therefore, were not continuous attractor networks.

KEYWORDS

place cells, grid cells, continuous attractor networks, spatial coding, multiple scales,

hippocampus, localization, evolutionary optimization
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1 Introduction

Navigating large and complex environments is a non-trivial

task. It requires perception of the environment, a subsequent map

formed by these perceptions, a localization mechanism within it as

well as a method for navigating between two points in the map

(Thrun et al., 2005). Humans, as well as mammals, in general

are able to perform this task seamlessly, whether in a small room

or a large environment, such as a city. The neural formations

responsible for the respective tasks have been investigated for

decades. Yet, the exact representation a mammal keeps of an

environment remains covert.

The hippocampal formation has been identified as a primary

unit for the computation and storage of a neuronal spatial map ever

since the discovery of place cells (PCs) by O’Keefe and Dostrovsky

(1971), which was in line with the cognitive map theory by Tolman

(1948). PCs were found in the CA1 and CA3 sub-regions of the

Hippocampus and commonly show singular or only few prominent

areas of maximal firing activity relative to the environment in

which an animal is located, the cells’ so-called place fields. This led

to the—nowadays widely accepted—hypothesis that these neurons

discretize a continuous environment into a finite number of place

fields. In turn, this motivated a plethora of biological experiments

as well as modeling approaches, covering a wide range of aspects,

including the influence on the firing field size/shape caused by

different factors, such as the environment (O’Keefe and Burgess,

1996), the animal speed (Ahmed andMehta, 2012) or the recording

location within the hippocampus (O’Keefe and Burgess, 1996).

These studies revealed that place cells can express multiple place

fields under certain circumstances (Kjelstrup et al., 2008; Davidson

et al., 2009; Park et al., 2011; Rich et al., 2014) and that the

size of these fields can vary (O’Keefe and Burgess, 1996; Fenton

et al., 2008). The majority of these experiments were, however,

conducted in small, confined spaces, since the technology and

hardware that is required for neural recordings did not support

large and unconfined environments at the time of the studies.

The advancement of hippocampal recording technology toward

wireless communication recently allowed to conduct experiments

in large-scale environments and to study different firing properties

of place cells (PCs) in dorsal CA1 of the hippocampus in such

surroundings (Eliav et al., 2021; Harland et al., 2021). Both studies

reported place cells with multiple, differently sized place fields—a

multi-scale multi-field (MSMF) place code. This code is similar to

the grid code produced by grid cells found in the (MEC; Hafting

et al., 2005). While each grid cell also maintains multiple fields, the

size of these fields is constant per neuron and only changes across

so-called modules of neurons with the same scale (Stensola et al.,

2012). The fields are distributed regularly in a hexagonal pattern

forming an optimal code for arbitrary spaces (Mathis et al., 2015).

In contrast to that, the experiments performed by Eliav et al. (2021)

revealed the MSMF code for neurons in the hippocampus of bats

flying through a one-dimensional, 200m long tunnel. Harland et al.

(2021) identified the same multi-scale multi-field property for PCs

in rats foraging within a two-dimensional, 18.6m2 open arena.

To gain further insight, Eliav et al. (2021) performed a

theoretical analysis to demonstrate the effectiveness of a multi-scale

code compared to other codes, including a single-scale code. In

order to achieve a localization error of< 2m, the authors show that

a single-field model requires more than 20 times as many neurons

than anMSMFmodel. This analysis further shows that using a fixed

number of 50 neurons, the decoding error is 100 times better with

the MSMF model than with the single-field model.

Beyond this theoretical analysis, Eliav et al. (2021) also

introduce two neuronal models in a computational analysis, which

could explain how MSMF code might be generated—a continuous

attractor network (CAN) and a feedforward model receiving

input from either CA3 place cells or medial entorhinal cortex

(MEC) grid cells. The 1D CAN consists of multiple, distinct,

differently sized, overlapping attractor networks, each of which

contains the same number of neurons, as shown in Figure 1. The

authors perform simulated experiments of this network in a 200m

long environment using 4,000 neurons (1,200 randomly sampled

neurons per attractor) and show that this network is capable of

generating an MSMF code. The analysis of this model, however, is

not exhaustive. The field sizes were analyzed, as shown in Figure 1,

but no experiments were reported that evaluated the decoding

accuracy of said network.

Eliav et al. (2021)’s theoretical and computational analysis of the

MSMF code suggests that nature has discovered a superior coding

scheme for the position of an animal. Yet these results raise several

important neuroscientific and computational questions. First, it

has been shown previously, that the “traditional” single-scale,

single-field place code is outperformed by the grid code (Mathis

et al., 2012) and that such grid codes also maintain an optimal

distribution of fields per neuron for arbitrary spaces (Mathis et al.,

2015). These grid codes, however, are not observed in very large

environments (Ginosar et al., 2021), raising the question of whether

the generative mechanism for creating the grid representations

fails or whether, indeed, the MSMF code has advantages over the

grid code in terms of decoding accuracy, energy consumption

or robustness. Second, the discrepancy between the number of

neurons used for the theoretical (50) as well as the computational

analysis (4,000) by Eliav et al. (2021) is non-negligible and opens

up the question of whether realistic networks and interconnections

would be able to achieve such a performance. Can an optimization

algorithm find a network with an accuracy close to the one from

the theoretical experiments? How would the neurons have to be

connected? What would an optimal distribution of the fields look

like? Finally, when inspecting the general structure of the original

MSMF network in combination with the distribution of the fields

in the experiments, one naturally wonders about the dynamics of

a network for such a code. How do the coupled attractors in the

MSMF network interact and interfere with each other? Would this

still be a continuous or rather a discrete attractor network?

We will try to answer some of these questions in this paper

using evolutionary optimization of two different multi-field (MF)

networks. We compare the performance of several candidate

networks under different scenarios and analyze them from two

distinct viewpoints. First, we investigate the (dis-)advantages and

properties of the codes produced by the respective networks,

independently of whether the networks generating them are

biologically plausible. The goal here is to identify and compare the

properties of the different codes [multi-scale multi-field (MSMF),

single-scale multi-field (SSMF), single-scale single-field (SSMF),

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1276292
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Dietrich et al. 10.3389/fncom.2024.1276292

F
ir
in

g
 r

a
te

Cell 0

Cell 1

0 50 100 150 200

Environment length

FIGURE 1

A visualization of the CAN model introduced by Eliav et al. (2021) with a total of eight attractor networks, coupled together by neurons in the same

attractor (green lines). Each attractor network consists of the same amount of neurons (Nneu = 1, 200), drawn randomly from a total number of 4,000

neurons. At the bottom of the figure, the idealized firing rate for each of the two neurons (blue and orange) is shown. Note that, although the size of

a firing field is generally pre-determined by the respective attractor network, it can vary depending on the overall connectivity of the neuron. See the

first two fields of cell 0 for an example.

and grid]. The second aspect of our study is whether the networks

have continuous attractors, as has been proposed for many different

brain areas (Khona and Fiete, 2022). The newly introduced multi-

attractor network by Eliav et al. (2021) might be an example of a

CAN network. Therefore, we evaluate and analyze the biologically

relevant properties of these networks. The main contributions of

our work can be summarized as follows:

• We perform an in-depth analysis of the MSMF CAN model

proposed by Eliav et al. (2021), and analyze a second, more

flexible CAN model that we derived from their theoretical

framework;

• We apply evolutionary optimization on the parameters for

both attractor network models above;

• We demonstrate that while some optimized models do work

with mixed field sizes, they tend to achieve higher decoding

accuracy when constructed of many small fields instead of a

variety of field sizes. This is at variance with the theoretical

analysis reported in Eliav et al. (2021);

• We show that a simple grid code outperforms randomly

organized MF models with respect to decoding accuracy, at

least in the absence of noise. The experimental observation

of MF codes, therefore, might indicate that they have other

advantages that go beyond the mere precision of encoding the

animal’s position;

• Indeed, we demonstrate thatMFmodels are significantly more

robust against noise compared to grid field as well as single

field models;

• We show that lateral connections in both MF models do not

form the basis of an actual CAN, but they do improve the

decoding accuracy under specific circumstances,

• Finally, we provide an openly accessible framework for

optimizing and evaluating the different networks1.

2 Methods

Within this section, we describe the different network models

used in our simulation and optimization experiments as well as the

corresponding optimization algorithms.

We start by defining different model classes used throughout

this paper. There are two key determinants that we use: the number

of fields that each neuron has and the sizes of these fields. In

particular, neurons in the most complex model have multiple fields

that come in multiple sizes. With these determinants in mind, we

have the following model classes:

Single-Scale Single-Field Model (SSSF): Each neuron has

exactly one firing field representing one location in the

environment. All firing fields are of the same size.

Single-Scale Multi-Field Model (SSMF): Each neuron has

more than one field, but the field sizes obey a unimodal

distribution.

1 The source code for the experiments and reproduction of the figures is

provided online at: https://github.com/dietriro/msmf-code.
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Multi-Scale Multi-Field Model (MSMF):Neurons have more

than one field and the field size distribution has at least two

separate peaks (multimodality).

Multi-Field Model (MF): Neurons have more than one field,

but the field sizes could have any distribution (including

unimodal distributions).

Throughout this paper we optimize the parameters of different

MF networks. The optimized networks are then classified as either

SSMF or MSMF model.

2.1 Network models

In the following, we describe two MF models, together with the

grid field and single field model for comparison. An overview of

each network’s parameters is given in Supplementary Table 6. The

dynamics and neuron models are identical for all networks and will

be described in Section 2.2.

2.1.1 Fixed multi-field model
The first MF model we consider is adapted from Eliav et al.

(2021). The authors introduce a network for 1D environments, in

which the neurons are organized not just in a single line attractor,

but in multiple, differently-sized line attractors that interact with

each other. We call this a fixed MF network (F-MF), due to the

fixed, predetermined number of line attractors. A schematic of

this architecture is visualized in Figure 1. The network consists of

multiple, distinct attractor subnetworks (black ovals), distributed

over three different levels. Each attractor level (ALi) maintains a

different interaction length Lint for all line attractors on its level.

Lint is the maximum distance over which two neurons maintain

a positively weighted connection. In alignment with Eliav et al.

(2021), we set the interaction length to be 0.05 (5%) of the size of

the environment that one line attractor subnetwork covers.

As shown in Figure 1, the attractor scales are organized

hierarchically, while the number of neurons per attractor stays

constant (Eliav et al., 2021). Starting with a pool of Nneu = 4, 000

neurons, each neuron participates in each of the attractors with a

probability Patt = 0.3. While Eliav et al. (2021) do perform some

general analysis of this model (field sizes, distribution) they do

not investigate the performance (positional decoding accuracy) or

efficiency (potential energy consumption, number of neurons) of

the network as they did in their theoretical analysis.

The default parameters used in our simulation experiments

for the field and attractor generation of this model are listed in

Supplementary Table 6. Most of these parameters are identical to

the ones used by Eliav et al. (2021). It is unclear if the parameters

reported by Eliav et al. (2021) were selected to stabilize the network,

or if they were extracted from real-world recordings. For further

details regarding this model, we refer the reader to Eliav et al.

(2021).

One of the key questions we seek to address in this study is

whether MSMF-like properties emerge naturally without a priori

specifying subintervals of the environment to which the attractors

are tuned. For this purpose, we next define a more flexible and

dynamic MF model.

2.1.2 Dynamic multi-field model
Based on the insights from Eliav et al. (2021), we developed a

new dynamic MF model, (D-MF) composed of a dynamic number

of attractor networks. The model has the general architecture of

a CAN but does not fully comply with the properties of either a

continuous or a discrete attractor network, settling somewhere in

between. The core idea is that, similar to the F-MF model, each

neuron can have multiple fields resulting from its participation in

multiple attractors, but connections between two neurons are made

dynamically, only when their field sizes are similar. This approach

generalizes the concept of multiple, interacting attractors proposed

by Eliav et al. (2021), for which these authors created precisely three

levels of field sizes, or attractors; furthermore, these fields uniformly

spanned a subinterval of the environment. In contrast, the D-MF

model is capable of producing a much larger number of attractors.

Depending on the parameter choices governing the connections, a

MSMF as well as a SSMF model could result.

A visualization of a few neurons, together with their fields

and respective connections, taken from a D-MF network, are

shown in Figure 2A. In order to generate such a network, we first

create a population of Nneu neurons and then sample fields for

each of the neurons, using the same gamma distribution as Eliav

et al. (2021) did for their theoretical analysis. We base the field

distribution on these results, which in turn are based on their

measured experimental values. New fields for a neuron continue

to be generated until the overall size 6fs of all fields of a neuron n

reaches a certain threshold 6̄fs, the value of which we took from the

supplementary material of Eliav et al. (2021).

Subsequently, the connection weights between all neurons are

assigned. For this purpose, we define a threshold THfsr for the ratio

between the size of two fields.We then compare the sizes of all fields

of two neurons (n0, n1). The overall connection strength between

these two neurons is generally defined by the distance between all

relevant fields of these neurons, in the same way as the connection

weight for the F-MF model is calculated (see Section 2.2). In order

to achieve a similar architecture as Eliav et al. (2021) with their CAN

model, we only take those fields into account, whose ratio is above

the threshold THfsr , i.e.,

min(fs0, fs1)

max(fs0, fs1)
> THfsr (1)

for fields with sizes fs0 ∈ n0 and fs1 ∈ n1. A simplified diagram

of this mechanism for connection weight calculation in a D-MF

network is visualized in Figure 2B. Here a threshold of THfsr = 0.9

was chosen, which means that only two connections between the

three depicted neurons will be created. The first synapse connects

neurons n0 and n2 with a weight based on fields f0A and f2B. The

second synapse connects neurons n1 and n2 with a weight based on

fields f1A and f2A.

In the F-MF model, this field size constraint is inherently

present through the design choice of a fixed number of line

attractors per level. While the F-MF model also creates multiple

connections between two neurons based on the field sizes of two

neurons, connections in the F-MF model are more strict in that

only neurons with fields of exactly the same size (interaction length)

and within the same line attractor are considered for the overall

connection strength between two neurons. In the D-MF model, we
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FIGURE 2

Visualizations of the D-MF model developed by us based on the theoretical model from Eliav et al. (2021). (A) The di�erently sized firing fields of

three neurons. Only connections between neurons with fields of similar size (0A↔2B, 1A↔2A) are modeled. (B) The size di�erence between the

firing fields, shown in detail. In this example a threshold THfsr = 0.9 = 90% was selected.

only restrict the connection between two neurons based on the sizes

of their respective fields using a less strict rule (see Equation 1).

This connection scheme is therefore a generalization of the F-MF

model and hence also uses the same weight calculation mechanism

as introduced by Eliav et al. (2021) for the F-MF model.

Throughout our experiments, we use the D-MF model in

order to further investigate the influence of the field size on the

connection probability between two neurons and the benefits of

a field size dependent connection scheme. For this purpose, we

introduce a parameter that can be used to set the field connection

probability Pfc directly, instead of an indirect influence by the

THfsr parameter. If Pfc is used, the connection between two

neurons is established randomly with the probability Pfc. In this

way, we can directly influence the overall fraction of connections

being created, independently from the field sizes of the individual

neurons. We use this parameter in our evaluation in order to

identify the benefit of connecting neurons based on their field sizes

or randomly.

The overall difference between the F-MF and the D-MF model

is the distribution of the field sizes and the fact that in the

F-MF model all attractors span (a part of) the environment

uniformly. In the D-MF model, this is not necessarily the case.

With the dynamic procedure for creating fields, connections, and

hence attractors the position of a field within an attractor is not

predetermined. The parameters used for generating the fields are

listed in Supplementary Table 6. The dynamics of the network are

the same as for the F-MF network and are described in Section 2.2.

2.1.3 Single-scale single-field model
As a baseline, we implemented a simple single-scale single-field

(SSSF) model. This model is based on the F-MF model described

in Section 2.1.1, but simplified to have only one attractor level with

a single line attractor spanning over the entire environment. Each

neuronmaintains a single firing field, while the fields are distributed

uniformly within the line attractor and hence the environment.

2.1.4 Grid cell model
We also implemented a one-dimensional grid model without

lateral connections. This model consists of multiple modules Nmod,

each containing a fixed number of neurons Nmod
neu . Furthermore,

each module has a certain scale, starting with the minimum defined

scale Smin
mod

and increasing per module by the module scale factor

Smod. The neurons within each module then maintain regularly

recurring firing fields on this length scale. Across the module,

different spatial offsets characterize each neuron’s firing fields

relative to the firing fields of other neurons in the module, thereby

generating a 1D ensemble grid code. This model can be viewed as a

structured version of theMF networks introduced in Sections 2.1.1.

and 2.1.2. Both network types maintain firing fields of different

sizes. The neurons in the grid model, however, have regularly

repeating firing fields, and the fields of one neuron (and of all

neurons in a module) are all the same size. Note that we will not

address whether the biological realization of an ideal grid code is

feasible, plausible, or realistic. Rather, we will use the grid code as a

lower bound on the accuracy that any spatial code will achieve.

2.2 Neuron model

All networks introduced in Section 2.1 have dynamics that

are based on Eliav et al. (2021), briefly summarized as follows.

According to Eliav et al. (2021), the synaptic current of a single

neuron i is defined by

τ
dhi

dt
= −hi +

∑

j

Wijg(hj)+ Ibck + I
pos
i (t), (2)
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FIGURE 3

Flow diagram of the evolutionary optimization process.

with τ being the time constant of the membrane and Ibck
being a uniform background input (noise). Wij defines the model-

dependent connection strength between neuron i and neuron j

based on their positional labels (bins) xi and xj, respectively:

Wij = Wexce
−
|xi − xj|

Lint −Winh (3)

The interaction length Lint thereby determines the length over

which neurons have positive connections and the weight constants

Wexc andWinh influence the amount of excitation and inhibition of

this connection, respectively. The neuronal gain function g(h) is a

threshold-linear function of the form

g(h) =

{

h if h > 0

0 if h < 0
(4)

The positional input I
pos
i defines the individual input each

neuron receives based on the position of its fields and the respective

distance of those to the current position of the agent

I
pos
i (t) =

∑

p

Ipos e
|x
p
i −pos(t)|

Lint , (5)

where pos(t) defines the position of the agent at time t within

the 1D environment, assuming a constant speed of 10m/s.

Beyond these general network dynamics, we introduced

a variable, noisy background input, replacing Ibck in some

experiments. The noisy background input is defined by a mean

(I
µ
noise) as well as a standard deviation (Iσnoise) of the normal

distribution generating the noisy input values.

2.3 Optimization

Biologically inspired evolutionary optimization is a prime

candidate for finding the most suitable parameter configurations

for the models defined above, as little prior knowledge is needed

and few assumptions are required. Within this section, we briefly

discuss how we used evolutionary optimization to find new

parameter configurations that led to improved accuracy or energy

efficiency in the models.

The individual steps of our optimization algorithm are depicted

in Figure 3 and are based on Simon (2013). We first generate a

set of Npop models (commonly Npop = 20) for which selected

network parameters are randomly initialized. Each parameter is

subject to a lower as well as an upper bound, and parameter values

are discretized to reduce the search space.

Then, the performance of all representative networks is

evaluated using a fitness function, which we define below. To ensure

reliable results, we commonly simulate 20 runs of the same network

with different initial conditions, given that the positional accuracy

of decoding can vary greatly for different field locations. The

particular fitness function we use for this evaluation is based on the

mean or median error of the network and is defined as

f = e−E
µ
pos∗5/

Lenv
Nneu , (6)

where E
µ
pos is the average or median (E

µ̃
pos) of multiple mean

positional decoding errors, calculated from several runs with

the same network parameters, Lenv is the total length of the

environment in meters and Nneu is the total number of neurons.

The constant 5 was simply introduced to scale the fitness function

up.

Subsequently, a number of entities to keep for the next

generation is selected from the entire population. This is done using

fitness-weighting, i.e., the entities are ordered by their fitness first

and then a subset of them is selected based on the defined selection

rate Rsel (commonly Rsel = 0.2).

From this new set of entities, parents are chosen for mating,

with a probability proportional to their fitness. Based on two chosen

parents, a child entity is generated with parameters inherited

from both parents. This inheritance is performed randomly. An

integer is randomly generated, dividing the number of optimization

parameters into two halves, one from each parent.

The optimization parameters of the children created in this step

are then randomly mutated with a probability Pmut (commonly

Pmut = 0.2). The parameters chosen to be mutated receive a new,

randomly chosen value within the predefined boundaries of the

respective parameter.

As a final step, a new population is created from the children.

In all of our experiments, we additionally kept the entity with the

best fitness from the selected entities constant without mating or

mutating its parameters. This entire process is continued until the

defined number of epochs, EP, is reached (commonly EP = 3, 000).

3 Experimental evaluation

The networks introduced in the previous section form the

basis of our simulated experiments presented within this section.

We first describe the general setup of the experiments. Then

we introduce the results of the baseline models by Eliav et al.
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(2021), as well as their optimization with and without (Wexc =

Winh = 0) lateral connections. Evaluating networks without lateral

connections allows us to analyze the usefulness of the MSMF code

itself, i.e., decoupled from biological inspiration or plausibility,

while analyzes of networks with lateral connections yield insights

into the possible network structures that generate them.

3.1 Experimental setup and metrics

In order to rule out outliers, each experiment presented in this

section with a single set of parameters was evaluated by performing

20 simulations of the same network with different initial conditions

(i.e., random seed, leading to e.g., different field locations) and

calculating the statistics (mean, median, standard deviation) of

the positional error, the number of fields and other metrics. We

commonly make use of the median, since the distribution of most

metrics over the 20 runs is not Gaussian. All MF networks created

and optimized within this section have a fixed number ofNneu = 50

neurons, except for one of the original models introduced by Eliav

et al. (2021), which has Nneu = 4, 000 neurons. With this decision,

we align our experiments with the theoretical evaluation performed

by Eliav et al. (2021). These evaluations have demonstrated that

50 neurons are sufficient for accurately decoding the position in

an environment of 200m. Nonetheless, we did perform some

experiments with an increased number of neurons. The results,

however, did not reveal significant differences, besides the obvious

improvement of the decoding accuracy. For an evaluation of the

performance of the original models (before optimization) with a

varying number of neurons please see Supplementary Figure 1.

For some of the evaluations we also use an efficiency

measurement as a comparison metric. We therefore define the

median expected energy consumption for multiple runs of the same

network as

Cµ̃
eng = Nbins ∗ F

µ̃

all
, (7)

where Nbins is the total number of bins of the environment (for

most experiments Nbins =
Lenv

Lbin
=

200m

0.5m
= 400) and F

µ̃

all
is

the mean in-field activity (firing-rate) of all fields (active as well as

inactive).

The original models, based on the parameters by Eliav

et al. (2021), as well as the ones generated using evolutionary

optimization, will be abbreviated by F/D/G-Org and F/D/G-Opt,

respectively. The first letter indicates the type of model, i.e., F-MF

(F), D-MF (D), or grid (G). We indicate that a model contains

lateral connections (D-Org-1+) or not (D-Org-1−), and also

whether the connections in this model were optimized (D-Org-1+o)

by the respective superscripts “+,” “−,” and “o.” In case the model

receives a uniform background input (Ibck), this is indicated by a

subscript “β” (D-Org-1+β ).

While the goal of this evaluation is to find optimal

configurations of MSMF networks, we note that evolutionary

optimization does not guarantee that the multi-scale or multi-field

properties are preserved; indeed, one or both properties could be

lost in the course of optimization.

3.2 Original models

The first part of our evaluation consists of experiments

performed with the original models and simulations introduced by

Eliav et al. (2021). We evaluated both the F-MF and F-MF networks

in order to analyze their positional encoding performance, answer

the question of whether these networks are generally capable

of reproducing the results of the theoretical analysis by Eliav

et al. (2021), and identify potential ways to improve their

performance.

In our first experiment, we evaluated an F-MF model with

identical parameters as proposed by Eliav et al. (2021), i.e.,

we simulated the network with a total number of Nneu =

4, 000 neurons. We then modified the parameters of the lateral

connections in the network (Wexc,Winh) as well as the noise

or background input (Ibck) in order to evaluate their impact on

the encoding performance of the network. The statistics of the

mean positional error for four models with different parameter

combinations are visualized in Figure 4A. This simulation shows,

that all three parameters have a significant influence on the

accuracy of the network. Setting the background input as well

as all lateral connections to zero results in a decrease of the

median of the average positional error E
µ̃
pos by 1.128m (1.226m −→

0.098m). Especially the background input has a significantly

negative effect on the median performance (see models 3 and

4). The lateral connections, on the other hand, seem to have a

strong influence on the standard deviation, leading to a broader

overall distribution including both, networks with better as well

as worse performances than without lateral connections. These

results are further backed by the same experiment performed

with only Nneu = 50 neurons, shown in Figure 4B, leading to

similar results on a different scale (positional decoding error).

The only remarkable difference compared to the experiments with

Nneu = 4, 000 is the larger influence of Ibck on the mean/median

of the distribution. The number of neurons was set to 50 here

because this is the same number of neurons that is used by

Eliav et al. (2021) in their theoretical evaluations. Both models

are capable of encoding the agent’s position with <2m decoding

error, similar to the results by Eliav et al. F-Org-1, however,

requires 4,000 neurons to achieve this result. F-Org-2, on the

other hand, can only achieve this result without any background

input.

In a second experiment, we evaluated the D-MF model,

introduced in Section 2.1.2. The purpose of this experiment is

to create a baseline comparison to the theoretical results by

Eliav et al. and also evaluate the network in order to define

further experiments for analyzing its properties and performance.

We chose the connection parameter THfsr to be equal to 90%

based on experimental results. The remaining parameters, such

as for the gamma distribution of the field sizes, were chosen

to be the same as for the theoretical analysis by Eliav et al.

The results for Nneu = 50 neurons are visualized in Figure 5.

Interestingly, the median of the average decoded positional error

(E
µ̃
pos) in this case is higher when the lateral connections are

removed while the background input persists (model 1 vs. 2).

This stands in contrast to the results obtained with the F-MF

model and might be an indication, that these connections stabilize

and denoise the system. Even when comparing the two last runs

with each other, although the median and mean error are lower
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FIGURE 4

The distribution of the mean positional error of 20 individual runs of the original F-MF model with Nneu = 4, 000 neurons (A) as in the results from

Eliav et al. (2021) and Nneu = 50 neurons (B) as in the theoretical analysis. The blue lines represent the minimum, maximum, and mean of the

evaluation results, the orange line represents the median of it.
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FIGURE 5

The distribution of the mean positional error of 20 individual runs of

the D-MF model with N = 50 neurons. The blue lines represent the

minimum, maximum, and mean of the evaluation results, the

orange line represents the median of it.

when all lateral connections are removed, the minimum error (of

any of the 20 models) is even smaller for the third compared

to the fourth model (0.858 vs. 0.866m). The implications of

these insights on the significance of lateral connections in MF

networks are further analyzed in Section 3.4.3. Similar to the F-

Org-2 results, the D-MF model is not capable of encoding the

position with an error below 2m when background input is

present.

The results presented in this section show that theMF networks

are capable of reproducing the results from the theoretical analysis

of Eliav et al.— but only under certain circumstances. The crucial

factors that influence the positional encoding performance of

these networks are the lateral connections and especially the noise

(background input). In the remainder of this evaluation, we will,

therefore, focus not only on the potential theoretical performance

of MF networks but also on the (dis-)advantages of the lateral

connections in such a multi-line attractor as well as the influence of

different kinds of noise on the system. The goal of these analyzes is

to answer the question of whether a system with such a code could

be modeled by an attractor network and what the properties of this

network are.

3.3 MSMF code

Within this part of the evaluation, we focus on the analysis of

the MSMF code. Unless otherwise stated, the networks have no

lateral connections nor do they receive background noise. In other

words,

Wexc = Winh = Ibck = 0 (8)

for all models discussed in this section.

3.3.1 Optimal parametrization of MF models
In the first deeper analysis of the MF models, we optimize

only with respect to accuracy, seeking the best models that

minimize the mean positional error of the network. Nevertheless,

we will also compare their expected energy consumption, as

defined by Equation 7. The configuration for the evolutionary

optimization runs of the F-MF, as well as the D-MF models,

is shown in Supplementary Table 1. A visualization of the
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TABLE 1 Optimized F-MF models without lateral connections.

Model ID NAL0 NAL1 NAL2 Patt Nneu N
µ̃

f
C

µ̃
eng E

µ̃
pos Emin

pos Emax
pos

F-Opt-1 50 48 50 0.95 50 140.6 140.8 0.000 0.000 0.003

F-Opt-2 50 22 40 0.40 50 44.8 60.0 0.000 0.000 0.004

F-Opt-3 11 10 9 0.40 50 12.0 59.6 0.150 0.133 0.279

F-Org-1 5 2 1 0.30 4,000 2.4 3,460.6 0.098 0.085 0.110

F-Org-2 5 2 1 0.30 50 2.4 43.8 1.148 1.056 1.293
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FIGURE 6

Example activity and fields for five neurons of the F-Opt-1 network model (A), together with the respective field size distribution (B).

optimization results can be found in the supplementary material

in Supplementary Figures 5A, B, 6A, B, respectively. For the D-MF

model, we ran multiple optimizations, continuously shifting the

range of α, since the results kept improving. We included one row

representing all runs—including the average number of generations

of all runs.

The sampled parameter combinations for the F-MF model,

shown in Supplementary Figure 5A, illustrate that, in general, a

higher number of fields (N
µ̃

f
), i.e., more neurons per attractor

(high Patt), is preferable over lower numbers for achieving a low

positional decoding error. This completely aligns with the results

from the D-MF model, visualized in Supplementary Figures 6A,

B. The networks achieving the highest decoding accuracy are

all located in the range of θ < 0.04. With θ this small,

the average sampled field size also becomes very small and the

number of fields therefore very large. This is specifically evident in

Supplementary Figure 6B, where the number of fields is shown as

a color for all networks with E
µ̃
pos < 1.0. All remaining networks

maintain a large number of fields (N
µ̃

f
> 50). The networks with

the lowest decoding error from Supplementary Figure 6A also have

the highest number of fields in Supplementary Figure 6B.

Further filtering of the values of the F-MF results

(Supplementary Figure 5B) uncovers that, at least for this

model, diverse parameter combinations can yield optimal

networks with no positional decoding error (E
µ̃
pos = 0.0). We,

therefore, included three different networks from the optimization

results in Table 1. The first two networks achieve an optimal

decoding error although the number of fields per neuron differs

significantly for each of them. We picked F-Opt-1 because it

maintains the largest number of fields of all optimal network

configurations (N
µ̃

f
= 140.6) and F-Opt-2 because it maintains

the lowest number of fields (N
µ̃

f
= 44.8) while still having

somewhat different scales, i.e., differences between the number

of attractors in each level (see Supplementary Figures 2A, B). The

third network, F-Opt-3, was chosen for further analysis in the

next parts of this section, as it maintains a low positional error

(E
µ̃
pos = 0.150) with only 12 fields per neuron (N

µ̃

f
= 12.0).

Noticeably, both, F-Opt-1 and F-Opt-3, fulfill the properties

of an SSMF rather than an MSMF model. Specifically, the

peaks of their field size distribution are rather close to each

other (see Figure 6, Supplementary Figure 2), especially when

compared to the original models (see Supplementary Figure 3).

In contrast, the field size distribution of F-Opt-2 maintains

two separate peaks with one being at a field size twice as large

as the other one. This model therefore fulfills the properties

of an MSMF network as defined in Section 2, although it

only maintains two different scales instead of three or more.

The energy consumption of F-Opt-2/3 is significantly lower

than that of F-Opt-1 since the fields of the neurons cover less

space. While F-Opt-3’s energy consumption is slightly higher

than F-Opt-2’s, it is significantly smaller than that of F-Org-1,

showing that a better positional accuracy can be achieved with
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many small fields (140.6 vs. 2.4) instead of a high number

of neurons (50 vs. 4, 000), while also reducing the energy

consumption.

This finding is confirmed by the results of the D-MF model.

As stated before, the optimization results favor field sizes that

are tightly distributed around a small mean value. Quantitatively,

for all evaluated networks with a median error E
µ̃
pos < 1.0, the

median of the distribution of all field size means is 0.41, the

median of the variance is 0.01 (see Supplementary Figure 4). Due

to these resultant properties, the models cannot properly be defined

as multi-scale models anymore. Furthermore, their accuracy is

inferior to that of the F-MF models. Table 2 shows that the energy

consumption (C
µ̃
eng) of the D-MF models is much higher for both

the optimal as well as the original model when compared to the

energy consumption of the F-Optmodels (89.5 >> 44.8), while the

median of the positional decoding error is much higher than that

of the most optimal F-MF models (F-Opt-1/2). Since the optimized

F-MF models are now either (a) no longer multi-scale models or

(b) maintain fewer scales than the original models, the primary

difference between the D-MF and the F-MF models lies in the

accurate, evenly distributed placement of the fields in the F-MF

networks compared to the D-MF networks; the even spacing might

have a larger effect on the decoding accuracy than the multi-scale

property of the field distributions.

In addition to these findings, many models, but especially the

D-MF models, had a high variance in the decoding error across

different runs with the same parameters but varying initialization

of field locations and sizes. For both models, D-Org and D-Opt-1,

the discrepancy between the minimum of all mean decoding errors

of 20 runs and the maximum is significant [1E
µ̃
pos(D-Org) = 2.275,

1E
µ̃
pos(D-Opt-1) = 1.571]. Since it occurs for both models almost

at an equal level, the shape of the gamma distribution as well as the

number of fields do not seem to be determining factors.

In order to further investigate the optimal parametrization

of the networks, we analyzed the influence of the maximal field

coverage of a neuron (6̄fs). For this experiment, we ran the original

D-MF model ( D-Org-1) and varied the value for 6̄fs between each

run in a range from 1 to 100. The median of the resulting positional

error is visualized in Figure 7. The results are twofold. First, the

mean/medianmeasured experimentally (30m) by Eliav et al. (2021)

lies within the minimum of this plot, which corroborates the

parameter and model choice. In the experiments, however, many

cells had much larger field coverage; in fact, a significant number

had a field coverage 6̄fs > 100m. With the given parameters,

such field sizes would lead to a significant drop in the positional

decoding accuracy (> 10m) compared to the accuracy achieved

with optimal parameter values at around 6̄fs = 40m. Alternatively,

either this model, or at least its parameters, are not suited for

representing the given MSMF code, or the given MSMF code is not

just a “simple” place code.

3.3.2 D-MF variation analysis
In the previous section, we optimized the parameters for

different MF networks. The experiments demonstrated that the

performance of these networks is highly unstable, i.e., the same

parametrization does not necessarily lead to the same or even a

similar accuracy on different runs. We now investigate extreme

scenarios in which a network with the same parameters produces

a large and a small error when initialized differently. The goal

of this evaluation is to identify possible factors of the place field

distribution that have either a beneficial or detrimental effect on

the decoding accuracy. For instance, we ask whether a distribution

close to uniform, hence similar to a grid code, is beneficial, or

whether a high number of falsely active cells leads to errors in the

decoding.

In order to address these questions, we compared the results of

the D-Opt-1 and the D-Org-1 model (see Table 2). Both networks

have a high variation between the minimum and maximum mean

positional decoding error, depending on the field initialization but

with the same parameters. They do, however, differ significantly in

their field size distribution; model D-Opt-1 has a large number of

fields (N
µ̃

f
= 114) while model D-Org-1 has a low number of fields

(N
µ̃

f
= 7.13).

The analysis we conducted in order to identify possible

problems with these networks include:

• The percentage of unique field combinations,

• The average number of false positive/negative bins,

• The average distance between all field locations and the nearest

bin location (centers),

• The divergence of field size/location distribution from their

respective actual distribution.

The results of these analyzes are visualized in

Supplementary Figure 7. They do not indicate that there is

a pattern, convergence, or correlation between the decoded

positional error E
µ̃
pos of a network and any of the aforementioned

properties. The high divergence in positional decoding accuracy

between different runs must therefore result from the randomness

of the field locations. We could not find or verify any other

explanation for this phenomenon.

3.3.3 Benchmark against the grid code
In order to put the results from the original and optimized

MF models into context, we compare them in this section to

the results from multiple optimized one-dimensional grid codes.

Each code is built by a network with multiple modules (Nmod),

each of which contains a certain number of neurons (Nmod
neu ). The

modules have different scales, with a minimum scale (Smin
mod

) and a

multiplier from one scale to the next (Smod). All these parameters

were optimized over 3000 epochs without any lateral connections

or background input (Winh = Wexc = Ibck = 0). The results of

a few exemplary networks that minimize the positional decoding

error but nevertheless have different properties are listed in Table 3.

The optimization of the grid code shows that with at least three

modules and four neurons per module, almost all combinations of

the grid model achieve the same or even better positional decoding

accuracy as the best optimized MF models introduced so far.

We picked five samples from the optimized models, each with a

different number of modules, neurons per module, and module

scale, all of them achieving a perfect median decoding error of

E
µ̃
pos = 0. The networks can be categorized as follows:

G-Opt-1: Lowest number of neurons overall (27).

G-Opt-2: Largest number of neurons overall (171).
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TABLE 2 Optimized D-MF models without lateral connections.

Model ID α θ 6̄fs Nneu N
µ̃

f
C

µ̃
eng E

µ̃
pos Emin

pos Emax
pos

D-Opt-1 15.92 0.02 36 50 114 89.5 0.300 0.009 1.580

D-Org-1 3.16 1.80 30 50 7.13 74.2 1.265 0.866 3.141
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f =, α = 3.16, θ = 1.8, Σ̄fs = 100]

FIGURE 7

The median positional error for a range of experiments performed with the D-Org-1model, varying the maximal field coverage (6̄fs ∈ {1, 2, ..., 100}m).

G-Opt-3: Large number of modules, small number of neurons.

G-Opt-4: Large number of neurons, small number of modules.

G-Opt-5: Same as G-Opt-4 but with a much larger module scale.

The reason why we picked these models is to evaluate the

performance of different combinations of module size, number

of neurons, and module scale. In the evaluation results focusing

on the positional decoding error and energy consumption, shown

in Table 3, there are no differences in the accuracy between the

networks. The energy consumption, on the other hand, increases

significantly when the number of modules rises. This can be

expected since each new module adds another layer of Nmod
neu

neurons, resulting in additional activity and hence increased energy

consumption.

In order to analyze the robustness of all models described

so far in this evaluation, we conducted further experiments with

a certain percentage of drop-out neurons. Figure 8 visualizes the

results of this experiment. By far the best-performing model

is, as expected, the F-Org-1 with 4,000 neurons overall. Even

in the worst case, with 95% of the neurons being dead, it

still performs better than most networks with just 5% lesions.

All of the optimized F-MF models (F-Opt-1/2/3) are capable of

maintaining a median positional decoding error E
µ̃
pos < 1m,

even with a drop-out rate of Pdro = 0.25, i.e., 25% randomly

removed neurons. This demonstrates the effect of the redundancy

in these models, caused by the large number of fields per neuron.

In particular, the redundancy in the F-Opt-2/3 models makes

them more robust than the grid code while maintaining a lower

energy consumption than the best-performing grid model, G-Opt-

2. Almost all gridmodels perform significantly worse than the other

models, even when only 5% of the neurons are disabled. Only

the G-Opt-2 model performs comparably well to the optimized

F-MF models. It does, on the other hand, require a significantly

larger number of neurons for that to occur (Nmod
neu = 171).

This shows, that in order to gain robustness in grid models,

one needs a large number of modules and neurons to achieve

redundancy.

3.4 Lateral connections in MF models

The last part of our evaluation focuses on the lateral

connections in the MF models, i.e., the connections that are

essential for making it a CAN.

3.4.1 Optimized MF models with lateral
connections

For the proper evaluation of the purpose or benefits of the

lateral connections in the MF models, we performed multiple

optimizations of the models with different parameterizations. For

each network (D-MF, F-MF) we performed three optimizations:
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TABLE 3 Optimized grid models without lateral connections.

Model ID Nmod Nmod
neu Smod Smin

min N
µ̃

f
C

µ̃
eng E

µ̃
pos Emin

pos Emax
pos

G-Opt-1 3 9 1.6 0.5 29.852 30.75 0.0 0.0 0.0

G-Opt-2 9 19 3.0 0.5 3.509 64.57 0.0 0.0 0.0

G-Opt-3 9 7 3.0 0.5 9.524 64.64 0.0 0.0 0.0

G-Opt-4 3 19 1.2 0.5 17.737 30.76 0.0 0.0 0.0

G-Opt-5 3 19 1.8 0.5 13.07 30.73 0.0 0.0 0.0
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SSSF [Nneu = 50, N µ̃
f = 1]

G-Opt-1 [Nneu = 27, N µ̃
f = 29.852, Nmod = 3, Nnmod = 9]

G-Opt-2 [Nneu = 171, N µ̃
f = 3.509, Nmod = 9, Nnmod = 19]

G-Opt-3 [Nneu = 63, N µ̃
f = 9.524, Nmod = 9, Nnmod = 7]

G-Opt-4 [Nneu = 57, N µ̃
f = 17.737, Nmod = 3, Nnmod = 19]

G-Opt-5 [Nneu = 57, N µ̃
f = 13.07, Nmod = 3, Nnmod = 19]

F-Org-1 [Nneu = 4000, N µ̃
f = 2.4, NAL = [5, 2, 1]]

F-Org-2 [Nneu = 50, N µ̃
f = 2.4, NAL = [5, 2, 1]]

F-Opt-1 [Nneu = 50, N µ̃
f = 140.6, NAL = [50, 48, 50]]

F-Opt-2 [Nneu = 50, N µ̃
f = 44.8, NAL = [50, 22, 40]]

F-Opt-3 [Nneu = 50, N µ̃
f = 12.0, NAL = [11, 10, 9]]

D-Org-1 [Nneu = 50, N µ̃
f = 7.13, α = 3.16, θ = 1.8, Σ̄fs = 30]

D-Opt-1 [Nneu = 50, N µ̃
f = 114, α = 15.92, θ = 0.02, Σ̄fs = 36]

FIGURE 8

Evaluation of all introduced models (F-MF, D-MF, Grid, and SSSF) with an increasing percentage of drop-out neurons (Pdro ∈ {0.0, 0.95, 0.05}). An inset

of the same data with Pdro ≤ 0.2 (right).

the first one optimizes for all parameters of the network (lateral

connections and architecture/field distribution), resulting in a new

model; the other two optimize the lateral connection parameters

of existing models (e.g., F-Org-1) while the architecture and field

distribution remain constant (applied to original and optimal

models). The parameters for training the networks are listed in

Supplementary Table 2, the trained parameters of the networks are

listed in Supplementary Tables 3, 4. The optimization results are

visualized in Figure 9.

For the F-MF model, we optimized the lateral connection

parameters of the F-Org-2 and F-Opt-3 models, resulting in

the F-Org-1+o and F-Opt-3+o models, respectively. An initial

optimization of the F-Opt-1/2 models with lateral connections

resulted in positional decoding errors far too high for further

experiments, even after several hundred epochs of training. We

therefore continued with the F-Opt-3 model, as it led to a

reasonably low positional decoding error with optimized lateral

connections. In addition to that we optimized all parameters,

including the architectural parameters, resulting in the new model

F-Opt-4+o. We kept the maximum number of attractors per level

quite low in this case, due to the aforementioned issue with training

lateral connection weights for models with a large number of

attractors (NAL >> 30).

The evaluations of these networks (Figure 9A) show, that

the lateral connections reduce the median decoding error for

the original network architecture (F-Org-2− vs. F-Org-2+o) and

increase it for the optimized architecture (F-Opt-3− vs. F-Opt-

3+o/F-Opt-4+o). This indicates that lateral connections are more

beneficial in a spatial code with fewer but larger fields per neuron

since the F-Opt-3 model has significantly more fields per neuron

than the F-Org-2 model [N
f

µ̃
(F-Opt-3) = 12.0 vs. N

f

µ̃
(F-Org-2) =

2.4, cmp. Table 1].

We performed the same three optimizations for the D-MF

model. The results shown in Figure 9B do not depict the results

for the optimization of the D-Opt-1 model, however. The reason

for this is that this optimization did not lead to any results. After

running it for 200 generations, the median decoding error was

still around 50m. We, therefore, omitted this result and included

the newly trained model D-Opt-2+o instead. For this model, all

parameters, including the lateral connections, were trained from
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FIGURE 9

The distribution of the mean positional error of 20 individual runs for optimized F-MF (A) and D-MF (B) models with lateral connections. On the left of

each figure the results from the previous experiments without lateral connections are shown. On the right, the results from the optimization are

visualized. The blue lines represent the minimum, maximum, and mean of the evaluation results, the orange line represents the median of it.

scratch. This also resulted in the model D-Opt-3+o, which is less

accurate but has a lower field size ratio threshold and will hence be

used in later evaluations.

The results from the optimized D-MF networks confirm the

indications that the analysis of the F-MF optimizations already

revealed—especially networks with fewer and larger fields benefit

from lateral connections. This seems intuitive since more fields also

lead to more connections and with that to more noise. Creating

only a few connections with small weights, however, seems to

stabilize the system and reduce noise. In addition to that, we

observed that most of the weights of the optimized models were

in fact negative, for some of them even all weights. This applied

especially to the cases where the decoding error dropped by

introducing the optimized weights. We will analyze the influence

of the weights on the firing fields of individual neurons further in

Section 3.4.3.

In order to analyze the general benefit of connecting two

neurons based on the individual field sizes of the neurons, we

performed an additional experiment with D-MF models only.

In this experiment, two different models were chosen from the

optimization results, D-Org-1+o and D-Opt-3+o. The latter one

resulted from the same optimization as D-Opt-2+o. We decided to

use the given model for this evaluation due to its more relevant

field size ratio threshold (THfsr = 0.79) for this experiment,

compared to the more accurate model, D-Opt-2+o, used before

(THfsr = 0.99). Both models were evaluated 100 times, one

time with a field ratio threshold [THfsr(D-Org-1
+) = 0.83 and

THfsr(D-Opt-3
+) = 0.79] and another time with a field connection

probability [Pfc(D-Org-1
+) = 0.87 and Pfc(D-Opt-3

+) = 0.76].

The results of these experiments are visualized in Figure 10. These

results indicate that there is no benefit in creating connections

between neurons based on their respective field sizes. Creating

random connections leads to very similar, but in both cases even

smaller decoding errors. While we do not have an explanation for

the decrease in the decoding error, we observed, that the fields of

the networks with a field connection probability were sharpened

equivalently to the sharpening which occurs when using a field ratio

threshold. This property is further investigated in Section 3.4.3.

3.4.2 CAN features in recurrent MF models
One of the key features of CANs is the maintenance of a bump

of activity in the absence of a specific input. Some networks are

capable of maintaining a bump of activity after the specific input

is removed without receiving any input at all, while others need

a certain amount of unified background input, all depending on

the setup of the connections between neurons. In this part of

the evaluation, we have looked at both of these cases to evaluate

whether the MF models, particularly the original MSMF models,

can achieve this and are indeed Continuous Attractor Networks

or not. For this purpose, we create a baseline with an SSSF

model with Nneu = 50 neurons spanning uniformly over the

entire environment. We then remove the input for a length of

Lrem = 20m and evaluate the network with and without lateral

connections. If the lateral connections do create a CAN, then the

decoding error is expected to be smaller with lateral connections

present. During the time, where the positional input is removed,

the optimal decoded position is standing still, i.e., it is equal to the

last position where the positional input was active. This leads to

a scenario, where the maintenance of a bump at the last known

location after the positional input is removed results in an optimal

decoded position. In this scenario, the lateral connections are

essential to drive recurrent excitation in the network to maintain

a bump of activity at the last input location. Without recurrent

excitation, the activity would simply decline until the network

activity vanishes.

We picked multiple different models from the previous

experiments and optimizations in order to verify, that the results

are not based on a certain parametrization of the networks.

For the F-MF model, we chose the F-Opt-3 as a reference,
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The distribution of the mean positional error of 100 individual runs of pairs of D-MF models, with either the field ratio threshold or an equivalent field

connection probability set. The blue lines represent the minimum, maximum, and mean of the evaluation results, the orange line represents the

median of it.
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FIGURE 11

The error distribution of the decoded position for 20 individual runs of pairs of SSSF, F-MF, and D-MF models (without/with lateral connections). In

this experiment, the position-dependent input signal is removed for 20m (10% of the entire length). The blue lines represent the minimum,

maximum, and median of the evaluation results, the orange line represents the mean of it.

since we could not successfully optimize any other network with

lateral connections (see Section 3.4.1). The decoded error for all

experiments is shown in Figure 11. The models are visualized

pairwise, without and subsequently with lateral connections.

If the respective model is a CAN, then the error should

decrease from the first to the second run, as it is the case

for the SSSF model (S-Std-1). This does, however, not apply

for any of the MF models, including the multi-scale models

from Eliav et al. (2021). On the contrary, the error increases

significantly for all of the MF models. These results therefore

show no evidence that the given MSMF and SSMF models are

indeed CANs.
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FIGURE 12

The field activity for the first five neurons of the first network of the experiment performed with 20 instances of F-Org-2− (A) and F-Org-2+ (B) as

well as D-Org-1− (C) and D-Org-1+ (D).

3.4.3 Benefits of lateral connections in MF
models

In the previous part of the evaluation, we have shown that

the MF models do not seem to fulfill some typical properties of

a CAN. In this final part of the evaluation we now investigate

what other benefits or purposes the lateral connections could

have in such a model. We therefore analyze the influence of the

lateral connections on the field shape of the individual neurons

in both, the F- and D-MF networks, by comparing models

without lateral connections (“−”) to ones with optimized lateral

connections (“+o”).

The results of this analysis are visualized in Figure 12 for the

F-Org-2−/+o (top row) and D-Org-1−/+o (bottom row) models.

In both cases, the activation of the lateral connections leads to

a sharpening of almost all firing fields. Due to this sharpening

the fields have less activity outside of their actual field and hence

lead to less noise in the decoding (false positives). In Section 3.4.1

we already demonstrated that the lateral connections lead to a

decrease of the positional decoding error in both optimized original

models (F-Org-2+o and D-Org-1+o). While this does not apply to

all of the models, we do think that lateral connections in such

an MF model could be used for de-noising the input data. This,

however, seems to require few connections with small negative

weights.

4 Conclusion

Training several networks using evolutionary optimization and

comparing the resulting MF networks to an SSSF network (line

attractor) as well as a grid code produced twomain results that shed

light on the accuracy and robustness of the multi-scale, multi-field

place code recently found in the hippocampus of bats (Eliav et al.,

2021).

First, we identified that both the SSMF and MSMF models

outperform an SSSF code; the SSSF code reflects the classical

concept of a hippocampal place code. Using evolutionary

optimization, both SSMF and MSMF models can result from

training MF networks. Yet, neither SSMF nor MSMF networks

achieved the decoding accuracy of multi-scale grid codes. The

reason is that a grid code’s fields are optimally distributed for

environments of any dimension (Mathis et al., 2015). In contrast,

here we randomized the field locations for the (MS)MF networks;

hence, these locations were not optimized. Our experiments on
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(MS)MF codes also showed that the decoding accuracy depends

strongly on the specific instance of how random fields were placed,

even given the same parameters for field generation. Due to the

much larger number of fields in many of the MF models, however,

these models are much more robust to noise induced by drop-out

or lesions than grid codes, which have less redundancy.

Second, while the observed firing fields in bats were thought

to be associated with multiple intermingled line-attractors (Eliav

et al., 2021), we showed that they do not have one of the

properties characteristic of continuous attractors. Specifically,

when removing the position-dependent input for a short period

of time, the networks would always converge to a single baseline

attractor state, independently of the animal’s current location.

While this discrete attractor is always active in the background

during the movement of the agent/animal, it is overridden by

the location-specific input to the network, yet this input leaves

no “memory” imprint. Instead, the primary benefit of the lateral

connections that we could identify in these networks was the

introduction of inhibition. This inhibition trims the “foothills”

of the activity bumps, thereby creating more precise firing

fields.

We note that the optimized models noticeably differed from

the biological MSMF results of bats presented by Eliav et al.

(2021). Specifically, the optimized models tend to lose the multi-

scale property, resulting in narrow distributions of place field sizes

in each neuron, while the number of fields is higher than what

is observed in the experimental data [e.g., compare Figure 6B,

Supplementary Figures 2B, D, 3B, D with Supplementary Figures

12, 13 of Eliav et al. (2021)]. Instead, the resulting models are close

to an SSMF code, consistent with the results for rodents that were

running on long linear tracks (cf. Rich et al., 2014, Figure 2). The

difference in the structure of fields across different species, at least

in long, linear environments, is not explained by our optimization

results. Whether other factors play a role for bats remains an open

question for future work.

Based on our results, we conclude that the MSMF place code

found in the hippocampus of bats is unlikely to be the most

suitable representation for space with respect to accuracy and

energy efficiency, unless robustness to noise is also considered.

Surprisingly, we found that the (MS)MF networks we investigated

did not have continuous attractors. It is therefore possible that

the bats’ MSMF code does not directly inherit the continuous

attractor network topology inherent in the head-direction system

of mammals (Peyrache et al., 2015) and insects (Kim et al.,

2017), which serves as an input stage to neuronal representations

of space.
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