AUTHOR=Roeder Brent M. , She Xiwei , Dakos Alexander S. , Moore Bryan , Wicks Robert T. , Witcher Mark R. , Couture Daniel E. , Laxton Adrian W. , Clary Heidi Munger , Popli Gautam , Liu Charles , Lee Brian , Heck Christianne , Nune George , Gong Hui , Shaw Susan , Marmarelis Vasilis Z. , Berger Theodore W. , Deadwyler Sam A. , Song Dong , Hampson Robert E. TITLE=Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall of stimulus features and categories JOURNAL=Frontiers in Computational Neuroscience VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2024.1263311 DOI=10.3389/fncom.2024.1263311 ISSN=1662-5188 ABSTRACT=Objective

Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject’s own hippocampal spatiotemporal neural codes for memory.

Approach

We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task.

Main results

MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation.

Significance

These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.