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Introduction: Face recognition has been a longstanding subject of interest in the

fields of cognitive neuroscience and computer vision research. One key focus

has been to understand the relative importance of di�erent facial features in

identifying individuals. Previous studies in humans have demonstrated the crucial

role of eyebrows in face recognition, potentially even surpassing the importance

of the eyes. However, eyebrows are not only vital for face recognition but also

play a significant role in recognizing facial expressions and intentions, which

might occur simultaneously and influence the face recognition process.

Methods: To address these challenges, our current study aimed to leverage

the power of deep convolutional neural networks (DCNNs), an artificial face

recognition system, which can be specifically tailored for face recognition tasks.

In this study, we investigated the relative importance of various facial features

in face recognition by selectively blocking feature information from the input to

the DCNN. Additionally, we conducted experiments in which we systematically

blurred the information related to eyebrows to varying degrees.

Results: Our findings aligned with previous human research, revealing that

eyebrows are the most critical feature for face recognition, followed by eyes,

mouth, and nose, in that order. The results demonstrated that the presence of

eyebrows was more crucial than their specific high-frequency details, such as

edges and textures, compared to other facial features, where the details also

played a significant role. Furthermore, our results revealed that, unlike other

facial features, the activation map indicated that the significance of eyebrows

areas could not be readily adjusted to compensate for the absence of eyebrow

information. This finding explains why masking eyebrows led to more significant

deficits in face recognition performance. Additionally, we observed a synergistic

relationship among facial features, providing evidence for holistic processing of

faces within the DCNN.

Discussion: Overall, our study sheds light on the underlying mechanisms of face

recognition and underscores the potential of using DCNNs as valuable tools for

further exploration in this field.

KEYWORDS

face recognition, deep convolutional neural network, facial features, artificial face
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1 Introduction

In the field of face recognition research, the relative importance

of each facial feature in achieving accurate face identification

is a question of great interest (Davies et al., 1977). Previous

studies have primarily focused on the eyes, mouth, and nose

to determine the salience of these features and have established

a hierarchy in which the eyes are deemed the most important,

followed by the mouth and nose (Davies et al., 1977; Haig,

1986; Fraser et al., 1990). Surprisingly, subsequent studies have

indicated that the eyebrows also play a crucial role in face

recognition and maybe even more important than the eyes (Sadr

et al., 2003). One potential explanation for the significance of

eyebrows is their capacity to convey emotions and nonverbal

signals (Sadr et al., 2003). That is, the importance of eyebrows

in facial recognition may be confounded by their role in

other facets of processing face-related information, such as the

recognition of facial expressions (Maarten Milders and Logan,

2008) and judgments of personality (Bar et al., 2006; Willis and

Todorov, 2006). Therefore, disentangling face recognition from

other face-related information processing can enable a more

precise assessment of the role of eyebrows in face recognition.

However, achieving such disentanglement is challenging in human

participants due to the concurrent and spontaneous processing

of non-identity-related face information during perceptual face

processing. Even when participants are explicitly instructed to

perform face recognition tasks, the processing of non-identity-

related face information may still occur and interact with the

face recognition process. For example, personality traits such

as trustworthiness and attractiveness are often rapidly and

automatically inferred from facial appearance (Zebrowitz, 2004;

Todorov et al., 2005;Wout and Sanfey, 2008; Antonakis andDalgas,

2009).

Biologically inspired artificial neural networks, such as deep

neural networks (DNNs), may offer an effective approach to

addressing the abovementioned challenge. These networks have

been designed to mimic the hierarchical architecture of the brain’s

visual processing pathway, consisting of feedforward projections

with a linear-nonlinear neural motif (Cadieu et al., 2014; Yamins

et al., 2014; Grossman et al., 2019). For example, Chakravarthi et

al. proposed an automated CNN-LSTM model that incorporates

the ResNet-152 algorithm (Chakravarthi et al., 2022). Compared

to existing state-of-the-art methods, the newly proposed technique

achieves an impressive accuracy rate of 98% by utilizing a hybrid

deep learning algorithm, showcasing the effectiveness of DCNN in

extracting facial features. As the same time, they exhibit similar

characteristics in face processing to those in humans (Jacob et al.,

2021; Tian et al., 2022). Notably, recent studies have shown that

DCNNs pre-trained on facial datasets can replicate phenomena

related to face processing, such as the Thatcher effect and face

inversion effect (Jacob et al., 2021; Tian et al., 2022), suggesting

that the realization process of the neural network is similar to

that of face perception in the brain. Therefore, DCNNs have been

utilized to access the underlying mechanisms of brain functions,

such as the development of face perception (Baek et al., 2021; Jacob

et al., 2021; Tian et al., 2022). Although DCNNs and the human

brain may not operate on exact same principles, the comparable

methodologies and existing literature demonstrate that DCNNs

provide meaningful insights into the mechanisms of human face

recognition. Notably, DCNNs can be purposefully trained to

execute face recognition, thereby limiting the impact of other

face-related information processing on the recognition process.

Recently, the mask method in Xie’s study has demonstrated

that certain features can be effectively suppressed in the network

by setting the corresponding tensor values to zero (Xie et al.,

2022), which means that the method successfully prevents any

information related to the specific feature from flowing into the

neural network system. This innovative approach offers valuable

insights into studying specific features through the network. Using

the mask method, researchers can gain a deeper understanding

of how individual features influence the network’s perception and

recognition processes.

Here we employed ResNet (He et al., 2016), a DCNN known

for its effective representation of face processing in the brain (Deng

et al., 2019). ResNet has been proven to achieve state-of-the-art

performance in face recognition (Meng et al., 2021; Kim et al.,

2022). We selected the ResNet-101 as the backbone of our network

to explore the relative importance of different facial features (i.e.,

eyebrows, eyes, mouth, and nose) and their combinations. First, we

employed a feature detection-based network to detect the positions

of each facial feature in face images. Next, instead of extracting

these features from faces or replacing them with surrounding

skin texture/color (Sadr et al., 2003), we implemented a masking

technique to the feature region by assigning their values as zero.

This approach allowed us to remove feature information while

preserving the configural structure of faces. We fed these processed

face images with missing feature information into the DCNN

to explore the relative importance of facial features. Moreover,

we varied the masking or blur levels on the facial features to

examine whether recognition accuracy would decrease gradually

as feature information was lost or suddenly at a specific blur level.

Additionally, we employed the Gradient-weighted Class Activation

Mapping (Grad–CAM; Selvaraju et al., 2017) to generate feature

maps and explore the potential explanation of our findings.

2 Methods

2.1 Deep convolutional neural network

ResNet (He et al., 2016) is a widely used DCNN backbone,

which has been employed in various deep-learning tasks,

including face recognition. For example, InsightFace achieves high

performance in face recognition tasks by utilizing the ResNet as

the backbone. Previous studies have demonstrated the effectiveness

of ResNet as the backbone for obtaining a significant face

representation that leads to better performance on downstream

tasks, such as face classification or matching, compared to other

convolutional networks (Meng et al., 2021; Kim et al., 2022). In

the present study, we adopted the ResNet-101, which consisted of

four blocks with varying convolution kernels, as the backbone to

obtain face representation, as illustrated in Figure 1. To examine

the impact of facial features on the accuracy of face recognition, we

removed the last normalization layer and added a Fully Connected
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FIGURE 1

The validation procession of the face recognition. (A) The input of the network is a face image with a size of 112×112, and through the four blocks of

ResNet. The final output is a 512-dimensional face classification result. (B) All the validation images are detected by the S3FD method (Zhang et al.,

2017) The face features are then validated by DCNN using the validation dataset images corresponding to the masked features. To ensure privacy

protection, the entire facial image was intentionally blurred.

(FC) layer. Since our task was to classify faces into 512 classes, the

final FC layer was a 512-unit classifier.We fed the network with face

images of size 112 x 112, and obtained a classification result of 512

units. The overall data flow is shown in the following Algorithm 1.

For multi-classification tasks, there are C categories and the

number of samples is N. The unnormalized score output by the

model is zi,j, which represents the score of the ith sample on

category j. The real label is yi,j, which represents the value (0 or 1)

of category j in the real label of the ith sample. The cross-entropy

loss is defined as Equation 1.

CrossEntropyLoss(y, z) = −
1

N

N
∑

i=1

C
∑

j=1

yi,j log

(

ezi,j
∑C

k=1 e
zi,k

)

(1)

where N represents the number of samples, and C represents the

number of categories. This loss function measures the difference

between the scores output by the model and the true labels.

Through this loss function, we can constrain the model to focus

solely on face classification tasks using the extracted features, thus

avoiding interference from other tasks, such as emotion recognition

and others. While the extracted feature information may still

contain certain elements, such as emotional age, the constraints

imposed by the loss function ensure that the semantic space

remains aligned with the primary classification task.

Grad-CAM (Selvaraju et al., 2017) is a powerful visualization

tool that illuminates the decision-making process of DCNN in

face classification tasks. Grad-CAM introduced additional weights

to the high-level features of the last layer, spatially correlating
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1: Input: U ⊲ Raw images with size [B,C,H,W]

2: Output: Classification results

3: Initialization:

4: X = {x1, x2, x3, . . .} ⊲ Feature key points in X-coordinate

5: Y = {y1, y2, y3, . . .} ⊲ Feature key points in Y-coordinate

6: Mask the target boxes based on Xmax, Xmin and Ymax,

Ymin

7: Training Loop:

8: for i in [1,num_iterations] do

9: Feed Forward:

10: U = model (U) ⊲ Input the image tensor with

masked features

11: Backward:

12: Loss.backward() ⊲ Compute gradients with respect to

the loss function

13: Update:

14: Optimizer.step() ⊲ Update the model parameters using

the computed gradients

15: Zero Grad:

16: Optimizer.grad_zero() ⊲ Zero out the gradients to

prepare for the next iteration

17: Output:

18: Final classification results after the specified

number of iterations

Algorithm 1. Face recognition algorithm.

class-specific model activations with the input image. Specifically,

Grad-CAM utilized the gradient information of the target class

to weight each channel in the last layer’s high-level features.

By element-wise multiplication of these weighted feature maps

with the output of the final convolutional layer, a heatmap was

generated, indicating the correlation of each spatial location with

the target class. By mapping the heatmap back to the original

features, we generated an activation map, offering insights into

the significance of various areas for the model’s recognition

process. This map illustrated the regions that contribute more

significantly to the classification results in network decisions. The

primary advantage of Grad-CAM lies in its non-intrusiveness,

providing interpretability without requiring modifications to the

network architecture. This facilitates a deeper comprehension of

the correlation between the model’s decisions and facial features,

thereby amplifying insights into the decision-making process.

To enhance the reliability of our results, we conducted

a comprehensive statistical analysis. Specifically, we performed

bootstrap tests with a large number of iterations (N = 1,000). These

tests simulated the distribution of recognition accuracy that would

arise if the experiment were repeated with different sets of images.

2.2 Experiment settings

2.2.1 The face datasets
In this study, we aimed to investigate the role of facial

features in face recognition accuracy. To ensure the robustness

and generalizability of our experimental results, we employed a

rigorous dataset selection approach. Given the need for a broad

spectrum of facial expressions and a substantial volume of training

and validation data, we turned to extensive, high-quality datasets

for support. Specifically, we chose three distinct datasets (face

data1/2/3) from the extensive face dataset Face Emore (Guo et al.,

2016; Deng et al., 2019). Each dataset comprised ∼52,000 images,

evenly distributed across 512 categories (identities), with equal

representation of male and female subjects. To ensure fairness,

we randomly sampled individuals from the Face Emore dataset,

considering only those with at least 100 images to maintain balance

and image quality. To conduct practical training and validation,

we partitioned each dataset into a 7:3 ratio, with 36,400 images

for training and 15,600 images for validation. Prior to training, to

achieve better performance, we normalized the input images using

the mean [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224,

0.225] of the ImageNet datasets (Tian et al., 2022).

We employed the Single Shot Scale-invariant Face Detector

(S3FD; Zhang et al., 2017) and a face alignment network (Bulat

and Tzimiropoulos, 2017) to identify and locate the facial

features, namely eyebrows, eyes, mouth, and nose. Regarding

the mask method, we draw inspiration from the recent self-

supervised reconstruction approach. (Xie et al., 2022) zero out

the feature tensor to prevent relevant information from entering

the network model, ensuring that the network disregards this

specific portion of the feature information. During the masking

process, facial feature keypoints were initially detected, followed

by the connection of these keypoints to outline the respective

feature areas. Subsequently, a rectangular region, precisely tailored

to enclose all identified keypoints, was defined. This region,

representing the smallest area capable of encompassing all

keypoints, was then set to zero, effectively applying a mask to

the designated feature. To ensure that the contribution of each

feature to the network is not affected by other factors (e.g.,

size), we used a uniform masking area of 800 pixels, except for

the eyebrows, which required a smaller area of 400 pixels due

to their smaller size in Figure 1. To differentiate the effect of

removing facial features from that of randomly obscuring parts

of faces, we generated comparison data by randomly placing a

mask of 800 or 400 pixels in each image. For each image, we

generated random masks by selecting arbitrary regions based

on the size and shape of the normal masked feature area.

We utilized a random seed following a uniform distribution to

ensure an even occurrence of random positions across all possible

locations. As such, the locations of the random mask varied across

images. Furthermore, in line with the real masks, we ensured

that these random masks for different features did not overlap

by employing a staged randomization process. Additionally, to

maintain the integrity of the masking process within the image

boundaries, we implemented a threshold at the image edges,

thereby ensuring that the mask exclusively applies to the input

image.

Furthermore, to examine the influence of different degrees

of blurring on recognition accuracy, we employed the Gaussian

blur technique to mask the detected features to varying levels.

Specifically, we applied the Gaussian blur method to create

four levels of masks. Gaussian blur is a commonly used

image processing technique, which gradually reduces feature

information through Gaussian blur. Suppose the original image

is I, and the Gaussian blurred image is Iblur, the Gaussian blur
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operation can be expressed as the following convolution operation

(Equation 2):

Iblur(x, y) =

k
2
∑

i=− k
2

k
2
∑

j=− k
2

G(i, j) · I(x+ i, y+ j) (2)

where x and y represent the pixel position of the image, k is the

size of the Gaussian kernel (usually an odd number), and G(i, j) is

the weight of the Gaussian kernel, which can be calculated by the

following formula (Equation 3):

G(i, j) =
1

2πσ
2
exp

(

−
i2 + j2

2σ 2

)

(3)

where σ is the standard deviation of the Gaussian kernel, which

controls the degree of Gaussian blur. The value of σ directly

correlated with the extent of blurring: a larger σ resulted in a

more pronounced blur effect. To systematically analyze the impact

of varying blur intensities, we incrementally adjusted σ from 2.0

to 20.0. This adjustment was designed to gradually increase the

blurriness of the facial features. Specifically, we selected σ levels of

2, 8, 10, and 20, each corresponding to a distinct level of blurring,

ranging from mild to severe. The highest level of blurriness was

achieved in Mask, where pixels were set directly to zero, as shown

in Figure 2. This fine-grained approach facilitated a comprehensive

analysis of the contribution of individual facial features to the facial

recognition process. Specifically, it allowed us to determine whether

the recognition accuracy declined gradually with the incremental

loss of feature details or if there was a threshold level at which the

blurring effect became abruptly significant.

2.2.2 Validation experiment
The training process of the DCNN utilized intact face images

without any feature masking (n = 36,400). Next, to evaluate the

model’s accuracy in face recognition, we conducted the validation

with the remaining 15,600 intact face images. Concurrently, to

ensure that the trained model can approach human-like face

perception capabilities, we evaluated its performance on the

Labeled Faces in the Wild (LFW) dataset (Huang et al., 2008),

comparing it with human results (97.53%; Kumar et al., 2009).

Then, images with masked facial features were employed to assess

the model’s sensitivity to facial features (Figure 3). The recognition

accuracy of the DCNNwas analyzed under various conditions, such

as the masking of eyebrows, the masking of both eyebrows and

mouth, and the different levels of masking applied to the eyebrows.

To further investigate the reliance of DCNN on facial features

for face recognition, we employed the Grad-CAM (Selvaraju et al.,

2017) to generate feature maps and then analyze the interpretability

of DCNN. The Grad-CAM utilizes gradients of target units flowing

into the final convolutional layer to produce a localization map

highlighting the critical regions in the image for predicting the

conception. We used the Grad-CAM to visualize the features on

which DCNN counts for face recognition (Figure 3). To explore

the degree of emphasis that DCNN devotes to each facial feature,

we analyzed the weight of each feature in each tested image.

The process was conducted in the following steps: inputting the

dataset into the DCNN to obtain a heat map tensor for each

image, matching the identified feature positions (mask position as

described above) with the heat map tensor, calculating the weight

of the corresponding area, and normalizing the weight based on

the size of the region (800 pixels for eyes, nose, and mouth; 400

pixels for eyebrows) to determine the emphasis DCNN places on

each feature.

To investigate the underlying factors contributing to

fluctuations in facial recognition accuracy following the masking

of specific facial features, we acquired feature maps from images

in which various facial features were obscured and then conducted

comparisons to access the changes in feature maps after masking

certain facial features.

3 Results

3.1 Training results of the ResNet

In this study, we trained ResNet on three datasets to

classify images of 512 face identities. To avoid overfitting, we

terminated training after 30 epochs. The model yielded a validation

accuracy exceeding 82% across all validation sets, significantly

surpassing the 0.2% accuracy level obtained from the DCNN

initialized with randomized weights (Table 1). In order to explore

the impact of data augmentation, we used the masking data

augmentation method as a comparison. The results were shown in

the Supplementary Table 1. These results indicated that the ResNet

model conducted in the present study exhibited reasonable and

decent performance in face recognition.

To ensure that our model closely aligns with human face

perception capabilities, we utilized the face encoder of our

model, comprising all the ResNet models without the final fully

connected (fc) layer. Subsequently, we evaluated its performance

on the Labeled Faces in the Wild (LFW; Huang et al., 2008)

public dataset for open-set face perception tasks. The accuracy

achieved by the three models trained on our datasets on this

open-set face perception task was 95.767, 94.164, and 94.958%,

respectively. These results demonstrate a close resemblance to

human recognition accuracy, as reported by LFW (97.53%; Kumar

et al., 2009). Thus, after 30 epochs of training, our model exhibited

face perception capabilities that were comparable to those of

humans on the same dataset.

3.2 Recognition on face images with single
facial feature masked

To investigate the contribution of each facial feature to face

recognition, we first analyzed the impact of masking a single

facial feature on the accuracy of face recognition. As shown in

Table 1, the lowest recognition accuracy was obtained after masking

eyebrows, followed by eyes, mouth, and nose. That is, eyebrows

had the greatest impact on face recognition, consistent with the

previous studies in humans. The findings demonstrated that the

recognition accuracy after masking of features was significantly

lower compared to the “Origin.” (p < 0.001), as shown in Table 1.

This result underscored the critical importance of eyebrows in face
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FIGURE 2

Visualization of the validation dataset with masks or various levels of blur. The horizontal axis represents the degree of blur, ranging from Level 1 to

Level 4, with “Origin” indicating the original image. The vertical axis represents various facial features, such as eyebrows, eyes, mouth, and nose. To

ensure privacy protection, the entire facial image was intentionally blurred.

FIGURE 3

The heatmap of the validation procession on the three datasets. The red areas in these heatmaps represent features that the network emphasizes

more during face recognition. (A) The heat map of original validation from the face_data_1. (B) The heat map of original validation from the

face_data_2. (C) The heat map of original validation from the face_data_3.

recognition. While the masking data augmentation method was

able to mitigate the influence of other facial features, it is important

to note that eyebrows remained the most critical facial feature,

even when employing this technique. Notably, despite the relatively

smaller masked area for eyebrows compared to other features,

their masking led to the most substantial impact on recognition

accuracy. This outcome served to underscore the unique and

critical importance of eyebrows within the context of facial feature

contributions to accurate face recognition. In order to validate

our findings that eyebrows are indeed the most crucial facial

feature in DCNN, we replicated the experiment using alternative

backbone architectures (i.e., VGG16 and ResNet-50) and different

loss functions (i.e., cosface and arcface). The findings from

these additional experiments align consistently with our earlier

observations, further reinforcing the robustness and reliability of

our conclusions. Details can be found in Supplementary Tables 2, 3.

To ensure that the decrease in face recognition accuracy is due

to the absence of facial features rather than random variation, we

conducted a comparative investigation using randomized masks,

which were consistent in shape and size with those for facial

features but were placed in random locations. The drop in the

face recognition accuracy caused by randomized masks was 6.0%

on average (6.6, 5.3, and 6.0% for the three datasets, respectively),

which was significantly lower than the drop caused by masking

the facial features (Table 1). These results indicated that facial

features indeed played a more important role than facial non-

feature parts in face recognition in the DCNN. Accordingly,

the results substantiated that our conclusions stemmed not from

random occurrences but from the specific contributions of the

facial features.

To further investigate the impact of facial expressions on face

recognition, we employed a two-step approach. Firstly, we utilized
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TABLE 1 Performance comparison after masking single facial features.

Dataset Origin (%) Random
(%)

B (%) E (%) M (%) N (%) Importance Order

Face_data_1 86.2 0.2 48.2∗∗∗↓ 33.1∗∗∗↓ 21.4∗∗∗↓ 13.7∗∗∗↓ B>E >M >N ∗ ∗ ∗

Face_data_2 87.1 0.2 43.7∗∗∗↓ 26.8∗∗∗↓ 17.9∗∗∗↓ 10.0∗∗∗↓ B>E >M >N ∗ ∗ ∗

Face_data_3 86.3 0.2 37.0∗∗∗↓ 30.4∗∗∗↓ 21.5∗∗∗↓ 19.8∗∗∗↓ B>E >M >N ∗ ∗ ∗

AVG 86.5 0.2 43.0∗∗∗↓ 30.1∗∗∗↓ 20.3∗∗∗↓ 14.5∗∗∗↓ B>E >M >N ∗ ∗ ∗

Origin represents the recognition accuracy on the intact face image validation set. Random indicates results with random weight initialization, serving as a control. B, E, M, and N represent the

differences in recognition accuracy before and after masking eyebrows, eyes, mouth, and nose, respectively. The blue downward arrows indicate a decrease in recognition performance relative

to the Origin after removing the corresponding facial feature. ∗ denotes the significance of data compared to “Origin,” ∗ denotes the significance of “Importance Order.” Statistical significance

is denoted as follows: ∗∗∗(p < 0.001).

FIGURE 4

The recognition accuracy of di�erent facial features of masks with di�erent degrees on the three datasets. The horizontal axis represents varying

levels of blurriness, ranging from mild blurring (Level 1) to severe blurring (Level 4), and Mask corresponds to a state where facial features are fully

masked. Where Origin represents the result without mask. * denotes the significance of the results for “Eyebrows” in comparison with “Eyes,”

“Mouth,” and “Nose.” * denote the significance of “Level_4” compared to “Mask” for each facial feature. Statistical significance is denoted as follows:
***(p < 0.001). (A) The results on the face_data_1. (B) The results on the face_data_2. (C) The results on the face_data_3.

an expressions recognition network called MMNet (Li et al., 2022),

which has been trained on the CASME2 dataset (Yan et al.,

2014). The CASME2 dataset encompasses a variety of expressions

such as happiness, disgust, surprise, and repression. This step

enabled us to segment our validation set based on the identified

expressions. Subsequently, we assessed the facial recognition

performance on these segmented sub-datasets using our ResNet-

100 model (refer to Supplementary Table 4). We observed similar

face recognition accuracy across the different facial expression sub-

datasets. Next, we investigated whether the significance of various

facial features might vary across different facial expressions. To

achieve this purpose, we once again applied masks to different

facial features within each facial expression sub-dataset (refer to

Supplementary Table 5). Our findings consistently revealed that the

importance of eyebrows remained constant across the different

facial expression sub-datasets.

3.3 Recognition results on face images
with di�erent degrees of blurring and
masking on single facial features

To better understand the role of each facial feature in face

recognition, we conducted a series of experiments, in we gradually

increased the level of blurring applied to each feature from Level 1

to Level 4. We then evaluated the impact of masking and these four

levels of blurring on the accuracy of face recognition.

As shown in Figure 4, as the level of blurring increased,

the recognition accuracy of ResNet gradually decreased, reaching

the lowest point when the features were fully masked. Notably,

before Level 4, the decrease in recognition accuracy caused by

blurring was the least significant on eyebrows among the four

facial features. However, when eyebrows were fully masked, the

recognition accuracy dropped significantly, much greater than the

other three facial features. To verify these results, we performed

a rigorous statistical significance analysis. The analysis confirmed

a statistically significant difference (p < 0.001), indicating that

the presence of eyebrows is crucial for face recognition but their

detailed information may be less important.

In contrast, for the other three facial features, the influence of

blur on face recognition spans from level 1 to level 4, including the

mask condition. Notably, the relative importance ranking of these

features remains consistent (Figure 4). These findings suggested

that the detailed information of these features (especially eyes)

might be important for face recognition.

3.4 Grad-CAM results of validation datasets
masked single facial feature

To investigate the mechanisms underlying facial recognition

within DCNNs, we employed the Grad- Cam visualization

technique to assess the degree of emphasis of DCNNs to facial

features. By employing heatmaps to visualize activation weights
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TABLE 2 The heatmap’s activation weight (from 0 to 255) for the facial

features.

Features Face_data_1 Face_data_2 Face_data_3

Eyebrows 60.50 60.23 63.65

Eyes 70.51 68.47 68.84

Mouth 74.57 69.81 70.14

Nose 71.55 70.31 71.68

The weight value is calculated by averaging the activation weight of the feature area, which

reflects the average activation weight of each facial feature by the DCNN.

to the facial features (i.e., eyebrows, eyes, mouth, and nose) in

three validation datasets, we found that DCNNs trained for facial

recognition did focus on facial features and utilized either a singular

feature or a combination of multiple features to achieve successful

recognition (Figure 3).

Next, we sought to explore which features the DCNN

emphasized more by calculating the normalized activation weight

in each feature area (Table 2). Unexpectedly, our results showed

that the degree of emphasis on eyes, noses, and mouth was similar

to each other, with relatively low activation weights on eyebrows

as compared to other features. These findings indicated that the

most significant deficits resulting from masking eyebrows were not

because DCNN emphasized this feature more. This finding aligned

with outcomes from eye-tracking studies in human behavioral

research (Iskra and Gabrijelčič, 2016; Jiang et al., 2019; Lim et al.,

2020), which indicated that, compared to other facial features (like

the eyes, nose, and mouth), the eyebrow area typically received less

focus during face perception. This aligned with our observations

that eyebrows received the least emphasis.

To gain further insight into the deficits in face recognition

caused by masking facial features, we compared the heatmaps for

face images with and without masked facial features in Figure 5.

We found that if the facial feature that the DCNN emphasized

(e.g., eyes) was masked, the DCNN could not correctly recognize

the face image, as illustrated in Figure 5A. Conversely, when

less emphasized features were masked, the DCNN retained its

proficiency in face recognition, as shown in Figure 5B. Notably,

the DCNN could compensate for the absence of critical features by

increasing its emphasis on alternative features, enabling correct face

recognition as shown in Figure 5C. Thus, it is possible that the most

significant deficits caused by masking eyebrows might be due to a

lack of emphasis redirection. However, it is crucial to acknowledge

that this interpretation is speculative and post hoc in nature.

To explore this possibility, we calculated the normalized

activation weight for face images with masked features (Figure 6).

It is important to note that the Grad-cam method normalized the

activation map prior to allocating weights. Therefore, a reduction

in activation for a masked feature implied that emphasis had been

reallocated to other, unmasked features. We found similar results

across the eyes, nose, andmouth, but not the eyebrows. Specifically,

for example, when the eyes were masked, the corresponding region

received less emphasis than when the eyes were intact, indicating

that the DCNN shifted its emphasis to other facial features to

compensate for the missing information. Conversely, when the

eyebrows were masked, the emphasis on the corresponding region

remained similar to when eyebrows were intact. We did statistical

analysis for this conclusion, the analysis showed that the conclusion

indicated a statistically significant difference (p < 0.001) except

masking eyebrows. Therefore, this lack of compensatory emphasis

may explain the most significant deficits in face recognition

observed when the eyebrows are masked.

We introduced an analysis to quantify the degree of emphasis

redirection, as outlined in Table 3. Specifically, we computed the

changes in emphasis around each masked facial feature. Our

results revealed that correctly recognized images exhibited a more

pronounced reduction in emphasis on the masked feature after

masking, indicating a redirection of emphasis toward other facial

features that contributed to the accurate recognition of faces.

Conversely, incorrectly recognized images tended to maintain

emphasis around the masked features or demonstrated a less

reduced emphasis, leading to recognition errors. Notably, our

results indicated that masking eyebrows resulted in a relatively

lower degree of emphasis redirection compared to other facial

features. This underscored a unique aspect of eyebrow information

in face recognition within DCNNs: the network’s inability to

reallocate emphasis to compensate for the lack of eyebrow cues,

highlighting the critical role eyebrows play in the network’s

recognition process.

3.5 Recognition results on face images
with masking on multiple facial features

Previous studies in humans have confirmed that face

recognition is a holistic process whereby faces are processed as

wholes rather than as a collection of parts or features. Thus, it

would be interesting to investigate whether the impact of combined

features on face recognition in DCNN would be greater than the

sum of each feature’s individual impact. To address this question,

next, we masked two facial features and examined the resulting

changes in face recognition performance.

As shown in Table 4, masking both eyebrows and mouth

yielded the greatest effect on the accuracy of face recognition,

followed by the combination of masking both eyes and mouth,

eyebrows and nose, eyebrows and eyes, eyes and nose, and finally,

mouth and nose. As the same, we employed a bootstrap statistical

method to validate the significance of our results. This result

indicated an expectation that EM is significantly greater than EN,

which in turn is significantly greater than MN, and so on down

to BN being the least in the sequence (p < 0.001). Our findings

indicated that the influence of combined masking of facial features

on face recognition appears to correlate with the distance between

the two masked features. In particular, the farther apart these two

features are, the more pronounced the effect on face recognition.

Another plausible hypothesis is that the eyebrows and the mouth

collectively contribute to framing the overall shape of the face.

Next, to further investigate the impact of combined masking,

we compared the impact of combined features and the sum of

the impact of each feature within the combination. We found that

the combined contribution of multiple features to face recognition

exceeded the sum of individual contributions of the features within

the combination. For example, when the eyes and mouth were
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FIGURE 5

Visualization of Grad-CAM heatmaps illustrating the impact of masking facial features. (A–C) The first column shows the original image, while the

second and third columns depict activation heat maps generated by the pre-trained network for the original and masked feature images. Red circles

signify correct DCNN recognition, and green crosses indicate misidentification. To ensure privacy protection, the entire facial image was intentionally

blurred.

FIGURE 6

The activation weight of facial features. It is worth noting that, di�erent from the case with eyebrows, the network paid the least emphasis to the

feature that has been masked. Statistical significance is denoted as follows: ***(p < 0.001). “ns” denotes the there is no significant di�erence between

the two bars.

individually masked, the face recognition accuracy rate decreased

by 33.1 and 21.4%, respectively. However, when both features were

masked simultaneously, the face recognition accuracy rate declined

by 68.2%, which was greater than 54.5%. Our results indicated

that the existence of holistic face processing in DCNN. However,

we observed an exception for the combination of masking both

eyebrows and eyes. To explain this phenomenon, we analyzed the

face images that could not be recognized correctly and found that

the unrecognized face images resulting from masking eyebrows

and those from masking eyes exhibited considerable overlap. The

number of coincidence error samples accounted for 79.1% of

masking eyes and 60.0% of masking eyebrows respectively. This

substantial overlap pointed to a commonality in the importance of

eyebrows and eyes in the network’s recognition process, offering

a plausible explanation for why the combined masking of both

features didn’t demonstrate holistic face processing.

Finally, we examined the effect of complete information loss

of facial features on face recognition accuracy when all the

facial features were masked. We found a significant decrease

in face recognition accuracy upon masking all facial features.
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Specifically, the accuracy on the three datasets dropped from

86.2, 87.1, and 86.3% when no features were masked to 7.9, 8.7,

and 9.7% when all features were masked, respectively, resulting

in an average decrease of 77.8%. These findings indicated that

facial features might play a crucial role in face recognition

in DCNN.

4 Discussion

In this study, we utilized ResNet, a popular DCNN, to

investigate the significance of facial features in the accuracy of

face recognition within DCNNs. Given the specific objective

of our study, which aimed to gain insights from DCNN for

understanding facial features in face perception in humans, our

findings were mainly from faces with frontal views and minimal

occlusions. We did not investigate the potential influence of

pose and occlusions on the importance of facial features in

this study. However, these factors could be explored in future

research to enhance further our understanding of the roles of

facial features in face perception. Our findings revealed the

pivotal role of facial features in the face recognition process of

DCNNs, with eyebrows emerging as the most critical, followed

by eyes, mouth, and nose. Furthermore, our results indicated

that, unlike other facial features, the mere presence of eyebrows

played a crucial role in face recognition in DCNNs, with less

emphasis on their detailed information such as shape or size.

Employing the Grad-CAM visualization technique, we explored

TABLE 3 Quantitative metric measuring the change in the spatial

distribution of activation weight.

True or false
examples

Eyebrows Eyes Mouth Nose

True −8.53 −10.78 −15.45 −20.34

False 2.31 0.54 −4.75 −8.60

All 0.26 −9.53 −12.45 −17.55

The values in the table represent the sample mean of the activation degree difference

after masking the corresponding feature. Negative values indicate reduced activation, while

positive values suggest increased activation.

the effects of masking eyebrows and observed that the most

significant deficits may be attributed to a lack of emphasis

redirection. Overall, our research provided novel insights into

understanding the intricacies of face recognition processing

within DCNNs.

4.1 The most deficits in face recognition in
DCNNs caused by masking eyebrows

In the present study, we delved into the relative importance

of different facial features in DCNNs for face recognition by

systematically masking them to eliminate their contribution. Our

results unveiled that masking eyebrows led to the most pronounced

deficits in face recognition, followed by masking eyes, mouth, and

nose. These findings corroborated with previous studies conducted

in humans. Earlier research had highlighted that eyes held the

highest saliency among facial features, followed by the mouth and

nose (Davies et al., 1977; Haig, 1986; Fraser et al., 1990). Previous

investigations of face recognition had largely overlooked the role of

eyebrows. However, when eyebrows were taken into account, they

were found to be even more important than eyes. For example, the

absence of eyebrows in familiar faces leads to the most substantial

disruption in recognition performance (Sadr et al., 2003). Such a

finding was surprising, given the common intuition that eyes are

the most distinctive and expressive facial feature. The reasons for

this phenomenon remain elusive. Several hypotheses have been

proposed. First, eyebrows are essential in conveying emotions and

other nonverbal signals. That is, eyebrows are important for facial

expression and intention recognition, which may co-occur with

face recognition automatically and thus affect it. Second, eyebrows’

diversity of appearance across different faces may make them more

attractive and informative for facial recognition (Sadr et al., 2003).

Nevertheless, investigating these hypotheses in human subjects

proves challenging, as disentangling the impact of eyebrows

on emotion processing from face recognition involves intricate

interactions with other face-related information processing.

In the present study, by taking advantage of DCNN, we

explored the potential reasons for the importance of eyebrows in

face recognition. We obtained similar results in three datasets,

TABLE 4 Comparison of performance after masking the combined features, where B refers to the eyebrows, E refers to the eyes, M refers to the mouth,

and N refers to the nose.

Dataset Origin
(%)

BM (B+M)
(%)

EM (E+M)
(%)

BN (B+N)
(%)

BE (B+E)
(%)

EN (E+N)
(%)

MN
(M+N) (%)

Importance
Order

Face_data_1 86.2 73.9∗∗∗(69.6)↓ 68.2∗∗∗(54.5)↓ 60.9∗∗∗(61.9)↓ 53.8∗∗∗(81.3)↓ 47.8∗∗∗(46.8)↓ 35.3∗∗∗(35.1)↓ BM>EM >BN >BE

>EN >MN ∗ ∗ ∗

Face_data_2 87.1 65.3∗∗∗(61.6)↓ 63.4∗∗∗(44.7)↓ 63.0∗∗∗(53.7)↓ 59.1∗∗∗(70.5)↓ 40.8∗∗∗(36.8)↓ 32.5∗∗∗(27.9)↓ BM>EM >BN >BE

>EN >MN ∗ ∗ ∗

Face_data_3 86.3 67.6∗∗∗(58.5)↓ 64.5∗∗∗(51.9)↓ 57.8∗∗∗(56.8)↓ 50.6∗∗∗(67.4)↓ 47.1∗∗∗(50.2)↓ 35.0∗∗∗(41.3)↓ BM>EM >BN >BE

>EN >MN ∗ ∗ ∗

AVG 86.5 68.9∗∗∗(63.3)↓ 63.0∗∗∗(50.4)↓ 60.5∗∗∗(57.5)↓ 54.5∗∗∗(73.1)↓ 45.2∗∗∗(44.6)↓ 34.3∗∗∗(34.8)↓ BM>EM >BN >BE

>EN >MN ∗ ∗ ∗

For example, EM represents the differences in recognition accuracy before and after masking the eyes and mouth at the same time, and E+M represents the sum of the differences in recognition

accuracy before and after masking the eyes and mouth separately. The blue downward arrows indicate a decrease in recognition performance relative to the Origin after removing the

corresponding facial feature. ∗ denotes the significance of data compared to “Origin,” ∗ denotes the significance of “Importance Order.” Statistical significance is denoted as follows: ∗∗∗(p

< 0.001).
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each consisting of ∼52,000 images evenly distributed across 512

categories (i.e., identities), with equal representation of male and

female subjects. Importantly, our findings suggested a dissociation

between the level of activation and the importance of eyebrows in

face recognition. In fact, eyebrows were the feature that received

the least emphasis. Consequently, The importance of eyebrows was

unlikely to be caused by more emphasis directed toward them.

Moreover, the DCNN was constrained to focus only on the task of

face recognition. That is, the emotional information and nonverbal

signals conveyed by eyebrows cannot account for the findings

related to their importance. Furthermore, the results of the blurring

experiments showed that the effect of such blurring on the role

of eyebrows in face recognition was very limited, as compared to

other features. That is to say, even if there were variations in the

appearance of eyebrows across different faces, at least the DCNN

did not require the detailed information carried by eyebrows for

accurate face recognition. Our Grad-CAM visualization technique

further suggested that the notable deficits caused by masking

eyebrows might be attributed to a lack of redirection in emphasis.

In other words, even when the eyebrows are masked, DCNNs

mistakenly maintain their focus on the eyebrows, while for other

facial features, they adjust their emphasis to compensate for the

missing information.

Additionally, we conducted blurring experiments to explore

the distinct contributions of eyebrows and other facial features to

face recognition in DCNNs. Notably, even at Level 4 of blurring,

blurring eyebrows had lesser impact on face recognition compared

to blurring other features. However, when the eyebrows were

fully masked, the recognition accuracy dropped significantly, much

greater than the other three facial features. Maximum blurring,

while causing a loss of fine-grained information, retained average

information corresponding to the blurred facial feature due to the

blurring algorithm’s principle, resulting in a smoother appearance

for the blurred area. On the other hand, the full mask ensured

that the neural network model remained entirely unaware of the

masked features during the processing of other features. That is,

for DCNNs, the rough information (e.g., location) of facial feature

might still exist in the maximum blurred images but not in the fully

masked images. Therefore, one possible explanation for our finding

was that the position of eyebrows might facilitate the accurate

analysis of facial information, whichmight explain their heightened

importance in face recognition.

4.2 Holistic face processing in DCNNs

In human behavioral studies, various experimental paradigms

have been extensively employed to investigate holistic face

processing (Richler et al., 2012; Richler and Gauthier, 2014). Two

notable examples are the composite face effect (Young et al.,

1987; Murphy et al., 2017) and the part-whole effect (Tanaka and

Farah, 1993; Tanaka and Simonyi, 2016). The composite face effect

demonstrates that two identical top halves appear different when

aligned with other bottom halves but not when the two halves

are misaligned. In the part-whole task, the perception of a facial

feature, such as the eyes, is more accurate when presented within

an upright face than when shown in isolation. Consistent with

the holistic view, recognition of the facial part is more accurate

when tested in the whole-face condition than in isolation. Both

the composite and part-whole effects suggest that facial features

observed within a whole-face context are integrated rather than

independently represented and processed.

In our current study, we did not manipulate the facial features

as in the composite face or part-whole task. Although we did not

extract features from the faces, we applied the masking techniques

to compare the performance of DCNNs across different kinds of

masking conditions. Specifically, we compared the performance

of DCNNs on the images with single feature masked and those

with combined feature masked. Although this represents an

opposing operation, the underlying implication remains similar

to those in the composite or part-whole effects. Notably, our

findings revealed that the concurrent masking of two features

exerted a more significant influence on face recognition compared

to the combined effects of separately masking each feature.

Despite the non-linear softmax activation function applied to

classification outputs, it’s essential to note that the final stages of

classification involve a linear operation, particularly in the fully

connected (fc) layer. The application of softmax is dedicated to

probability computation, creating a 0–1 probability distribution.

This step, which lacks trainable parameters and employs the already

processed results from the fc layer for probability distribution

construction, maintains the linearity of feature changes in the

classification task. Consequently, if two features are independent,

masking both should result in linear changes, combining the effects

caused by each individual feature. The independence of features

enables the network to model distinct feature vectors, leading

to decoupled high-level semantic features tailored for the facial

recognition task. If a non-linear change is observed in a combined

mask, it suggests that the two features are not independent,

potentially indicating the presence of holistic processing. Therefore,

our findings indicated that DCNNs may process facial features in

an integrated manner rather than independently, that is, DCNNs

may engage in holistic processing when perceiving and recognizing

faces, akin to the manner in which humans process faces, rather

than treating facial features as isolated entities.

5 Conclusion

Taken together, our study examined the relative importance

of specific facial features in face recognition using DCNNs. The

findings revealed that eyebrows are the most critical feature for face

recognition in DCNNs, which aligns with previous human-based

studies. Our study overcame limitations encountered in human

studies and confirms that the importance of eyebrows cannot be

attributed to factors such as the diversity of eyebrow details or

their conveying emotional and other nonverbal signals. Instead, our

findings suggested that, different from other features, the presence

of eyebrows, rather than their detailed information, is critical for

the role of eyebrows in face recognition. Importantly, our results

also indicated that, unlike other features, DCNNs cannot redirect

emphasis to compensate for the absence of eyebrow information.

Furthermore, our findings suggested that DCNN may also process

faces in a holistic manner as humans.
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Our study provided new insights into the neural mechanisms

underlying face recognition and highlights the potential of using

DCNNs as a tool to further explore this field. Future studies could

investigate our findings on eyebrow processing in face recognition

in humans.
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