AUTHOR=Xu Qiang , Zan HaiBo , Ji ShengWei TITLE=A lightweight mixup-based short texts clustering for contrastive learning JOURNAL=Frontiers in Computational Neuroscience VOLUME=17 YEAR=2024 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2023.1334748 DOI=10.3389/fncom.2023.1334748 ISSN=1662-5188 ABSTRACT=
Traditional text clustering based on distance struggles to distinguish between overlapping representations in medical data. By incorporating contrastive learning, the feature space can be optimized and applies mixup implicitly during the data augmentation phase to reduce computational burden. Medical case text is prevalent in everyday life, and clustering is a fundamental method of identifying major categories of conditions within vast amounts of unlabeled text. Learning meaningful clustering scores in data relating to rare diseases is difficult due to their unique sparsity. To address this issue, we propose a contrastive clustering method based on mixup, which involves selecting a small batch of data to simulate the experimental environment of rare diseases. The contrastive learning module optimizes the feature space based on the fact that positive pairs share negative samples, and clustering is employed to group data with comparable semantic features. The module mitigates the issue of overlap in data, whilst mixup generates cost-effective virtual features, resulting in superior experiment scores even when using small batch data and reducing resource usage and time overhead. Our suggested technique has acquired cutting-edge outcomes and embodies a favorable strategy for unmonitored text clustering.