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Introduction

Proteins serve as the primary functional agents within biological systems and play

an integral role in almost every aspect of cellular processes. Proteins are constructed as

polymers, comprising monomers or smaller constituent units, known as amino acids. Life

employs a repertoire of 20 distinct amino acids as the fundamental building blocks for

the synthesis of proteins. The peptide chain possesses all the necessary covalent bonds

meticulously formed within its structure (Anfinsen, 1973; Alberts et al., 2002). However,

in order to fulfill its vital biological role, the peptide chain must assume a precise and

distinctive conformation known as the protein’s native structure. It is exclusively within

this native structure that a protein can execute its designated biological functions. Proteins

that deviate from their intended conformation not only fail to perform their proposed

functions but may also precipitate severe consequences.

Neurodegenerative diseases frequently entail the misfolding and aggregation of

particular proteins, leading to the formation of abnormal and harmful structures (Park

et al., 2017). Addressing this misfolding as a therapeutic strategy presents distinct

challenges in drug discovery and development (Scannevin, 2018). These challenges stem

from various factors, including the dynamic nature of the protein species involved and the

ambiguity surrounding which forms of a particular disease protein (such as monomers,

oligomers, or insoluble aggregates) primarily contribute to cellular toxicity. Over the long

term, neurodegenerative disease proteins invariably lead to synaptic dysfunction, loss, and

eventual neuronal cell death (Surguchov and Surguchev, 2022). The precise mechanisms

by which diverse misfolded disease proteins trigger neurotoxicity remain uncertain, and

these mechanisms appear to vary depending on the particular protein species involved

(Wilson et al., 2023). Misfolded disease proteins are believed to primarily exert their effects

through toxic gain-of-function and/or dominant-negative effects, although instances of

loss-of-function effects have also been documented. For gain-of-function mechanism a

few examples could be included neurotoxic signaling, synaptic deficits, impairment of

proteasomal or lysosomal degradation and axonal transport while increased vulnerability

to stress, mitochondrial dysfunction and impairment of synaptic dynamic have been linked

with to loss-of-function mechanism (Winklhofer et al., 2008). Proteostasis disruption is

a common feature which characterizes misfolding disease proteins (Cuanalo-Contreras

et al., 2013). Loss of protein functionality arises from early degradation, mislocalization or

aggregation such as aggregation-prone proteins amyloid-beta, prion protein, a-synuclein
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and tau. Aβ oligomers are able to modulate synaptic transmission

(Zhang et al., 2022), mutations in tau have been associated with

microtubule destabilization and impaired axonal transport of

substances (Mietelska-Porowska et al., 2014) and alpha-synuclein

inhibits mitochondrial protein import machinery (Lurette et al.,

2023). In Parkinson’s disease the β-strand segments (β1 and β2) of

α-synuclein which involved in interactions within amyloid fibrils

were detected using AlphaFold2 and all-atom MD simulation

(Rani et al., 2023). Focusing on human Alsin, a protein implicated

in a rare neurological disorder called infantile-onset ascending

hereditary spastic paralysis (IAHSP), a computational strategy

based on AI-based protein structure databases was performed

including structural information derived from AlphaFoldDB

(Sebastiano et al., 2022). MOVA, a new in silico method for

predicting variant pathogenicity using AlphaFold2 was developed

and positional information for structural variants were extracted

analyzing 12 ALS-causative genes (Hatano et al., 2023). Structural

states of functional oligomers of all members of the KCTD

family which are proteins containing a (K) Potassium Channel

Tetramerization Domain with highly involvement in neurological

and neurodevelopmental processes was performed (Esposito et al.,

2022).

The thermodynamic hypothesis of
protein folding

A hallmark feature of a living system is the capacity for even

its most intricate molecular components to self-assemble accurately

and reliably. Protein folding can be broadly dissected into three

interrelated facets: Folding process, mechanical aspect of folding

and predicting native structures (Bryngelson et al., 1995; Dill et al.,

2008). The first one encompasses inquiries into the kinetics of

peptide chain folding, including the rate at which it occurs and the

intermediate structural configurations that manifest between the

initial conformation and the ultimate native structure. The second

central to this aspect is the exploration of the underlying forces that

drive and stabilize the folding process and the last one of particular

relevance to biological research is the capacity to predict a protein’s

native structure from its constituent peptide chain.

Over the past six decades, the prevailing paradigm within

the realm of protein folding has revolved around the concept

that proteins undergo folding processes that result in a reduction

in Gibbs free energy (expressed as a negative 1G) (Sorokina

et al., 2022). The thermodynamic hypothesis of protein folding,

especially the notion that the native state represents the most

stable configuration, effectively constituting the global minimum

of Gibbs free energy (G), possesses an inherent allure and intuitive

appeal. Moreover, this perspective significantly streamlines the

development of theories and models, as it obviates the necessity

to unravel the mechanisms by which a protein attains its unique

native conformation. Indeed, by definition, the global minimum

is a singular state. However, when the supposition is made that

the native conformation occupies a local minimum rather than the

global one within the Gibbs free energy landscape, it introduces a

considerable degree of complexity (Lazaridis and Karplus, 2002).

This complexity stems from the need to elucidate the processes

by which this specific local minimum is selected from among

numerous other local minima.

Computational approaches to protein
structure prediction

Computational methods for protein structure modeling are

divided into distinct categories depending on the type of

information they use: homology modeling and threading rely

on structural data from similar proteins, whereas the ab

initio method operates independently of such templates (Xu

et al., 2008; Hameduh et al., 2020). Template-free approaches,

followed by ab initio methods, exhibited superior performance

in numerous instances. Numerous computational studies have

explored solutions for protein conformation prediction, including

evolutionary algorithms, Monte Carlo simulations and HP models

(Istrail and Lam, 2009; Li et al., 2011; Tsay and Su, 2013).

However, these approaches often struggle to efficiently search the

vast conformational space of proteins.

MODELER stands out as a significant milestone among

pioneering computational tools. Its primary application lies in the

realm of homology or comparative modeling of protein three-

dimensional (3D) structures (Webb and Sali, 2016). To harness

the capabilities of MODELER, a fundamental requirement is the

provision of a sequence alignment, aligning the target sequence

with sequences from established, closely related protein structures

referred to as templates. In return, it generates a comprehensive

model that encompasses all non-hydrogen atoms within the protein

structure (Kuntal et al., 2010). In addition to its fundamental

function, this software offers a versatile array of supplementary

features. These include the ability to perform de novo modeling

of protein structure loops, assist in fold assignments, facilitate the

alignment of two or more protein sequences or structures, and

proficiently cluster protein structure.

Deep learning (DL) techniques have achieved notable progress

in developing end-to-end differentiable models and directly

forecasting dihedral angles or 3D protein structures (Torrisi

et al., 2020; Pakhrin et al., 2021) (Figure 1). However, it is

important to note that these approaches, as currently reported,

still heavily rely on domain-specific input features in addition

to the primary amino acid sequence. This reliance on extra

information can pose challenges when attempting to generalize

predictions for novel protein sequences lacking any prior

knowledge of these specific input features. For instance, these

methods frequently require the use of templates, which are explicit

sequence-to-structure mappings generated through computational

procedures (AlQuraishi, 2019; Qin et al., 2020). Templates facilitate

the transformation of raw amino acid sequences into three-

dimensional structures by referencing existing protein structures

with similar sequences. Another common reliance is on co-

evolutionary data, which is built upon the assumption that pairs

of residues displaying highly correlated mutations are likely to be

positioned closely in the protein’s three-dimensional structure (Noé

et al., 2020; Xu et al., 2021).

Addressing the significant challenge posed by the enigmatic

protein folding problem, meticulous organization characterizes
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FIGURE 1

Workflow of deep learning methods. The user provides a sequence of interest and the trained model, considering in addition other structural data,

provides a prediction of the folded protein structure in 3D-space. AlphaFold produces a per-residue model confidence score (pLDDT) between 0 and

100. Dark blue corresponds to very high confidence (pLDDT > 90), light blue to high (90 > pLDDT > 70), light orange to low (70 > pLDDT > 50) and

dark orange to very low confidence (pLDDT <50).

the Critical Assessment of Protein Structure Prediction (CASP)

competition. DeepMind’s AlphaFold, the CASP13 winner, follows

a methodology that embraces two firmly established concepts

deeply ingrained in scientific literature (Senior et al., 2020). Firstly,

it employs co-evolutionary analysis to map the co-variation of

residues within protein sequences to physical interactions in

protein structures. Secondly, it leverages deep neural networks to

adeptly discern patterns in protein sequences and co-evolutionary

couplings, subsequently translating them into contact maps.

In CASP14, a highly evolved iteration, denoted as AlphaFold2,

emerged as the victorious solution, developed by Jumper et al.

(2021). This model employs a DL network architecture that

seamlessly integrates both physical and biological knowledge

within a dual-track framework. To delve into the intricacies,

the output of AlphaFold2 consists of the three-dimensional

coordinates of all heavy molecules, complemented by a confidence

score. This score is derived from an amalgamation of multiple

sequence alignments (MSAs) and pairwise residue features.

ColabFold was also used as an implementation of the AlphaFold

framework that uses the MMseqs2 algorithm to promptly compile

MSAs. Both can provide structural in specific proteins in involved

in Alzheimer’s disease (Santuz et al., 2022; Efraimidis et al., 2023).

RoseTTAFold presents itself as an additional deep learning model

that builds upon concepts initially developed by AlphaFold2. This

model employs a three-track neural network, utilizing inputs at

three distinct levels: the 1D sequence level, the 2D distance map

level, and the 3D coordinate level, all in pursuit of protein structure

prediction (Baek et al., 2021).

In another approach, the recurrent geometric network (RGN)

employs a sequence of amino acids and position-specific scoring

matrices (PSSMs) as its input. This method culminates in

the prediction of a 3D protein structure (Chowdhury et al.,

2022). Notably, the RGN model primarily relies on mathematical

equations that pertain to chemical properties and employs a

recurrent neural network to encode the protein sequence. Lastly,

a new deep learning architecture, DeepPotential, was developed for

the prediction of protein structural geometry, integrating multiple

unary and pairwise features as inputs into a hierarchical deep

residual neural network (Li et al., 2022).

The availability of precise protein structure prediction

has driven progress across diverse fields with AlphaFold and

RosettaFold exhibiting competence in the prediction of intricate

protein assemblies. Similarly, several other approaches have

honed their focus on the realm of protein-protein interactions

(PPIs). One such method, Struct2Graph, is founded on a 3D-

structure-based graph attention network, specifically tailored for

PPI prediction (Baranwal et al., 2022; Soleymani et al., 2022). In

essence, this technique entails the acquisition of low-dimensional

feature embeddings from the graph structures of individual

proteins. Another field closely related to protein folding is

the effort to design novel proteins designed to possess specific

desired functionalities with ProteinMPNN standing out as a

noteworthy example, having demonstrated its utility in the

design of monomers, cyclic oligomers, protein nanoparticles, and

protein-protein interfaces (Dauparas et al., 2022).

In a parallel vein, ProteinSolver is used, underpinned by graph

convolutional neural networks (CNNs), which adeptly addresses

the challenge of constraint satisfaction within the realm of protein

topologies (Strokach et al., 2020). This model, trained on protein

sequences, acquires the capacity to discern the constraints inherent

in protein structures. Subsequently, it leverages this knowledge

to generate new protein sequences capable of folding into user-

defined shapes.

Integrating computational predictions, such as those generated

by AlphaFold or RoseTTAFold with cryoelectron microscopy

(cryo-EM) data can provide a synergistic approach to achieving

more accurate and reliable protein structure determination such

as helicase-primase D5 (Hutin et al., 2022) and interleukin−27
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signal complex (Jin et al., 2022). Emphasis should be given on

inclusion of experimental information from density maps however

amechanism for assimilating this information in a form compatible

with modeling should be required. In several examined cases,

enhancing the deep learning prediction involves utilizing templates

derived from the initial prediction and employing automatic

rebuilding with the density map. This entire process can serve

as an initial step in structure determination, generating a docked

algorithm model that may surpass the accuracy of one predicted

without the density map (Terwilliger et al., 2022).

Limitations and improvements

AlphaFold2 gained prominence in drug discovery not just

for its remarkable accuracy, but also for its contribution of

predicted protein structures to a publicly accessible database

(Borkakoti and Thornton, 2023). This resource has significantly

simplified the drug discovery process, particularly in the context

of small molecule-based research, by reducing the necessity

for recurrent structure predictions. However, AlphaFold2 such

as every recent DL method, lacks the capability to predict

critical elements of protein structures as the algorithm is unable

to directly predict three-dimensional structures solely from a

raw sequence (Xu, 2019; Jumper et al., 2021). Moreover, it

cannot efficiently predict intrinsically disordered proteins/regions

and loops as well it showed weak performance on reverse

docking (Wong et al., 2022). Although lacking stable structures,

intrinsically disordered proteins (IDPs) play a vital role in

numerous biological processes linked to neurodegeneration.

Identification and annotation of intrinsically disordered regions

(IDRs) could be precisely predicted through deep learning-based

disorder predictors. Recently, DeepDPR has been proposed which

can achieve satisfactory results compared with other methods

in predicting IDRs consisting of four distinct steps such as

Masking layer, a TimeDistributed module, a Bi-LSTM network

and 4) a fully connected network (Yang et al., 2023). Current

designs of deep learning models could explore a broad space

of inputs and network topologies, demonstrating diversity in

their approach to predicting IDRs (Zhao and Kurgan, 2022).

A challenge is the combination of physicochemical attributes,

considering factors such as hydrogen bonding, contact potential

energy, hydrophobicity and molecular size with folding prediction

through AI approaches. AlphaFold2 uses as an input amino

acid sequence to generate a MSA based on several databases of

protein sequences to identify which parts of the sequence are

mutation prone, determining correlation between them. In this

combination of bioinformatics and physical approaches, the use

of physical and geometric approaches to generate features that

learn from PDB data is demonstrated, leading to a network that

effectively learns from the limited data available while efficiently

handling the complexity and diversity inherent in structural data

(Jumper et al., 2021; Bertoline et al., 2023). Similarly, RGNs require

both Position Specific Scoring Matrices (PSSMs) and the raw

sequence to make predictions and are currently unable to harness

information pertaining to secondary protein structure (AlQuraishi,

2021). Several extensions of the AlphaFold algorithm have been

created to tackle these challenges. For example, AlphaFold-

Multimer trained on data with known stoichiometry, tailored for

predicting multimeric interfaces while preserving a high degree

of accuracy within individual protein chains while the web-based

utility AlphaKnot is designed to assess entanglement within protein

models resolved using AlphaFold, leveraging pLDDT confidence

values (Niemyska et al., 2022; Zhu et al., 2023). Novel modeling

methods derived from natural language processing for protein

structure prediction have gain attention, such as ESMfold and

EMBER2 to determine evolutionary, structural and functional

patterns from massive protein sequence databases (Weißenow

et al., 2022; Lin et al., 2023). Concurrently improving the

accuracy of a predictive model could simplify the detection

of required adjustments for obtaining a better match with the

density map. These prospects suggest that employing an iterative

approach to incorporate information from the density map into

structure prediction has the potential to increase the overall

modeling accuracy (Terwilliger et al., 2022). Identifying protein

interactions and integrating experimental data should be taken into

account to refine accuracy in predicting the structures of proteins

associated with neurodegenerative diseases, such as Alzheimer’s

and Parkinson’s disease, and better understand their underlying

molecular mechanisms and their functional implications. In this

direction, improvements should include enhancing the ability

to predict interactions between specific proteins involved in

neurodegeneration, handling intrinsically disordered proteins

and proteins embedded in cell membranes, and integrating

experimental data from studies like X-ray microscopy, nuclear

magnetic resonance or cryo-electron microscopy. In a recent

study, the ReFOLD4 refinement approach represents a significant

advancement in improving AlphaFold2 models, exhibiting a

commendable ability to maintain high accuracy in localized regions

(Adiyaman et al., 2023).

Conclusions

Recent progress in AI models has brought substantial changes

to the study of protein folding. Predicting protein structures

from sequences and exploring protein energy landscapes through

simulations now heavily involve machine learning techniques.

Additionally, machine learning is instrumental in designing

force-fields and extracting essential information from extensive

simulation datasets, enhancing the understanding of rare events

like folding/unfolding transitions. While certain challenges persist,

these methods are expected to play a pivotal role in advancing the

field of protein folding and dynamics in the near term. Continued

progress is being made in addressing more intricate unresolved

questions and help exploring numerus disorders as it is widely

acknowledged that protein misfolding represents a prominent

hallmark in the majority of neurodegenerative diseases. Our

existing knowledge base largely derives from decades of research

focused on purified proteins studied in vitro, such as β-amyloid

in Alzheimer’s disease or a-synuclein in Parkinson’s disease, and

the extent of its applicability to protein folding within the intricate

microenvironment of a living cell continues to be a persistent

concern. Anticipating the forthcoming developments in tools and

databases within the coming years, each incremental enhancement

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1323182
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Krokidis et al. 10.3389/fncom.2023.1323182

is expected to effectively address current limitations and broaden

the usability and applicability of predicted protein structures.
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